Data-driven estimation of fake τ background in Higgs searches in ATLAS On behalf of ATLAS collaboration

Marzieh Bahmani

IFJ-PAN Krakow

Sep 2018

Marzieh Bahmani

Data-driven Background estimation

Sep 2018 1 / 15

Introduction

- Motivation, i.e. jets genuinely fake hadronic τ and all the τ -related analyses suffer from such backgrounds.
- The fake tau background is not well modeled by MC therefore, we developed data driven techniques.
- There are different approaches for estimation of jet-to-tau misidentified hadronic τ decays:
 - Fake factor method:
 - Fully data-driven.
 - Example: $H^{\pm} \rightarrow \tau \nu$ analysis (arXiv:1807.07915).
 - Pake rate method:
 - Data driven efficiency factor applied to MC
 - Examples: BSM A/H/Z $\rightarrow \tau\tau$ (10.1007/JHEP11(2014)056).

・ロ・ ・ 戸 ・ ・ ヨ ・ ・ ヨ ト ・ クタマ

Fake-Factor method: (FF determination)

- The *tau* candidate matching a true hadronic *tau* dacay, an electron or a muon at generator level must be subtracted.
- Fake-factors are usually measured in bins.(e.g. *p*_T, number of tracks) They can also be measured in opposite- or same-sign regions, with or without b-jets, depending of the topology of interest in the analysis.

Marzieh Bahmani

Data-driven Background estimation

Sep 2018 3 / 15

Considering q/g jet composition

- There can be one or several CR(s) where FFs are measured, for one CR, one must ensure that the fake τ composition is close to the one in the signal region (SR). Otherwise, one should measure FFs in several CRs that have different fake τ compositions and then combine them.
- Usually, FFs are measured in CRs enriched in either gluon-initiated or quark-initiated jets, as the probability for a hadronic jet to fake a τ depends on its origin.($\tau_{had-vis}$ jet width and Charged track multiplicity)
- In the case where two (or more arXiv:1808.00336) CRs are used, and if one is enriched in gluon-initiated jets, FF for each bin:

$$FF = \alpha_g \times FF(g) + [1 - \alpha_g] \times FF(other(s))$$

In that case, one only needs to compute the fraction of gluon-initiated jet events in the SR-like anti- τ region

Marzieh Bahmani

・ロ・ ・ 戸 ・ ・ ヨ ・ ・ ヨ ト ・ クタマ

Application of FFs

- Define an anti- τ region, which is similar to the signal region but where a τ candidate fails the ID-requirement, instead of fulfilling it.
- In a bin i, the number of events with a jightarrow au fake is

$$N_{fakes}^{\tau}(i) = N_{fakes}^{anti- au}(i) imes FF(i),$$

 $N_{fakes}^{anti- au}(i) = N_{fakes}^{anti- au}(data, i) - N_{fakes}^{anti- au}(MC, au
eq j, i)$

Example of $H^{\pm} \rightarrow \tau \nu$ analysis

• Two control region with different jet compositions are used in order to determine the rate of the fake $\tau_{had-vis}$ objects.

Multi-jet CR (dominated by gluon-initiated jets)

- W+jet CR (dominated by quark-initiated jets)
- In the anti- $\tau_{had-vis}$ regions, the fractions of quark- and gluon-initiated jets misidentified as $\tau_{had-vis}$ candidates are measured using a template-fit approach, based on variables that are sensitive to the difference in quark- and gluon-fractions between these two types of jets

Combined Fake Factor in $H^{\pm} \rightarrow \tau \nu$ analysis

- Chosen variables : $\tau_{had-vis}$ identification BDT output score for 3-track and the $\tau_{had-vis}$ jet width for 1-track
- For each bin, two binned templates, denoted f_{MJ} (Multijet CR) and f_W (W+jet CR), are obtained in their corresponding CRs.
- Their fractional contribution in the SR is determined using a template fit to the respective distributions in the anti tau SR:

$$f(x|\alpha_{MJ}) = \alpha_{MJ} \times f_{MJ} + (1 - \alpha_{MJ}) \times f_{W}$$

- α_{MJ} is a free parameter.
- From the best fit values of α_{MJ} , combined FF are given by :

$$FF^{comb}(i) = \alpha_{MJ}(i) \times FF^{MJ} + (1 - \alpha_{MJ}(i)) \times FF^{W}$$

Fake Factors from $H^{\pm} \rightarrow \tau \nu$ analysis

Fake factors parameterized as a function of p_T^{τ} and number of tracks, in the left plot in the multi-jet and w+jet CRs and errors represent the statistical uncertainties, in the right plot after reweighting by α_{MJ} in the $\tau_{had-vis}$ +jets and $\tau_{had-vis}$ +lepton channel, and it is with additional systematic uncertainties obtained from the combination in a given p_T^{τ} bin.

Validation of the background modelling in $H^{\pm} \rightarrow \tau \nu$ analysis

Distribution of m_T ($\tau_{had-vis}, E_T^{miss}$) in the two signal regions, (a) $\tau_{had-vis}$ +electron, (b) $\tau_{had-vis}$ +jets

(3)

Fake-Rate method

- The fake rates are defined as ratios of event yields with identified τ s and the ones with τ candidates without identification applied. They are applied to non-true τ objects in a signal-like region in MC.
- This is a semi-data-driven method as fake rates are applied to simulated events.
- After subtraction of events where τ ≠j, fake rates are measured in dedicated CRs as:

$$FR = \frac{N_{\tau-ID}(data) - N_{\tau-ID}(MC, \tau \neq j)}{N_{\tau-noID}(data) - N_{\tau-noID}(MC, \tau \neq j)}$$

• Usually parameterized in bins of number of tracks, p_T , and η .

Fake-Rate in high-mass resonances decaying to $\tau\tau$ analysis 10.1007/JHEP07(2015)157

Tau-ID fake-rate measured in W($\mu\nu$)+jets data events for the BDT loose, The fake-rate is parameterized in the charge product of the muon and fake tau candidate. Opposite-sign events are depicted by black circles and same-sign events by blue stars. The systematic uncertainty covers differences due to jet composition and is added to the statistical uncertainty in quadrature identification working point.

Marzieh Bahmani

Data-driven Background estimation

Systematic Uncertainties $H^{\pm} \rightarrow \tau \nu$

Source of systematic	Impact on the expected limit (stat. only) in %	
uncertainty	$m_{H^+} = 170 \ GeV$	$m_{H^+} = 1000 \ GeV$
Experimental		
luminosity	2.9	0.2
trigger	1.3	< 0.1
$\tau_{\rm had-vis}$	14.6	0.3
jet	16.9	0.2
electron	10.1	0.1
muon	1.1	< 0.1
E_{T}^{miss}	9.9	< 0.1
Fake-factor method	20.3	2.7
Υ modelling	0.8	_
Signal and background models		
$t\bar{t}$ modelling	6.3	0.1
W/Z+jets modelling	1.1	< 0.1
cross-sections $(W/Z/VV/t)$	9.6	0.4
H^+ signal modelling	2.5	6.4
All	52.1	13.8

The dominant sources of systematic uncertainty of Fake factor method:

- The requirement $\tau_{had-vis}$ BDT output score in the anti- $\tau_{had-vis}$ definition.
- The contamination of true $\tau_{had-vis}$ candidates fulfilling the anti- $\tau_{had-vis}$ selection (varied by 50%).
- The statistical uncertainty of the control sample.
- The statistical error on the best-fit value of α_{MJ}

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののの

Systematic Uncertainties in high-mass resonances decaying to $\tau\tau$ analysis (JHEP 01(2018)055)

• The uncertainty in the fake-rates used to weight simulated non-multijet events in the $\tau_{had} \tau_{had}$ channel is dominated by the limited size of the fakes regions and can reach 40%

13/15

Pros and cons

Fake factor method

- It is universal and precise. (estimate entire background from all sources)
- The q/g jet composition needs to be known in CRs and SR.
- Fake rate method
 - In the FR method, the statistical precision of the estimate is enhanced. (since all the events are considered in the estimation)
 - It is only applied to the background modeled by MC.

Optimal strategy depends on the specific analysis! Simulation or data driven, or a combination? Which data driven method.

<<p>A 目 > A 目 > A 目 > 目 = のQQ

Summary

- Two most commonly used methods for estimation of misidentified hadronic τ decays in ATLAS analyses have been presented: fake-factor method, fake-rate. (There are also other methods: ABCD and template-fit method)
- Example application of $H^{\pm} \rightarrow \tau \nu$ and BSM A/H/Z $\rightarrow \tau \tau$ were shown
- While the Fake Factor method appears the most generic, the actual choice depends on the type of background dominating a prior analysis.

JOC ELE

・ 同 ト ・ ヨ ト ・ ヨ ト

Template-fit method

- The multi-jet component in the SR estimated by fitting MJ template shape to data.
- The template shape extracted from data in MJ-enriched CR.
- In the $H^{\pm} \rightarrow \tau \nu$ analysis(arXiv:1204.2760) the multi-jet background were estimated by fitting its E_T^{miss} shape(and the E_T^{miss} shape of other backgrounds) to data.

Backup slides

Regions for fake-factor measurements in $H^{\pm} \rightarrow \tau \nu$ analysis

Multi-jet CR
number of jet at least 2
$E_{Tmiss} < 80 { m GeV}$
bjets veto
electron and muon veto
p_T of $ au > 30$ GeV
The transverse mass m_T of τ (τ_met_mt) >50 GeV
BDTJetSigTrans score > 0.02

W+jets CR

```
one electron or muon
at least one reconstructed \tau_{hadvis} candidate
p_T of electron and muon > 30 Gev
bjets veto
60 < m_T(I, missingET) < 160 Gev
BDTJetSigTrans score > 0.02
```

τ jet width definition

$$w_{ au} = rac{\Sigma[p_T^{track} imes \Delta R(au_{had-vis}, track)]}{\Sigma p_T^{track}}$$

(1)

ABCD method

- One needs two uncorrelated variables (Var1 and Var2), each passing or failing a specific cut, e.g. pass or fail the tau-ID, the charge correlation (OS or SS), below or above a transverse mass threshold, etc.
- The data-set is divided in four regions depending on whether or not each variable passes or fails its cut
- Let B be the signal region. A and B differ from the cut on Var1, C and D differ from the cut on Var2. Each region contains a different fraction of signal, which must be subtracted (the same applies to all other backgrounds if they are estimated with other methods, e.g. simulation)
- The fake-tau background in region B can be computed as

$$N_B^{bkg} = N_A^{bkg} \times \frac{N_D^{bkg}}{N_C^{bkg}} \tag{2}$$

Analyses using the fake-rate method:

- $A/H/Z' \rightarrow \tau \tau$ (hadhad): multi-jet background estimated with fake factors, others (W+jets,t \overline{t}) fake rates applied to simulation.
- The hh $\rightarrow bb\tau\tau$ (hadhad): a fake-rate method is used to estimate t \bar{t} where at least one of the taus is fake.

Validation of the background modelling in $H^{\pm} \rightarrow \tau \nu$ analysis(2)

Distribution of $m_T (\tau_{had-vis}, E_{miss}^T)$ in the signal region : $\tau_{had-vis}$ +muon

