

Higgs physics and cosmology: Gravitational waves from the EWPT

saoghal.net/slides/charged2018/

David J. Weir - m University of Helsinki - davidjamesweir

cHarged 2018

What happened when the universe was optically opaque?

Source: arXiv:1205.2451

What's next: LISA mission

- Three laser arms, 2.5 M km separation
- ESA-NASA mission, launch by 2034
- Proposal submitted last year arXiv:1702.00786
 Officially adopted on 20.6.2017

LISA Pathfinder

PRL **116,** 231101 (2016)

PHYSICAL REVIEW LETTERS

week ending 10 JUNE 2016

Exceeded design expectations by factor of five!

Source: (CC-BY) Phys. Rev. Lett. 116, 231101

Possible signals

Source: arXiv:1702.00786.

Key science for LISA

Science Investigation 7.2: Measure, or set upper limits on, the spectral shape of the cosmological stochastic GW background.

Operational Requirement 7.2: Probe a broken power-law stochastic background from the early Universe as predicted, for example, by first order phase transitions ...

Electroweak phase transition

Source: arXiv:1206.2942

First order thermal phase transition

- 1. Bubbles nucleate and grow
- 2. Expand in a plasma create reaction fronts
- 3. Bubbles + fronts collide violent process
- 4. **Sound waves** left behind in plasma
- 5. Turbulence; damping

Key parameters for GW production

4 numbers parametrise the transition:

- T_* , temperature ($\approx T_{\rm n} \lesssim T_{\rm c}$)
- α_{T_*} , vacuum energy fraction
- $v_{\rm w}$, bubble wall speed
- β/H_* :
 - β , inverse phase transition duration
 - H_* , Hubble rate at transition

How the bubble wall moves

Force on
$$\phi$$

$$\partial_{\mu} T^{\mu\nu} - \int \frac{d^3k}{(2\pi)^3} f(\mathbf{k}) F^{\nu} = 0$$

Phys. Rev. D 46, 2668

This equation is the realisation of this idea:

Yet another interpretation:

Field part
$$\frac{\partial_{\mu} T^{\mu\nu}}{\partial_{\mu} T^{\mu\nu}} - \int \frac{d^{3}k}{(2\pi)^{3}} f(\mathbf{k}) F^{\nu} = 0$$
i.e.:
$$\partial_{\mu} T^{\mu\nu}_{\phi} + \partial_{\mu} T^{\mu\nu}_{\text{fluid}} = 0$$

Can simulate as effective model of field ϕ + fluid u^{μ} .

Detonations vs deflagrations

- If ϕ wall moves *supersonically* and the fluid u^{μ} enters the wall at rest, we have a *detonation*
 - Good for GWs, bad for BG
- If ϕ wall moves *subsonically* and the fluid u^{μ} enters the wall at its maximum velocity, it's a *deflagration*
 - **➡** Bad for GWs, good for BG

Velocity profile development: detonation vs deflagration

Simulation slice example

Putting it all together - $h^2\Omega_{\rm gw}$

- For any given theory, can get T_* , α_{T_*} , β/H_* , $\nu_{\rm w}$ arXiv:1004.4187
- It's then easy to predict the signal...

CosWG report arXiv:1512.06239

- Results for a variety of models, at "benchmark points"
- Key result: parametric plots with contours at SNR_{thr}

Model
$$\longrightarrow (T_*, \alpha_{T_*}, \nu_{W}, \beta) \longrightarrow SNR$$

Current EWPT work in LISA CosWG

- In preparation: update to first report on PTs (arXiv:1512.06239)
 - "Final" sensitivity curve
 - Updated model 'showcase'
 - New theoretical work (including no runaways)
- PTPlot web tool for computing SNR
 - Modular, containerised
 - Code will be open, can be run locally
- Coming soon 😅

PTPlot.org

Recent results 1: parameter space

- "Non-perturbative" results for triplet model arXiv:1802.10500

- Dimensional reduction, mapping to existing theory
 Light green region first order phase transition
 Dark green + gray regions new simulations required

Recent results 2: spectral shape

- Each simulation: ~1M CPU hours arXiv:1704.05871
- Validate spectral shape used in WG reports

A pipeline

- 1. Choose your model (e.g. SM, xSM, 2HDM, ...)
- 2. Dim. red. model

Kajantie et al.

3. Phase diagram (α_{T_*}, T_*) ;

lattice: Kajantie et al.

4. Nucleation rate (β) ;

lattice: Moore and Rummukainen

5. Wall velocities (v_{wall})

Moore and Prokopec; Kozaczuk

- 6. GW power spectrum $\Omega_{\rm gw}$
- 7. Sphaleron rate

Very leaky, even for SM!

What I am thinking about

- Turbulence
 - MHD or no MHD?
 - Timescales $H_*R_*/U_{\rm f} \sim 1$, sound waves and turbulence?
 - More simulations needed?
- Complementarity of GW signal and BG
 - Competing wall velocity dependence of BG and GWs?
 - Sphaleron rates in extended models?
- The best possible determinations for xSM, 2HDM, Σ SM, ...
 - What is the phase diagram?
 - Nonperturbative nucleation rates?

Final conclusion

- Now have good understanding of thermal history of firstorder electroweak phase transitions
- Can make good estimates of the GW power spectrum
- Turbulence still a challenge
- Recently appreciated contributions, like acoustic waves, enhance the source considerably.
- LISA provides a model-independent probe of first-order phase transitions around 100 GeV