Analysis of mechanical stress during quench

M. Prioli, T. Salmi, M. Maciejewski, B. Auchmann, A. Verweij B. Caiffi, S. Farinon, M. Sorbi C. Lorin, E. Rochepault

Previous work

[1] J. Zhao et al. "Mechanical stress analysis during a quench in CLIQ protected 16 T dipole magnets designed for the Future Circular Collider" submitted to *Physica C: superconductivity and its applications*, 2018.

- COMSOL electro-thermal (STEAM) \rightarrow COMSOL mechanical (TUT)
- Single aperture

[2] M. Maciejewski et al., "Coupling of Magnetothermal and Mechanical Superconducting Magnet Models by Means of Mesh-Based Interpolation," in *IEEE Transactions on Applied Superconductivity*, vol. 28, no. 3, pp. 1-5, April 2018.

- COMSOL electro-thermal (STEAM) \rightarrow ANSYS mechanical (INFN, CEA)
- Automated coupling with existing ANSYS mechanical models
- \triangleright Double aperture

- FCC cos-theta magnet

- FCC block-coil magnet

Inputs

Magnet

- 16 T cos-θ dipole
- Version 22b_38_v1

Quench protection

COMSOL

ERN

- 2 apertures
- 100% of nominal current

5

Coupling strategy

Magneto-Thermal Model Coupling Environment Mechanical Model Mechanical Model Coupling Environment Mechanical Model **VECOMSOL**

 $\vec{F}_{\rm L}$

CÈRN

Mesh-based interpolation \hat{T}

 $\widehat{\vec{F}}_{\rm L}$

Data transfer preview in MpCCI GUI

Temperature [K] animated

Temperature differences are increasing while Lorentz force is decreasing during discharge \rightarrow Non trivial prediction of the moment of peak mechanical stress

Lorentz force [Pa] animated

Crosscheck at nominal current (*t* = 0)

Reference simulation from Barbara: Lorentz force from ROXIE → Mechanics in ANSYS

Simulation to be validated: Lorentz force from COMSOL → Mechanics in ANSYS

 $σ_{VM,max} = 208 Mpa$

 \checkmark Very similar stress distribution for the two approaches!

Case 1: no hot-spot

 $\sigma_{VM,max} = 232$ Mpa at the end of the discharge

Case 1: no hot-spot

 $\sigma_{VM,max} = 232$ Mpa at the end of the discharge

Case 2: with adiabatic hot-spot

Comments, cos-theta

- Peak stress is at the end of current discharge
	- Max. temperature differences
	- 208 MPa $@$ energization \rightarrow 232 MPa after a quench
- The worse adiabatic hot-spot location is in the half-turn with maximum stress \rightarrow 241 MPa after a quench in the peak stress location
- Similar results as in Junjie analysis for single aperture design
	- Same evolution but higher stress: 241 MPa instead of 222 MPa
- \triangleright The location of peak stress at the end of discharge is the same as for the cooldown (Barbara's presentation, [link\)](https://indico.cern.ch/event/689854/contributions/2832769/attachments/1587620/2511487/WP5CoordinationMeeting31.pdf)
	- Localised peak
	- A structure with lower peak stress at cool-down should also show lower stress at the end of discharge

- FCC cos-theta magnet

- FCC block-coil magnet

Inputs

Magnet

CERN

- 16 T block coil dipole
- Version v2ari194

Quench protection (1)

COMSOL

CÈRN

- 2 apertures
- 100% of nominal current

Max. voltage to ground 1.2 kV Max. Layer-to-layer voltage 1.5 kV

Quench protection (2)

COMSOL

CÈRN

- 2 apertures
- 100% of nominal current

Crosscheck at nominal current (*t* = 0)

Reference simulation from Clement: Lorentz force in ANSYS → Mechanics in ANSYS

 \checkmark Very similar stress distribution for the two approaches!

Simulation to be validated: Lorentz force from COMSOL → Mechanics in ANSYS

Peak Von Mises stress: 185 MPa

Case 1: no hot-spot

 $\sigma_{VM,max}$ = 193 Mpa at $t = 14$ ms

Case 1: no hot-spot

 $\sigma_{VM,max} = 193$ Mpa at $t = 14$ ms

Case 2: with adiabatic hot-spot

Comments, block-coil

- Peak stress at $t = 14$ ms
	- Combination of Lorentz force introduced by CLIQ and temperature differences
	- 185 MPa $@$ energization \rightarrow 193 MPa after a quench
- The adiabatic hot-spot location is not influencing the maximum stress
- Different results than in Junjie analysis for single aperture design
	- Different evolution and lower peak stress
	- The magnet version and the CLIQ configuration have changed!
- \triangleright The effect of quench on the peak stress is limited

Conclusions

The effect of the quench on the mechanical stress is different for cos-theta and blockcoil magnets

- The peak stress during quench for cos-theta
	- Is significantly higher than at energization
	- Occurs at the end of the discharge (*t* > 500 ms)
- The peak stress during quench for block-coil
	- Is slightly higher than at energization
	- Occurs during the CLIQ discharge (*t* = 14 ms)
- \triangleright For both magnets, quench increases the stress above the peak values foreseen during the mechanical design
- \triangleright Not possible to predict the moment of peak stress
	- The evolution of Lorenz force and temperature during the full current discharge has to be considered
	- Mesh based interpolation is a useful tool to automate this analysis

