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Two simple punchlines

1. Heisenberg algebra
[Xn, Pm] = i δn,m

fundamental not only in quantum mechanics
but also in near horizon physics of gravity theories

2. Black hole microstates identified as specific “soft hair” descendants
at least in three spacetime dimensions

based on work (2016-2018) with

I Hamid Afshar, Shahin Sheikh-Jabbari, Zahra Mirzaiyan [IPM Teheran]
I Martin Ammon [U. Jena]
I Stephane Detournay, Wout Merbis, Stefan Prohazka, Max Riegler

[ULB]
I Hernan Gonzalez, Philip Hacker, Raphaela Wutte, Céline Zwikel [TU

Wien]
I Alfredo Perez, David Tempo, Ricardo Troncoso [CECS Valdivia]
I Hossein Yavartanoo [ITP Beijing]
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Outline

Introduction to asymptotic symmetries

Near horizon soft hair

Consequences for black hole entropy

Generalizations and conclusions
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Taxonomy of symmetries

I Discrete

I Global

I

I Continuous

I

I

Main interest of this talk: asymptotic symmetries!
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Asymptotic symmetries

All boundary condition preserving gauge transformations
(bcpgt’s) modulo trivial gauge transformations

Definition of asymptotic symmetries

Let us break this down for electrodynamics (abelian connection A):

I Gauge transformations generated by ε
I Boundary condition
I Boundary condition preserving gauge transformations
I Trivial gauge transformations
I Asymptotic symmetries: gauge transformations generated by some ε

that do not fall off near the boundary (modulo trivial)

ε = ε(t, θ, ϕ) as r →∞

What is the precise meaning of sufficiently fast?
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Canonical boundary charges

I Field theories with gauge symmetries lead to constraints G[ε]

Example: Gauss constraint in electrodynamics

G[ε] = −
∫

Σ
d3x ε(x) ∂iE

i(x)

I Constraints in general not functionally differentiable
(i.e., their variation leads to total derivative terms)

δG[ε] = volume term− δQ[ε]

I Improved generator Γ[ε] is functionally differentiable

δΓ[ε] = δG[ε] + δQ[ε] = volume term

I Integrate δQ[ε] in field space to obtain canonical boundary charges

δQ[ε] ⇒ Q[ε]

I Sufficiently fast fall-off for ε means Q[ε] = 0 (trivial gauge trafos)
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Canonical boundary charges

I Field theories with gauge symmetries lead to constraints G[ε]
I Constraints in general not functionally differentiable

(i.e., their variation leads to total derivative terms)

δG[ε] = volume term− δQ[ε]

I Improved generator Γ[ε] is functionally differentiable

δΓ[ε] = δG[ε] + δQ[ε] = volume term

I Integrate δQ[ε] in field space to obtain canonical boundary charges

δQ[ε] ⇒ Q[ε]

I Sufficiently fast fall-off for ε means Q[ε] = 0 (trivial gauge trafos)

Quotient algebra of all bcpgt’s modulo trivial gauge transformations

Definition of asymptotic symmetry algebra
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AdS3/CFT2 example

Brown & Henneaux ’86

AdS3 Penrose diagram (Wikipedia)

Note: set AdS-radius to unity

I Impose AdS3 fall-off on metric

dρ2 +
(
e2ρ ηµν + tµν +O(e−2ρ)

)
dxµ dxν

I Determine bcpgt’s

Lξgµν = δtµν +O(e−2ρ)

In lightcone gauge:

ξ± = +O(e−2ρ)

I Determine boundary charges

Q±[ε±] ∝
∮

dϕ ε± t±±

I Asymptotic symmetry algebra

[L±n , L
±
m] = (n−m)L±n+m + 1

4G n
3 δn+m, 0
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ξ± = ε±(x±) +O(e−2ρ)

I Determine boundary charges

Q±[ε±] ∝
∮

dϕ ε± t±±

Introduce Fourier modes:

L±n = Q±[einx
±

]

I Asymptotic symmetry algebra

[L±n , L
±
m] = (n−m)L±n+m + 1

4G n
3 δn+m, 0
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AdS3/CFT2 example

Brown & Henneaux ’86

AdS3 Penrose diagram (Wikipedia)

Note: set AdS-radius to unity

I Asymptotic symmetry algebra

[L±n , L
±
m] = (n−m)L±n+m + 1

4G n
3 δn+m, 0

consists of two Virasoro algebras
with central charge

c =
3

2G

(for Einstein gravity)

I = Conformal algebra in 2d

I Precursor of AdS/CFT!

I Generalizable to other theories

I or to other asymptotic
backgrounds

I or when relevant boundary is
not asymptotic
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4G n
3 δn+m, 0

consists of two Virasoro algebras
with central charge

c =
3

2G

I = Conformal algebra in 2d

Physical Hilbert space falls into
representations of two copies of
Virasoro = physical Hilbert
space of some CFT2!

I Precursor of AdS/CFT!

I Generalizable to other theories

I or to other asymptotic
backgrounds

I or when relevant boundary is
not asymptotic
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Motivation for near horizon boundary conditions
Old idea by Carlip

Impose existence of non-extremal horizon
as boundary condition on state space

Main idea

Motivations:

I Want to ask conditional questions “given a black hole, what are the
probabilities for some scattering process”

I Want to understand Bekenstein–Hawking entropy

SBH =
A

4G
+O(ln(A/G))
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Motivation for near horizon boundary conditions
Old idea by Carlip

Impose existence of non-extremal horizon
as boundary condition on state space

Main idea

Motivations:
I Want to ask conditional questions “given a black hole, what are the

probabilities for some scattering process”
I Want to understand Bekenstein–Hawking entropy

SBH =
A

4G
+O(ln(A/G))

1. Why only semi-classical input for entropy?
2. What are microstates?
3. Semi-classical construction of microstates?
4. Does counting of microstates reproduce SBH?
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Explicit form of near horizon boundary conditions
See Donnay, Giribet, Gonzalez, Pino ’15 and Afshar et al ’16

Postulates of near horizon boundary conditions:

1. Rindler approximation

ds2 = −κ2ρ2 dt2 + dρ2 + Ωab(t, x
c) dxa dxb + . . .

ρ→ 0: Rindler horizon
κ: surface gravity
Ωab: metric transversal to horizon
. . . : terms of higher order in ρ or rotation terms

2. Surface gravity is state-independent

δκ = 0

3. Metric transversal to horizon is state-dependent

δΩab = O(1)

4. Remaining terms fixed by consistency of canonical boundary charges
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Black holes can be deformed into black flowers Afshar et al. 16

Horizon can get excited by area preserving shear-deformations
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Near horizon symmetries = “asymptotic symmetries” for near horizon bc’s
Restrict for the time being to AdS3 black holes (BTZ)

Simplification in 3d:

ds2 =
[
− κ2ρ2 dt2 + dρ2 + γ2(ϕ) dϕ2 + 2κω(ϕ) ρ2 dtdϕ

] (
1 +O(ρ2)

)
I Map from round S1 to Fourier-excited S1: diffeo γ(ϕ) dϕ = dϕ̃

I
I Canonical analysis yields

Q±[ε±] ∼
∮

dϕ ε±(ϕ)
(
γ(ϕ)± ω(ϕ)

)
I Near horizon symmetry algebra Fourier modes J ±n = Q±[ε± = einϕ]

[J ±n , J ±m ] = 1
2 n δn+m, 0

I Isomorphic to Heisenberg algebras plus center

[Xn, Pm] = i δn,m [P0, Xn] = 0 = [X0, Pn]

P0 = J +
0 + J −0 , Xn = J +

n − J −−n, Pn = 2i/n(J +
−n + J −n ) for n 6= 0
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Soft Heisenberg hair for BTZ

I Black flower excitations = hair of black holes
Algebraically, excitations from descendants

|black flower〉 ∼
∏
n±
i >0

J +

−n+
i

J −−n−
i

|black hole〉

I What is energy of such excitations?
I Near horizon Hamiltonian

H = Q[∂t] = κP0

commutes with all generators J ±n
I H-eigenvalue of black flower = H-eigenvalue of black hole
I Black flower excitations do not change energy of black hole!

Black flower excitations = soft hair in sense of
Hawking, Perry and Strominger ’16

Call it “soft Heisenberg hair”
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New entropy formula

Express entropy in terms of near horizon charges:

S = 2π P0

I Entropy = parity inv. combination of near horizon charge zero modes
I Obeys simple near horizon first law

δS =
2π

κ
δ
(
κP0

)
⇒ T δS = δH

with Hawking–Unruh-temperature

T =
κ

2π
I Formula is universal (even when Bekenstein–Hawking does not apply)

higher derivative theories, higher spin theories, higher-dimensional
theories, (A)dS, flat space, warped AdS, ...,

Can we understand entropy law microscopically?
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Semi-classical microstates?

Given our soft Heisenberg hair, attack now entropy questions

1. Why only semi-classical input for entropy?
2. What are microstates?
3. Semi-classical construction of microstates?
4. Does counting of microstates reproduce SBH?

Regarding 1. and 3.: may expect decoupling of scales so that description
of microstates does not need info about UV completion, but rather only
some semi-classical “Bohr-like” input

Evidence for this: universality of BH entropy for large black holes

SBH =
A

4G
+ . . .

Assume it is possible to construct microstates for large
black holes semi-classically using soft-hair excitations

Possible obstacles:

I TMI: no upper bound on soft hair excitations
I possible resolution: cut-off on soft hair spectrum!
I TLI Mirbabayi, Porrati ’16; Bousso, Porrati ’17; Donnelly, Giddings ’17: for

asymptotic observer no information from soft hair states
I possible resolution: do not consider asymptotic but near horizon

observer (i.e., employ near horizon bc’s and symmetry algebra)
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Fluff proposal (with Afshar, Sheikh-Jabbari and also with Yavartanoo)
Semi-classical BTZ black hole microstates as near horizon descendants of vacuum

Highest weight vacuum |0〉

J ±n |0〉 = 0 ∀n ≥ 0

Black hole microstates:

|B({n±i })〉 =
∏
{n±

i >0}

(
J +

−n+
i

· J −−n−
i

)
|0〉

subject to spectral constraint depending on black hole mass M and
angular momentum J ∑

i

n±i =
c

2
(M ± J)

derived from Bohr-type quantization conditions
I quantization of central charge c = 3/(2G) in integers
I quantization of conical deficit angles in integers over c
I black hole/particle correspondence

(black hole = gas of coherent states of particles on AdS3)
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Check of fluff proposal

Microstates for BTZ black hole with mass M and angular momentum J :

|B({n±i })〉 =
∏
{n±

i >0}

(
J +

−n+
i

· J −−n−
i

)
|0〉

∑
i

n±i = c
2 (M ± J)

I count number of BTZ black hole microstates
I combinatorial problem: how many ways to decompose large positive

integer c
2 (M ± J) into sum of positive integers

I solved by Hardy and Ramanujan in 1918

p(N)
∣∣
N�1

∼ 1

4N
√

3
exp

(
2π
√
N/6

)
I to get entropy use Boltzmann’s formula

S = ln p
(
c
2 (M + J)

)
+ ln p

(
c
2 (M − J)

)
I leading order yields BH entropy

S =
A

4G
+ . . .
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(
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Check of fluff proposal
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√
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(
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√
N/6

)
I to get entropy use Boltzmann’s formula

S = ln p
(
c
2 (M + J)

)
+ ln p

(
c
2 (M − J)

)
I leading order yields Cardy formula and hence the BH entropy

S = 2π
√

c
6 (M + J) + 2π

√
c
6 (M − J) = 2π P0 =

A

4G
+ . . .

Daniel Grumiller — Soft Heisenberg Hair Consequences for black hole entropy 17/20



Check of fluff proposal
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S =
A

4G
−2 ln

(
A/(4G)

)
+ . . .
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Generalizations

I Near horizon boundary conditions

works in any dimension, for any local geometry, for any theory (with
metric) and for any type of non-extremal horizon

I Soft Heisenberg hair

works for Einstein gravity, higher derivative gravity and higher spin
gravity in three dimensions and Einstein gravity in higher dimensions

I Entropy formula

works for Einstein gravity, higher derivative gravity and higher spin
gravity in three dimensions and Einstein gravity in higher dimensions

I Microstate counting

may work generally, based on near horizon symmetries
see previous talk by Malcolm Perry

I Semi-classical microstates (fluff)

may work more generally, but so far only checked BTZ black hole;
extremal black holes?
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Outlook

Take-away messages:

I Near horizon boundary conditions useful for black hole description

I Soft Heisenberg hair generic consequence

I Universal entropy formula depends only on (semi-)classical input

S = 2π P0

I Semi-classical microstate construction may work (at least for BTZ)

|B({n±i })〉 =
∏
{n±

i >0}

(
J +

−n+
i

· J −−n−
i

)
|0〉

∑
i

n±i = fixed by M, J

Numerous open issues; select three most relevant:

I Soft hair for extremal black holes and for cosmologies?

I Dynamical questions such as black hole evaporation?

I Microstate construction for Kerr?
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Thanks for your attention!
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