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Scalar fields, the cure-all of fundamental physics

I The Standard Model contains one dimension-four operator through which we can
couple hidden sectors: the Higgs-portal term

−L ⊃
α

2
φ2H†H

I General Relativity contains one dimension-four operator through which we can
couple hidden sectors: the Brans-Dicke term

−L ⊃
β

2
φ2R

I What I want to convince you of is that, for the Standard Model, these two
couplings are equivalent; and that this makes for rich phenomenology.



Conformal frames

I By redefining the metric, we can map between the Jordan and Einstein frames.

I Start with a conformally (disclaimer) coupled scalar-tensor theory:

S =

∫
d4x
√
−g
[

1

2
F (φ)R−

1

2
Zµν(φ, ∂φ, . . . )∂µφ∂νφ− V (φ) + LSM[gµν ]

]

I Perform a Weyl/conformal transformation to the Einstein frame via
gµν ≡ F−1(φ)g̃µν ≡ A2(φ̃)g̃µν :

S =

∫
d4x
√
−g̃
[

1

2
R̃ −

1

2
Z̃µν(φ̃, ∂φ̃, . . . )∂µφ̃∂ν φ̃− Ṽ (φ̃) + LSM[A2(φ̃)g̃µν ]

]

I We’ll come back to conformal anomalies later ...



Usual fifth-force story

I Expanding

SSM[A2(φ̃)g̃µν , {ψ}] = SSM[g̃µν , {ψ}] + [A2(φ̃)− 1]
δSSM[g̃µν , {ψ}]

δg̃µν
g̃µν + . . .

we find a universal coupling to the trace of the energy-momentum tensor

SSM[A2(φ̃)g̃µν , {ψ}] ⊃
1

2
[A2(φ̃)− 1][T̃SM] µ

µ

I Approximate matter as a pressureless perfect fluid: [T̃SM] µ
µ = −ρ̃

I And matter feels a fifth force

F/m = −∇ lnA(φ̃)

I This picture is not strictly wrong, but it is perhaps misleading . . .



(Classical) scale invariance

Scale invariance (really Weyl invariance) means that certain terms in the matter
action do not contribute to the trace of the energy-momentum tensor:

I gauge-field kinetic terms FµνFµν

I fermion kinetic terms ψ̄ /∇ψ, including their gauge interactions

I Yukawa interactions ψ̄LHψR

I quartic scalar self-couplings (H†H)2

So what does this leave for the SM?

I scalar kinetic terms (DµH)†DµH, but these give at most derivative couplings

I the Higgs mass term
−LSM ⊃ −µ2H†H



Recovering the fifth force

Suppose

A2(φ̃) = 1 +
φ̃2

M2
+ · · ·

the leading coupling is

−µ2H†H → −µ2A2(φ̃)H̃†H† ⊃
α

2
φ̃2H̃†H̃

a Higgs-portal term!

But if the additional scalar only couples to the Higgs, where is the fifth force?

It arises if there is a mass mixing with the would-be SM Higgs boson:

−LSM ⊃ αM φ̃h̃

which requires:

I explicit or spontaneous Z2 breaking in A2(φ̃)

I and is possible only after the EW phase transition: SU(2)L × U(1)Y → U(1)EM



Recovering the fifth force

If these conditions are met, the standard fifth-force story is recovered.
(Burrage, Copeland, PM & Spannowsky ’18.)

I Brans-Dicke theory and the chameleon models provide examples of where there
is explicit Z2 breaking.
(Brans & Dicke ’61; Khoury & Weltman ’04; Khoury ‘13.)

I The Damour-Polyakov and symmetron models provide examples of where there
is spontaneous Z2 breaking.
(Dehnen, Frommert & Ghaboussi ’92; Damour & Polyakov ’94; Pietroni ’05;
Olive & Pospelov ’08; Hinterbichler & Khoury ’10.)

What if the Higgs mass is not due to an explicit scale-breaking term?
No fifth force.
(Bezrukov, Blas, Garcia-Bellido, Karananas, Rubio, Shaposhnikov & Zenhausern ’08
onward; Ferreira, Ross & Hill ’16 onward.)

What if only some of the Higgs mass is due to an explicit scale-breaking term?
Fifth-force constraints bound the explicit scale-breaking.
(Burrage, Copeland, PM & Spannowsky ’18.)



Couplings

To fermions:
The would-be SM Higgs is a linear superposition of the Higgs boson h (the heavy
mode) and the light mode ζ that can mediate the fifth force:

φ ≈ h + v

{
1
vχ
M

}
2µ2

m2
φ

ζ

M
L ⊃ −y ψ̄φψ ∼ −mψ

{
1
vχ
M

}
2µ2

m2
φ

ζ

M
ψ̄ψ

To nucleons:

L ⊃ −mNη

{
1
vχ
M

}
2µ2

m2
φ

ζ

M
ψ̄NψN

where η parametrizes the uncertainty in the h-N coupling η ∼ 0.3 (eff. WEP?).

PPN constraints (Cassini time delay) can be reinterpreted as a bound on µ . 4 GeV
(Burrage, Copeland, PM & Spannowsky ’18).

φ χ φ χ χ



Some words

Modifed gravity: the new degree(s) of freedom do(es) not contribute significantly to
the energy density, but instead mediate(s) long-range Yukawa-like forces.

Dark matter: the new degree(s) of freedom contribute(s) significantly to the energy
density, but do(es) not mediate long-range Yukawa-like forces.

The most interesting scenarios may be ones that do both (see Burrage, Copeland,
Käding & Millington ’18).



Screening mechanisms

Classical EoM for perturbations (〈φ̃〉 ≡ ϕ̃+ δϕ̃)

Z̃(ϕ̃)
(

¨δϕ̃− c2
s (ϕ̃)∇2δϕ̃

)
+ m2(ϕ̃)δϕ̃ = −

1

2

dA2(ϕ̃)

dϕ̃
T̃

Yukawa potential around a point source T̃ = −ρ̃ = −A−1(ϕ̃)Mδ3(x)
(Joyce, Jain, Khoury and Trodden ’14)

Ũ(r) ⊃ −
1

Z̃(ϕ̃)c2
s (ϕ̃)

[
dA(ϕ̃)

dϕ̃

]2 1

4πr
exp

[
−

m(ϕ̃)r

Z̃1/2(ϕ̃)cs(ϕ̃)

]
M

Suppress the Yukawa potential environmentally by:

I Modifying the kinetic term — Vainshtein screening
(Vainshtein ’72)

I Modifying the mass — chameleon screening
(Khoury & Weltman ’04)

I Modifying the matter coupling — symmetron screening
(Damour & Polyakov ’94; Pietroni ’05; Olive & Pospelov ’08; Brax, van de
Bruck, Davis & Shaw ’10. Hinterbichler & Khoury ’10; Hinterbichler, Khoury,
Levy & Matas ’11)



Symmetron screening

The symmetron model (Hinterbichler & Khoury ’10):

Ṽ (ϕ̃) =
1

2

(
ρ

M2
− µ2

)
ϕ̃2 +

λ

4!
ϕ̃4

In regions of high density with ρ > µ2M2, the minimum lies at ϕ̃ = 0.

In regions of low density with ρ < µ2M2, the minima lie at ϕ̃ = ±v = ± m√
2λ

, where

m2 = 2(µ2 − ρ/M2).

For extended sources with minR � 1, the fifth force is screened for r � R.

For extended sources with minR � 1, the fifth force is unscreened for r � R.

This can also be realised via the Coleman-Weinberg mechanism of spontaneous
symmetry breaking (Burrage, Copeland & Millington ’16).



Some intriguing cherry-picking

Rotation curves: (for an early and little-known work, see Gessner ’92)

Can also stabilise the disc to formation of bars (Ostriker & Peebles ’73), but
benchmark parameter point in tension with Solar System tests of gravity (from
Burrage, Copeland & Millington ’17, based on SPARC dataset by Lelli, McGaugh &
Schombert ’16, see also McGaugh, Lelli & Schombert ’16).



But also . . .

Vertical motion of stars perpendicular to the plane of the Milky Way disc:

Note the degenerate band ρgal ∼ µ2M2 (from Burrage & O’Hare ’18, based on
simulated data by Read ’14).



Lensing? Minimally, not so easy.

Prospects summarised in Burrage, Copeland, Käding & Millington ’18:

I For µ2M2 < ρ̄ and v < M, energy density in the symmetron field is too small to
source a deep enough Newtonian potential.

Eϕ

Mgal
=

1

4

µ2M2

ρ̄

v2

M2
I

I Fifth force on photons is induced by the conformal anomaly, but it is too small.

Leff ⊃
ϕ2

M2
γ

g̃µαg̃νβFµνFαβ

I Add a disformal coupling, but terrestrial constraints mean it is too small
(Mdis & 650 GeV) (see Brax & Burrage ’14; Brax, Burrage & Englert ’15).

gµν = C2(ϕ)g̃µν + D(ϕ)∂µϕ∂νϕ

I Add a(n environment-dependent) photon mass, but this has to be too small.

L ⊃ −α̃ϕ̃2AµA
µ Leff ⊃ −α̃′ϕ̃2(ϕ̃2 − v2)AµA

µ

I Any hope: yes, push into the challenging regime ρ ∼ µ2M2 and v . M.



Concluding remarks

I For the SM, conformally coupled scalar-tensor theories are equivalent to
Higgs-portal theories (at dimension four).

I Some models of ULDM and MG have more in common than previously realised.

I The standard fifth-force story only emerges if there is a mass mixing between the
would-be SM Higgs and the conformally coupled scalar.

I Potential effective WEP between leptonic versus hadronic degrees of freedom.

I Screening mechanisms lead to a rich phenomenology that might impact dynamics
on astrophysical scales.

I Joint modified-gravity–dark-matter phenomenology might be the way forward ...

Thank you for your attention.


