

Introduction

• In the standard model, the Higgs quartic coupling λ_{ω} becomes negative (Fig 1.) during its renormalization group flow

Fig. 1.

- The U(1) extensions of the standard model are popular candidates attempting to explain experimental observations that cannot be interpreted within the SM, such as neutrino masses.
- The extra couplings introduced by the U(1) extension may influence the RGflow of λ_{o} . The scalar potential now includes an extra scalar field χ , which is supposed to be responsible for neutrino masses. The complete scalar potential is

(1) V = $-\mu_{\phi}^{2} |\phi|^{2} + \lambda_{\phi} |\phi|^{4} - \mu_{\chi}^{2} |\chi|^{2} + \lambda_{\chi} |\chi|^{4} + \lambda |\phi|^{2} |\chi|^{2}$

Stability of the Higgs-vacuum as constraint on U(1) extensions of the Standard Model

Z. Péli⁽¹⁾(zoltanpeli92@gmail.com)

Method

- The β -functions of the model are derived in perturbation theory in one-loop level
- A numerical code was written to solve the system of β -functions
- The initial conditions of the SM couplings were taken from measurements, at M_t =173.75 GeV one has: $g_{\rm Y}=0.3583, g_{\rm L}=0.6477, g_{\rm S}=1.166, c_{\rm t}=0.9379, c_{\rm b}=0.0161, c_{\tau}=0.0100 \lambda_{\odot}=0.1259, \mu_{\odot}=131.5 \text{ GeV}$
- The initial conditions for the extra gauge couplings were set to zero, as they have to be very small in order to preserve the predictions for measurements
- The initial conditions for the remaining couplings (λ_{γ} , λ and c_{ν}) were varied
- Trajectories are selected, where the perturbativity and the positivity of λ_{γ} and λ_{0} were met up to the Planck scale

- analysis

- (2012) 098
- 093007

Conclusion and outlook

• A finite region was found in the parameter space, where all the conditions are satisfied, with both positive and negative λ

• Scalar potentials of the form (1) are used in models of inflation, such as hybrid inflation

• The constraints presented here can be used to study models for inflation, supported by a renormalization group

References

• Z. Trócsányi: Superweak force and origin of neutrino masses (in preparation)

• Degrassi, G., Di Vita, S., Elias-Miró, J. et al., JHEP 08

• F. Bezrukov, M. Shaposhnikov, JHEP 07 (2009) 089

• R. Schabinger, J. D. Wells, Phys. Rev. D 72 (2005)

⁽¹⁾ MTA-DE Particle Physics Research Group, H-4010 Debrecen, PO Box 105, Hungary