Diffraction and Low-x 2018

Contribution ID: 77

Type: not specified

light by light scattering in heavy ions collisions with the ATLAS detector

Light-by-light scattering $(\gamma\gamma \rightarrow \gamma\gamma)$ is a quantum-mechanical process that is forbidden in the classical theory of electrodynamics. This reaction is accessible at the Large Hadron Collider thanks to the large electromagnetic field strengths generated by ultra-relativistic colliding lead (Pb) ions. Using 480 µb-1 of Pb+Pb collision data recorded at a centre-of-mass energy per nucleon pair of 5.02 TeV by the ATLAS detector, the ATLAS Collaboration reports evidence for the $\gamma\gamma \rightarrow \gamma\gamma$ reaction. A total of 13 candidate events are observed with an expected background of 2.6±0.7 events. After background subtraction and analysis corrections, the fiducial cross section of the process Pb+Pb($\gamma\gamma$) \rightarrow Pb(*)+Pb(*) $\gamma\gamma$, for photon transverse energy ET>3 GeV, photon absolute pseudorapidity $|\eta|<2.4$, diphoton invariant mass greater than 6 GeV, diphoton transverse momentum lower than 2 GeV and diphoton acoplanarity below 0.01, is measured to be 70 ± 24 (stat.) ± 17 (syst.) nb, which is in agreement with Standard Model predictions.

Primary author: THE ATLAS COLLABORATION

Track Classification: Diffraction and photon physics in hadron-hadron and heavy-ion collisions