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"A process or set of rules to be followed in
calculations or other problem-solving operations,
especially by a computer."

Ok, rules
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Propagator (non-rel.) in space-time∫
all pathsDx e

iS [x(t)]

Pretty cool algorithm, even if computationally hard in practise.
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Basic principles:

Keep the measurement as a fiducial measurement (no
geometrical extrapolation), minimize model ~ data
cocktails, and factorize fits out of the measurement.
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What is a strict "fiducial" observable? A strict
fiducial is expressed in terms of final state
observables; pseudorapidity, transverse momentum
etc.

For example, a cut on central system rapidity alone,
is not, a strict fiducial cut. Think about system
y = Pt = 0 case and arbitrary decays going outside
central detector geometry. Same story for diffractive
forward systems with not-measured ξ ' M2/s etc.
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Let us slice the (pseudo)rapidity axis
on N discrete intervals, count
Bernoulli observables on each

Partial cross sections (#2N) ∼
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⊗ · · · ⊗

(
1

I{ΠM ; ΞN}

)
,

where the acceptance function I : ΠM → {0, 1}, ΠM is a set of final
state kinematical variables and Ξi is the i-th fiducial acceptance domain
parametrization. The expression above is a 2N -vector, essentially a
multivariate polynomial expression / N-point interval correlation
functional.
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For some more information, see Appendix or: <MM, Inverse
Mathematics for QCD Diffraction, Bad Honnef, 25/09/17>
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A synthetic Monte Carlo
example
3 rapidity slices giving us Bernoulli combinations:
〈000〉, 〈001〉, 〈010〉, . . . , 〈111〉

Particles drawn uniformly over rapidity, with fluctuating number of
particles per interval ∼ Poisson(〈Nch/∆η〉) with transverse momentum
pt ∼ pt exp(−bp2

t ) (Gaussian px , py → Rayleigh pt).

Next we vary smoothly the pt cutoff (normalized by 〈pt〉) for four
different particle densities per discrete rapidity interval ∆η, and see how
event topology properties change.
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A pt-cutoff dependent "flow structure"
emerges

This toy demonstration shows that without explicit
pt-cutoff descriptions (experimental characterization,
detector simulations, artifical rapidity gap data
unfoldings/inversion/correction), observables relying
on rapidity gap structure are not inherently stable at
all ⇒ needs to be taken into account in every
measurement relying on rapidity gaps.

OK, the topic is known but experimental or
theoretical methods to solve it are not often
emphasized.
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Graniitti - a new Monte Carlo
event generator and analyzer for
semi-exlusive pp-diffraction1

To be available:
<github.com/mieskolainen/graniitti>, C++17, MIT license

1Graniitti is granite in Finnish, a felsic intrusive igneous rock.
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Some useful papers regarding the soft models involved:

Y. I. Azimov, V. A. Khoze, E. M. Levin, and M. G. Ryskin,
Sov.J.Nucl.Phys. 21, 215 (1975)

A. Kaidalov, V. A. Khoze, A. D. Martin, and M. Ryskin, Eur. Phys.
J. C21, 521-529 (2001).

V. Khoze, F. Krauss, A. Martin, M. Ryskin, and K. Zapp, Eur.
Phys. J. C69, 85-93 (2010).

P. Lebiedowicz, A. Szczurek, Phys.Rev.D81:036003, (2010).

L. Harland-Lang, V. A. Khoze, M. G. Ryskin, Eur. Phys. J. C,
74(4), 2848 (2014).

...
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Synthesis ⇔ Analysis dual
A technical tool born out of need to understand and analyze
the data in detail, with maximal flexibility.

Other (exclusive) generators on market: FPMC, Superchic,
Dime, GenEx, . . .
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Input and Processes
Compilation by make, C++17 compiler + HepMC3 and
LHAPDF6 required, ROOT for fit/analysis tools (optional)

♠ Steered by .json object description ascii files

♠ Processes:

- Pomeron-Pomeron (π+π−,K+K−, pp̄, ρ0ρ0, 4π, 4K . . . )
- Gamma-Pomeron (highly simplified)
- Gamma-Gamma (EPA) (`+`−,W+W−,mm̄ . . . )
- ’Durham-QCD’ (main implementation done, interfacing to
MadGraph color trace basis TBD)
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Kinematics
♠ Exact kinematics for all processes: 2→ 2, 2→ 3, 2→ 4 . . .
and 2→ 3⊕ 1→ N via (well known) phase space
factorization relations.

♠ Forward proton low-mass excitation, also with exact
kinematics

♠ Fully multithreaded (max. CPU utilization) VEGAS Monte
Carlo implementation; C++ <threads>, <future>

♠ Arbitrary length decay trees according to phase space

19 / 61



Amplitudes
♠ Elastic pp-scattering via typical (single channel) eikonalized
pomeron (Fourier-Bessel transform + exponentiation +
inverse FBT), eikonalized SD and DD (triple Pomeron) at
"skeleton kinematics level"

♠ Soft Regge central production continuum amplitudes (2,4,6
central final states) + interfering resonances

♠ Helicity amplitudes via MadGraph 5 export → standard
(LO) SM + arbitrary BSM (via UFO) models
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Figure: Elastic scattering test example.
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Differential Screening/Absorption
♠ Loop screening amplitude driven by the same eikonalized
pomeron as used for elastic scattering. This has been ’around’
since the 70’s. However, only few event generators include this:
QGSJet (+more complex AGK), Dime/Superchic, at least.

If the subprocess amplitude includes helicity amplitudes, each
of them is screened.

♠ Numerical 2D-loop integral in ~kt-space, event-by-event.
Speed vs. accuracy tradeoff. Example: screening loop |kt | and
φ integrated separately, or via 2D-cubature polynomials (under
testing)

♠ Phenomenologically of high (extreme) importance for cross
section normalization and transverse plane observables, such
as ∆φpp.
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Spin (polarization) Systematics
♠ Synthesis: Arbitrary helicity amplitudes (Jacob-Wick style)
for low-mass resonances decaying to pseudoscalar pairs,
parametrized via von Neumann density matrices

♠ Analysis: Complete spherical harmonics expansion
differentially in system (MX , pT ) in typical Lorentz frames such
as Collins-Soper, Helicity, Gottfried-Jackson ("pseudo" and
forward-proton spanned)

♠ Analysis: Calculation of spherical moment mixing matrices
← induced by limited acceptance

♠ Analysis: Spin density matrix (von Neumann) fits
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Figure: Continuum K+K− and |η(K±)| < 0.9 : Integrated decay angles
(cos θ, φ) in Collins-Soper, Helicity, Lab, Gottfried-Jackson,
Pseudo-Gottfried-Jackson and Non-Rotated Rest Frame.
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A tool designed to study polarization
’angular moment mixing problems’ -
non-trivial, significant effects
1. Induced by limited η-acceptance of central final states

2. Induced by central system transverse momentum

3. Related with 2., using a Lorentz frame with
spin-quantization (z-axis) spanned by not using forward
protons ⇒ unknown event-by-event rotation (typical problem,
measurements rarely fully exclusive)
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Autofit
♠ Fit machinery to fit eikonal model parameters by running
the generator + Non-convex minimization program (Minuit, by
default) ← INPUT elastic dσ(

√
s)/dt for different

√
s

♠ Soft Pomeron central production parameters (resonance
couplings) fitted by runnning the full MC machinery ←
INPUT for example: invariant mass MX spectrum, system
pT (MX ), forward proton ∆φpp(MX ), spherical harmonic
expansions H(MX , pT ), or complete multidimensional fiducial
efficiency corrected representations of data
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Fast Fiducial Observables
♠ Ultrafast fiducial observable studies for different model
scenarios via ROOT libraries (optional)

♠ Interface directly to RIVET via HepMC
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Output and Automated testing
HepMC3 event output, and a converter to LHEF (.xml)

♠ The measured fiducial cross sections of different processes
are added as "bootstrap unit tests" such that generator
functionality (code non-degeneracy etc.) is guaranteed
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Further Technical Developments
♠ ’NeuroJacobian’, deep learn optimal Jacobian
mapping for MC integration (instead of VEGAS
dim-by-dim factorization assumption)

♠ Higher level of automation of feeding in process
amplitudes

♠ Analysis techniques: statistical separation of
exclusive, semi-exclusive production (system Pt

dependence, exponential vs powerlaw tail), deeper
understanding of spin polarization issues . . .
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Conclusions
A set of new algorithmic tools developed, many of them
already applied to the LHC data. Physics goes forward.
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Appendix
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Proton-proton diffraction

Pomeron physics.

You can think also in terms of wee partons, soft color dipoles, pomeron
parton (ladder) structure etc., unfortunately there are yet no truly solid
experimental constraints from the LHC data for inclusive inelastic
diffraction. Basic Regge domain features, however, are observed in data.

Essential fluctuating degrees of freedom: rapidity (predominantly low-x),
pt , multiplicity and multidimensional correlations over the full range of
acceptance.

⇒ N-dimensional observables
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Basic questions of soft diffraction

- Unitarity, asymptotic energy behavior of total cross sections
- Transition between "different" Pomerons: soft . . . hard → Pomeron
intercept 1 + ∆P ( s evolution) and slope α′P ∼ "t-cone behavior"
functional behavior
- p → N∗ Good-Walker spectrum of low-mass dissociation, relativistic
wavefunction and "atmosphere" of proton
- Gluonia/glueballs/soft central diffractive production
- Regge/QCD factorization properties
- Pomeron via AdS space . . .

- + Correlations and fluctuations
...

Ultimately, the goal here is have a "unified" approach for interpreting the
data.
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Vector space view to the soft pp
Diffraction
So, usually the experimental definition when talking about soft diffraction
goes through large rapidity gaps ∆y & 3 and

σpp
inel ≡ σSDL + σSDR + σDD + σCD + σND

The decomposition above is experimentally well posed only in limited
phase space.

So, instead, let us start with n = 2N − 1 partial cross sections

σpp
inel ≡ σ1 + σ2 + σ3 + · · ·+ σn, (1)

where each subcomponent corresponds to one particular final state
topology class over rapidity.

"Slice the (pseudo)rapidity space into N intervals"
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Example: Geom.-kinem. ALICE phase-space span at Run 2
Not all subdetectors shown (∼ #20). Very good (η, p⊥) coverage for diffractive physics.
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One practical and important open problem:
How do you characterize (η, pt) acceptance of
forward scintillators and other low granularity
counters without relying on MC generator ~
GEANT?
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Applications
F A machinery for the (multi)-rapidity gap measurements and
correlation structure

F A framework for generalized studies of Regge factorization at the
LHC. Not just simplified SD,DD type, but more general

F Framework to study AGK type shadowing, and beyond, by comparing
the differential distributions within each vector combination

F An attempt to re-define the soft diffraction observables more precisely,
also introducing a hierachy of vector observables for minbias Monte Carlo
tuning

F A new framework for extracting single diffraction (SD), double
diffraction (DD) . . . type component cross sections using N-dimensional
Monte Carlo model "templates", which can be tuned to data
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With connections to
[E. Onofri, G. Veneziano, J. Wosiek, Commun. Math. Phys. (2007)],
"We show how a recently proposed supersymmetric quantum mechanics
model leads to non-trivial results/conjectures on the combinatorics of
binary necklaces and linear-feedback shift- registers."

[H. Fu, R. Sasaki, J. Math. Phys. 38 (1997)], "Following the relationship
between probability distribution and coherent states, for example the well
known Poisson distribution and the ordinary coherent states and
relatively less known one of the binomial distribution and the su(2)
coherent states."

[D. Spector, Commun. Math. Phys. (1990)], "We show that the Möbius
inversion function of number theory can be interpreted as the operator
(−1)F in quantum field theory."
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Algebraic representations
The probability vector p (2N -dim), the components of ordinary moments
mk and the components of central moments δk below are defined using
the Kronecker (tensor) products

p =

〈(
1 −1
0 1

)⊗ N ( 1
XN

)
⊗
(

1
XN-1

)
⊗ · · ·

(
1
X1

)〉

mk =

〈
N∏
i=1

X
ki
i

〉
=

〈(
1
XN

)
⊗
(

1
XN-1

)
⊗ · · ·

(
1
X1

)〉
k

δk =

〈
N∏
i=1

(Xi - 〈Xi 〉)
ki

〉
=

〈(
1

XN - 〈XN〉

)
⊗
(

1
XN-1 - 〈XN-1〉

)
⊗ · · ·

(
1

X1 - 〈X1〉

)〉
k
,

where we use k = 1 +
∑N

i=1 ki2
i−1 (little endian binary expansion),

1 ≤ k ≤ 2N and ki ∈ {0, 1}. The central moments describe the
correlations (# 2N − N − 1) between any 2 or more subspaces (rapidity
slices). Xi are the corresponding random variables.

[Teugels, Jozef L. "Some representations of the multivariate Bernoulli and binomial distributions."
Journal of multivariate analysis 32.2 (1990): 256-268.]
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Diffraction analysis technique++
To summarize, we utilize different detector combinations over η → vector signals →
partial cross sections + multidimensional model fitting to extract σSD , σDD etc.

This latest vector space combinatorial construction goes beyond
multidimensional fitting, and is compatible with discussion about
multigaps, gap destruction and rescattering and short/long range
y -correlations:

Figure: (a) Multigap event, (b) Gap destruction, (c) Correlation coeff. R2
Figure from: [Khoze, Martin, Ryskin, Shuvaev, J. Phys. G: Nucl. Part. Phys. 36 (2009) 093001]
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AGK Cutting Rules
Field theory Combinatorics

The total cross section for exchange of µ Pomerons, σtotµ , partial

cross section σ(ν)
µ of a final state with a number of ν cut Pomerons

and their ratio

σ
(ν)
µ

σtotµ
= (−1)µ−ν

µ!

ν!(µ− ν)!
(2µ−1 − δ0ν), (2)

[Abramovski, Gribov, Kancheli, Sov. J. Nucl. Phys. 18, 308 (1974)], [E. Levin, hep-ph/9503399]

µ r ν 0 1 2 3 4 5 6
1 0 1 0 0 0 0 0
2 1 -4 2 0 0 0 0
3 -3 12 -12 4 0 0 0
4 7 -32 48 -32 8 0 0
5 -15 80 -160 160 -80 16 0
6 31 -192 480 -640 480 -192 32

Table: AGK factors for µ = 1, 2, . . . , 6 exchanged Pomerons. Summing
over µ requires some explicit (Regge/Eikonal etc.) model in addition to
these.
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"Super-Eikonals"

Combinatorial (de)-compounding or pileup inversion
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Poisson ⊗ Multinomial Vector Model

ŷi =
1

1− e−µ

∞∑
k=1

µk

k!
e−µWik , i = 1, . . . , 2N − 1 = n

=
e−µ

1− e−µ

∞∑
k=1

µk

k!

∑
Ωik

k!∏n
j=1 xj !

n∏
j=1

p
xj
j

 (3)

The multinomial term and its values of xj ∈ N are evaluated over all valid
combinations for probabilities yi from the set of n-tuples Ωik , that is,
those which are allowed by poset combinatorics:

Ωik =

(x1, . . . , xj , . . . , xn) | ∨
j

xj cj = ci and
∑
j

xj = k

 , (4)

where
∨

operator takes care of "summing" the binary vectors cj of
multiplicity xj and thus evaluating the "pileup" compositions.

The idea in a nutshell: We measure probabilities y, and want to solve p
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Solution based on the principle of inclusion-exclusion
General math framework: Incidence algebras [Gian-Carlo Rota, MIT, 60’s]

The principle of inclusion-exclusion is the Möbius inversion for
subsets. Now let different rapidity slices and their signals be
represented with subsets D1,D2, . . . ,DN ⊂ D. Then

P(
N⋃
i=1

Di ) =
N∑

k=1

(−1)k−1
∑

I⊂{1,...,N},|I |=k

P(DI )

 . (5)

One can wrap that thing above into a matrix. Notice the (−1)k−1

factor, that gives the essential structure.
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Uniform (max entropy) input p = 1 case, N = 3
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Figure: A solution. On x-axis the Poisson µ and on y-axis the
components of the vector y.

Starting with very elementary definitions, interesting distributions
emerge from combinatorics.
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Alternating sign inverse solution
for N = 3

p =
1
µ



ln(eµ−y1 + 1)
ln(eµ−y2 + 1)

−
∑

c=1,2
ln(eµ−yc + 1) + ln(1 +

∑
c=1,2,3

eµ−yc)

ln(eµ−y4 + 1)
−
∑

c=1,4
ln(eµ−yc + 1) + ln(1 +

∑
c=1,4,5

eµ−yc)

−
∑

c=2,4
ln(eµ−yc + 1) + ln(1 +

∑
c=2,4,6

eµ−yc)

µ+
∑

c=1,2,4
ln(eµ−yc + 1)− ln(1 +

∑
c=1,2,3

eµ−yc) . . .

− ln(1 +
∑

c=1,4,5
eµ−yc)− ln(1 +

∑
c=2,4,6

eµ−yc)


,

where by conservation of probability we chose to fix y7 = 1−
∑6

c=1 yc
and for saving ink we set eµ− ≡ eµ − 1.
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Figure: Poisson model ⊗ Dirichlet distribution drawn probabilities as a
statistical mixing operator (matrix) S : p 7→ y, N = 6. Fractal structure,
due to the Boolean vector space, is the Sierpinski triangle. (Dark blue =
0 . . . Yellow = 1)
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Figure: Hidden polynomial structure, N = 8.
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Short summary
The vector space measurement model allows a mathematically self
consistent way to do combinatorial analysis of soft diffraction, plus also
to extract σSD , σDD , σND etc. via multidimensional Bayesian/Frequentist
fitting (given the MC model).

AGK cutting rules can be incorporated into the combinatorics inversion
framework. Leading the way to completely new analyses of, e.g., gap
survival S2(Ω) discussion. This framework works directly for pile-up
inversion of gap topologies (multiple pp interactions per bunch crossing).

The vector space itself can be studied in the context of kinematics,
diffraction models and Regge theory, together with tools from
combinatorics and algebraic geometry (technically the structure is
Grassmannian).
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Recursive Inverse of Stochastic
Autoconvolution

The first solution with fully non-linear uncertainty estimation
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Recursion, M.C. Escher 51 / 61



The problem?

Think about having a superposition of final state multiplicities
(= autoconvolution2), let’s say, in proton-proton collisions

Main problem is limited statistics in steeply falling tails →
huge oscillations, naive (textbook3) solutions fail miserably

2sum of random variables is equivalent to a convolution of their densities
3inverting stochastic autoconvolution is not usual textbook material
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Forward problem

The autoconvoluted distribution of Y ∼ gY is now written formally as a
Poisson probabilities weighted infinite series4

gY (y) = P1fX (y) + P2[fX ~ fX ](y) + P3[[fX ~ fX ]~ fX ](y) + . . .

=
1

1− e−µ

∞∑
K=1

µK

K !
e−µf ~

K

X (y) (6)

where the convolution power ~K is defined recursively as
f ~

K

= f ~
(K−1)

~ f and f ~1 = f .

We do need not to limit ourself to the Poisson compound sum, but take
that as an example

4We have removed the unobservable case K = 0 which gives Y = 0 and
renormalized the remaining Poisson probabilities PK ,K = 1, 2, 3, . . . to sum to
one.
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A spectral solution to the forward
problem via the characteristic function

In the spectral domain, the characteristic function (CHF) ϕX

is defined as

ϕX (t) = E[e itX ] =

∫
R
e itX fX (x) dx (7)

and for the compound Poisson case you end up with

ϕg (t) ≡ ϕY |K>0(t) =
e−µ

(
eµϕf (t) − 1

)
1− e−µ

=
1

eµ − 1
(eµϕf (t) − 1).

The main thing is that you want to find out ϕf (t).
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Inverse solution in a nutshell

To find out f̂ (x), use recursion. First estimate f̂ 0 = g(x).

Take Fast Fourier Transform (FFT) of f̂ k(x) to get ϕ̂k
f (t), use

the spectral map to get ϕ̂g (t) and construct corresponding AC
operator, take IFFT of AC operator, map g(x)→ f̂ k+1(x) in
original domain with Max Entropy inversion + regularization,
use Efron’s statistical Bootstrap to estimate uncertainty, and
add one so-called bias substraction iteration around it:

"Bias substraction" y
"Daughter Bootstrap" y

Fast Fourier Transform & Max Entropy recursion �
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Figure: Inverse solution with algorithmic uncertainty estimation (blue
band 95CL).
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Figure: Data driven regularization parameter λ selection as an equilibrium
between "backprojection" error χ2

ĝ and smoothness ‖∇x f̂ /f̂ ‖2.
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DeepEfficiency - Deep
neural network5 based optimal
algorithm for performing
multidimensional detector
efficiency inversion
Code to be available: <github.com/mieskolainen/deepefficiency>, MIT
license

5TensorFlow driven, which is a "symbolic math" library from Google Brain.
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Essentially, a ’Detector Matrix’ in
Higher Dimensions - utilizing all observable
degrees of freedom

For what?

- Maximally MC generator independent efficiency corrections
of, for example, two-body low mass central systems
(π+π−,K+K−, pp̄ . . . ). Correct all observables
simultaneously!

Cannot I just divide histograms and correct for
efficiency by that way, or construct some unfolding
matrix observable by observable?

- Yes, if your physics is well simulated (say ∼ QED process)
and/or you’re happy with MC generator biased results.
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Work in progress
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