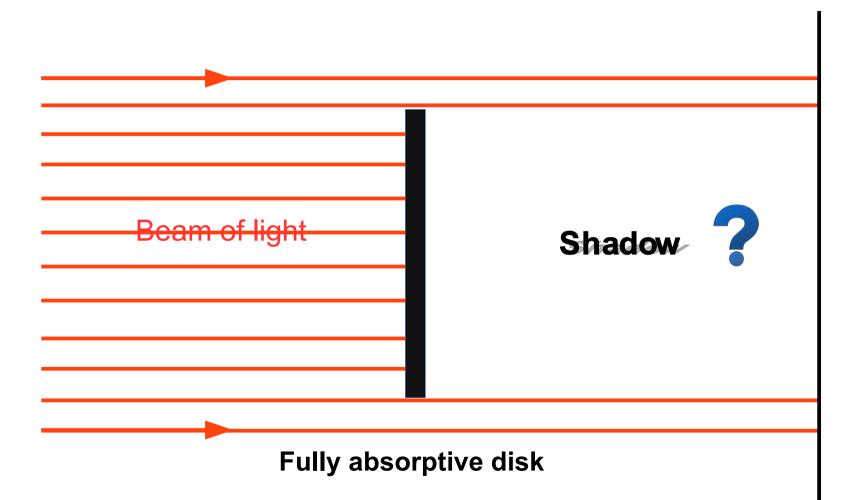
Rapidity gap distribution in diffractive deep-inelastic scattering and parton genealogy

Stéphane Munier

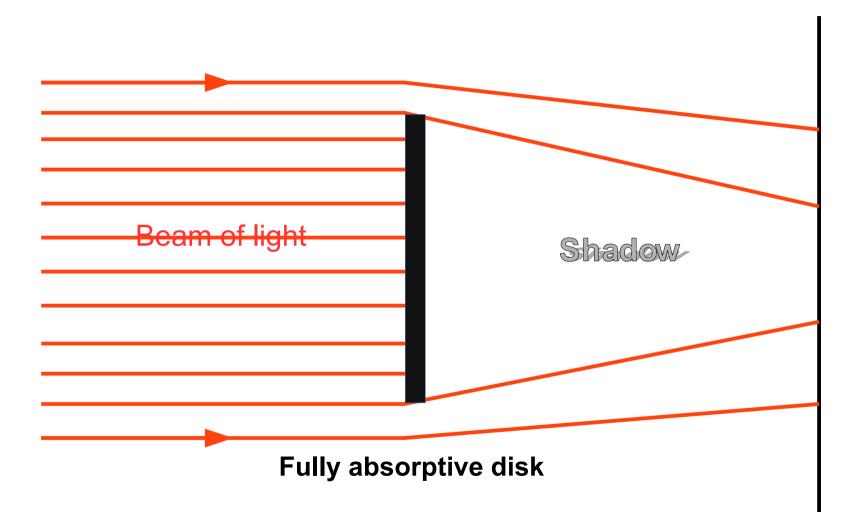
Centre de physique théorique École polytechnique, CNRS, Université Paris-Saclay

Based on work with <u>A.H. Mueller</u> arXiv:1805.02847, PRD and 1805.09417, PRL (published Aug 2018) and with <u>Dung Le</u> (in progress)

Diffraction in optics



Diffraction in optics

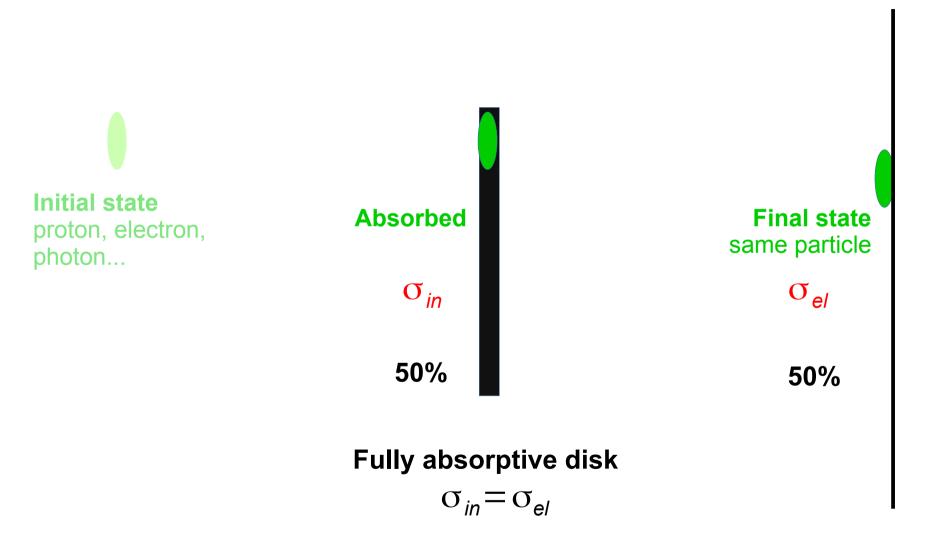


Diffraction in quantum mechanics

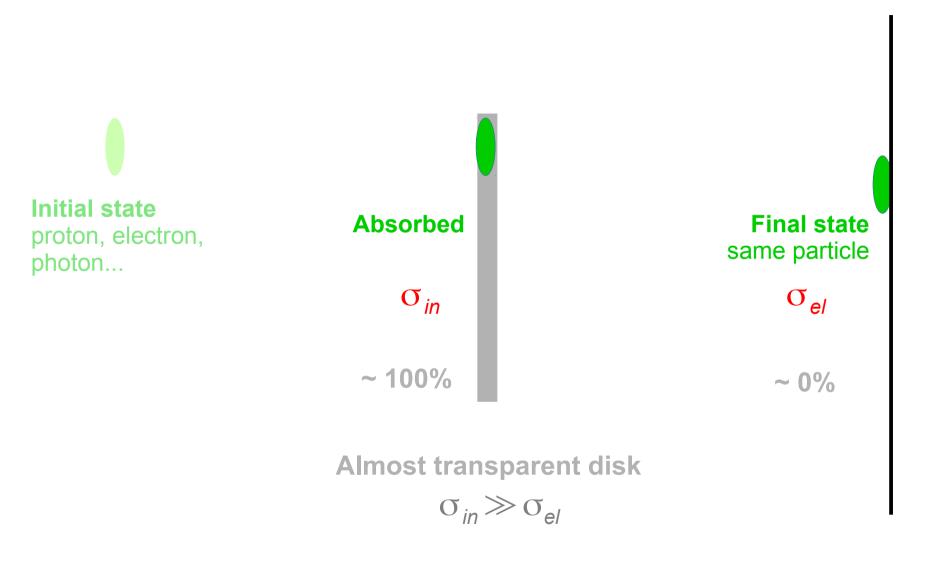
Initial state proton, electron, photon...

Fully absorptive disk

Diffraction in quantum mechanics

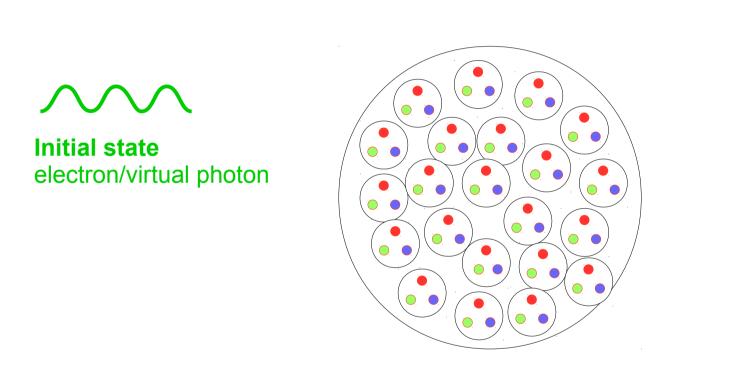


Diffraction in quantum mechanics



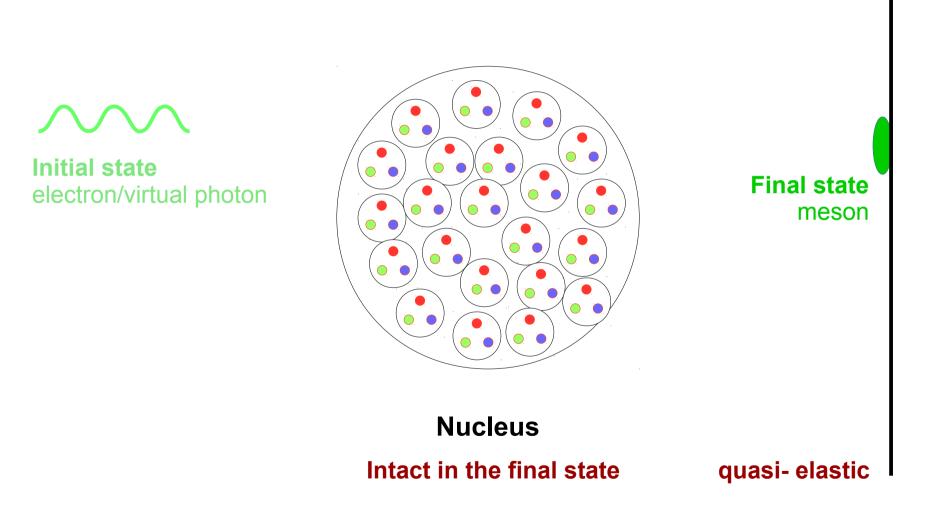
To have diffraction, one needs strong absorption!

Diffraction in particle physics

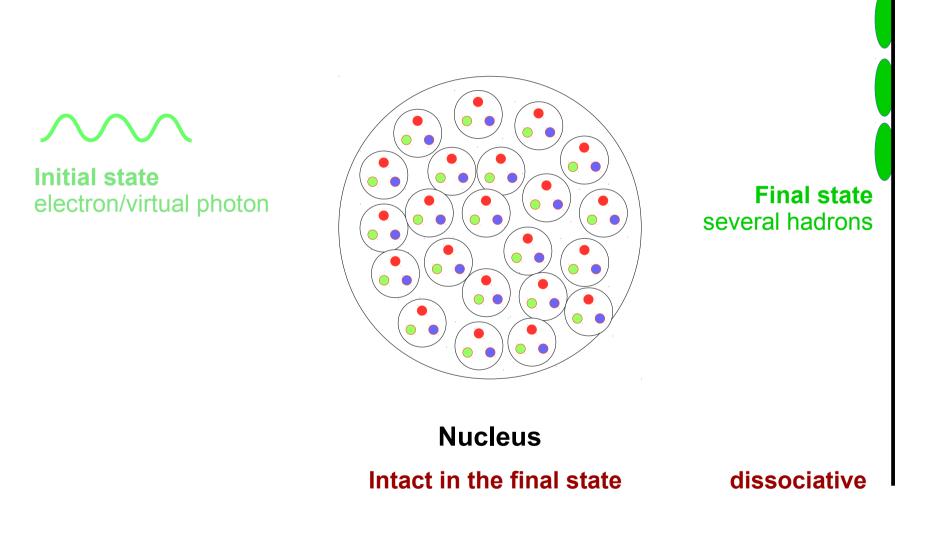


Nucleus

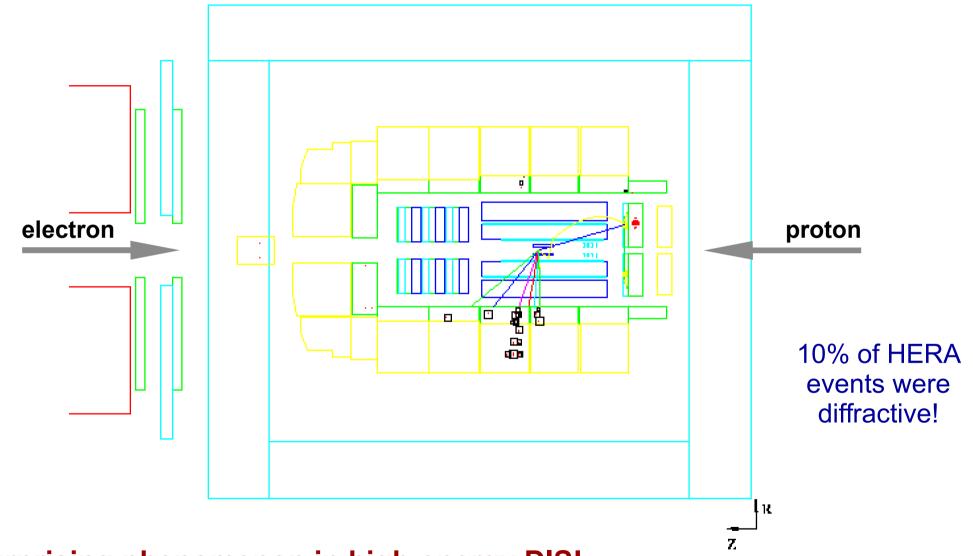
Diffraction in particle physics



Diffraction in particle physics



Diffraction in deep-inelastic scattering A major highlight of HERA!



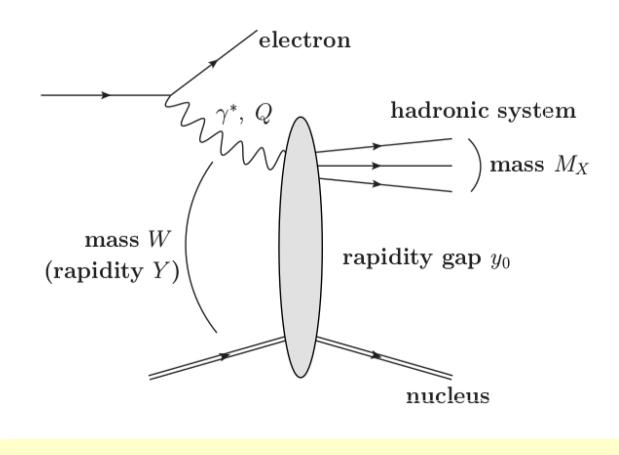
Surprising phenomenon in high-energy DIS!

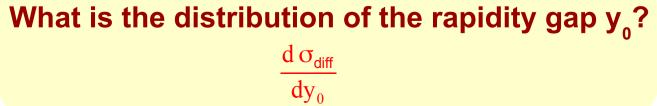
Its existence seems almost contradictory with the parton model... Its observation boosted saturation physics! [Gole

[Golec-Biernat, Wüsthoff 1998]

Diffraction in deep-inelastic scattering

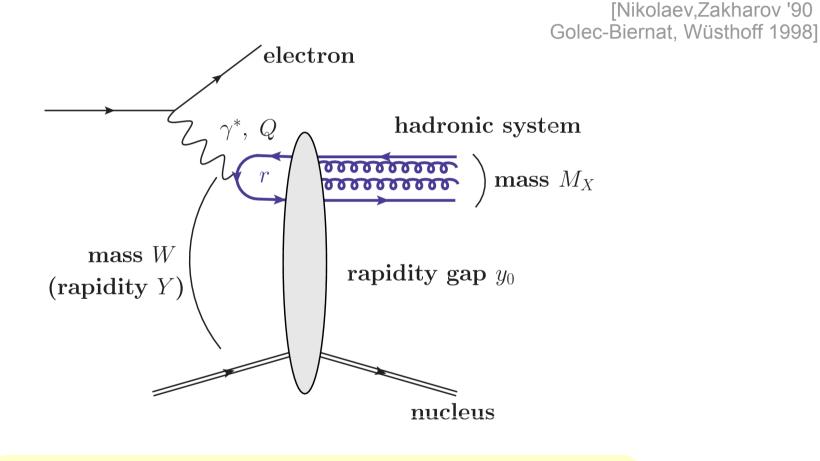
This talk: Diffractive dissociative electron-nucleus scattering

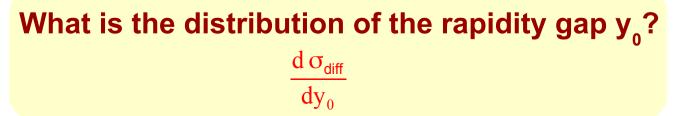




Diffraction in deep-inelastic scattering

This talk: Diffractive dissociative electron-nucleus scattering $\sim q \overline{q}$ dipole-nucleus





Outline

 \star Equation for the gap distribution

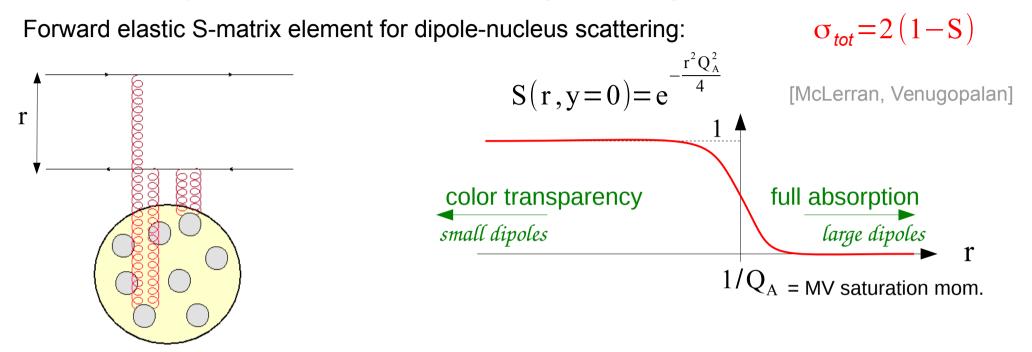
★ Picture of onium-nucleus scattering

* Ancestry in branching random walks

★ Numerical checks

Equation for the gap distribution

1)Total amplitude: the Balitsky-Kovchegov equation



Equation for the gap distribution 1)Total amplitude: the Balitsky-Kovchegov equation $\sigma_{tot} = 2(1-S)$ Forward elastic S-matrix element for dipole-nucleus scattering: $S(r, y=0)=e^{-\frac{r^2Q_A^2}{4}}$ [McLerran, Venugopalan] r full absorption color transparency large dipoles small dipoles r $1/Q_{\rm A}$ = MV saturation mom. $\partial_{y} S(r,y) = \bar{\alpha} \int \frac{d^{2}r'}{2\pi} \frac{r^{2}}{r'(r-r')^{2}} [S(r',y)S(r-r',y)-S(r,y)]$ 777700 [Balitsky, Kovchegov 1 1996-1999] У = y-dependent saturation mom.

2) Diffractive cross section: the Kovchegov-Levin equation

[Kovchegov, Levin 2000 Hatta, Iancu, Marquet, Soyez, Triantafyllopoulos 2006]

 $S(r, y=0)=e^{-\frac{r^2Q_A^2}{4}}$

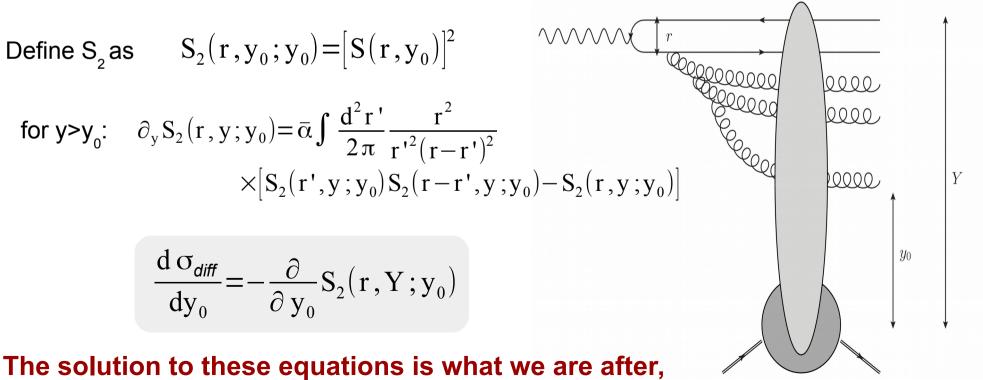
 $\partial_{y}S(r,y) = \bar{\alpha} \int \frac{d^{2}r'}{2\pi} \frac{r^{2}}{r'^{2}(r-r')^{2}} [S(r',y)S(r-r',y)-S(r,y)]$

2) Diffractive cross section: the Kovchegov-Levin equation

[Kovchegov, Levin 2000 Hatta, Iancu, Marquet, Soyez, Triantafyllopoulos 2006]

$$\partial_{y} S(r,y) = \bar{\alpha} \int \frac{d^{2}r'}{2\pi} \frac{r^{2}}{r'(r-r')^{2}} [S(r',y)S(r-r',y)-S(r,y)]$$

 $S(r, y=0)=e^{-\frac{r^2Q_A^2}{4}}$



but they are difficult to solve!

Outline

★ Equation for the gap distribution

★ Picture of onium-nucleus scattering

* Ancestry in branching random walks

* Numerical checks

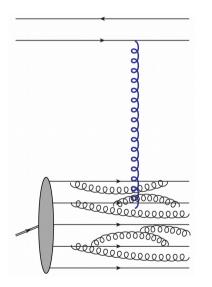
 $\sigma_{tot}(\mathbf{r},\mathbf{Y}) = 2[1 - S(\mathbf{r},\mathbf{Y})] \qquad \partial_{\mathbf{y}}S(\mathbf{r},\mathbf{y}) = \bar{\alpha}\int \frac{d^{2}r'}{2\pi} \frac{r^{2}}{r'^{2}(\mathbf{r}-\mathbf{r}')^{2}} [S(\mathbf{r}',\mathbf{y})S(\mathbf{r}-\mathbf{r}',\mathbf{y}) - S(\mathbf{r},\mathbf{y})]$ Solution: $Q_{s}^{2}(\mathbf{Y}) \approx Q_{A}^{2} \frac{e^{\text{const} \times \bar{\alpha}\mathbf{Y}}}{(\bar{\alpha}\mathbf{Y})^{3/2\gamma_{0}}} \qquad 1 - S_{rQ_{s}}(\widetilde{\mathbf{Y}}) \ll 1 \ln \frac{1}{r^{2}Q_{s}^{2}(\mathbf{Y})} [r^{2}Q_{s}^{2}(\mathbf{Y})]^{\gamma_{0}} \ll 1$

 $\sigma_{tot}(\mathbf{r}, \mathbf{Y}) = 2[1 - S(\mathbf{r}, \mathbf{Y})] \qquad \partial_{\mathbf{y}} S(\mathbf{r}, \mathbf{y}) = \bar{\alpha} \int \frac{d^{2} \mathbf{r}}{2\pi} \frac{\mathbf{r}^{2}}{\mathbf{r}^{2}(\mathbf{r} - \mathbf{r}')^{2}} [S(\mathbf{r}', \mathbf{y})S(\mathbf{r} - \mathbf{r}', \mathbf{y}) - S(\mathbf{r}, \mathbf{y})]$ Solution: $Q_{s}^{2}(\mathbf{Y}) \approx Q_{A}^{2} \frac{e^{\text{const} \times \bar{\alpha} \mathbf{Y}}}{(\bar{\alpha} \mathbf{Y})^{3/2 \gamma_{0}}} \qquad 1 - S_{\mathbf{r} Q_{s}(\mathbf{Y})} \ln \frac{1}{\mathbf{r}^{2} Q_{s}^{2}(\mathbf{Y})} [\mathbf{r}^{2} Q_{s}^{2}(\mathbf{Y})]^{\gamma_{0}} \ll 1$

$$\sigma_{tot}(\mathbf{r}, \mathbf{Y}) = 2[1 - S(\mathbf{r}, \mathbf{Y})] \qquad \partial_{\mathbf{y}} S(\mathbf{r}, \mathbf{y}) = \bar{\alpha} \int \frac{d^{2} \mathbf{r}}{2\pi} \frac{\mathbf{r}^{2}}{\mathbf{r}^{2}(\mathbf{r} - \mathbf{r}')^{2}} [S(\mathbf{r}', \mathbf{y})S(\mathbf{r} - \mathbf{r}', \mathbf{y}) - S(\mathbf{r}, \mathbf{y})]$$

Solution:
$$Q_{s}^{2}(\mathbf{Y}) \simeq Q_{A}^{2} \frac{e^{\text{const} \times \bar{\alpha} \mathbf{Y}}}{(\bar{\alpha} \mathbf{Y})^{3/2 \gamma_{0}}} \qquad 1 - S_{\mathbf{r} Q_{s}(\mathbf{Y})} \ln \frac{1}{\mathbf{r}^{2} Q_{s}^{2}(\mathbf{Y})} [\mathbf{r}^{2} Q_{s}^{2}(\mathbf{Y})]^{\gamma_{0}} \ll 1$$

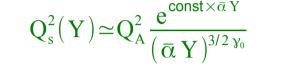
Onium restframe

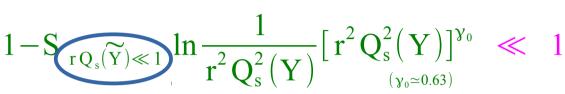


1-S is like the transparency of the boosted nucleus

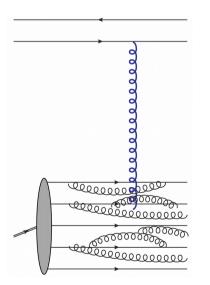
$$\sigma_{tot}(\mathbf{r},\mathbf{Y}) = 2[1 - S(\mathbf{r},\mathbf{Y})] \qquad \partial_{\mathbf{y}}S(\mathbf{r},\mathbf{y}) = \bar{\alpha}\int \frac{d^{2}\mathbf{r}}{2\pi} \frac{\mathbf{r}^{2}}{\mathbf{r}^{2}(\mathbf{r}-\mathbf{r}')^{2}}[S(\mathbf{r}',\mathbf{y})S(\mathbf{r}-\mathbf{r}',\mathbf{y})-S(\mathbf{r},\mathbf{y})]$$

Solution:



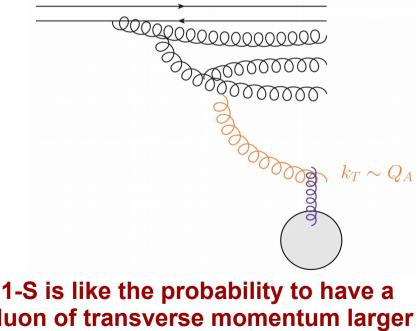


Onium restframe



1-S is like the transparency of the boosted nucleus

Nucleus restframe



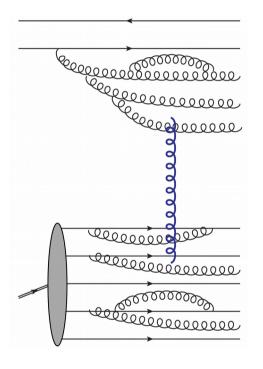
gluon of transverse momentum larger than the nuclear saturation momentum in the boosted onium Fock state

Picture of onium-nucleus scattering

Total and diffractive cross section in the y_0 frame

in which the nucleus has rapidity y₀

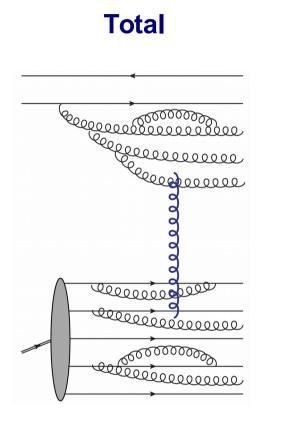
Total



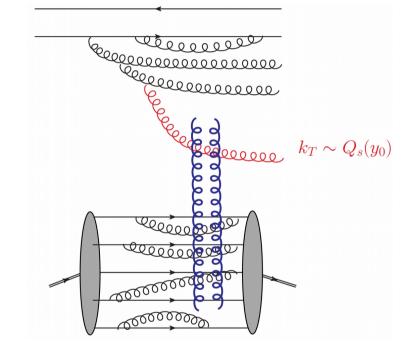
Picture of onium-nucleus scattering

Total and diffractive cross section in the y_o frame

in which the nucleus has rapidity y_o



Diffractive



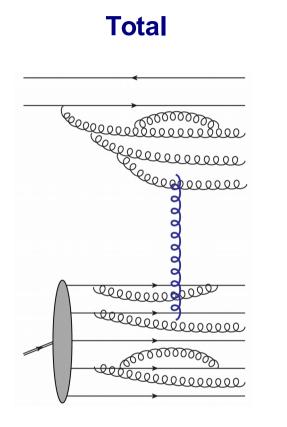
The scattering between the state of the onium and the evolved nucleus needs to be elastic

This requires an unusually low-k_r gluon at rapidity y₀

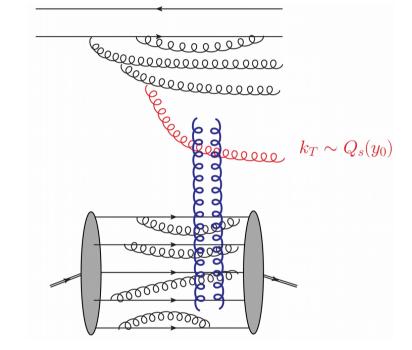
Picture of onium-nucleus scattering

Total and diffractive cross section in the y_o frame

in which the nucleus has rapidity y_o



Diffractive



The scattering between the state of the onium and the evolved nucleus needs to be elastic

This requires an unusually low-k_r gluon at rapidity y₀

Probability given by the BK equation!

$$\frac{1}{\sigma_{\text{tot}}} \frac{d \sigma_{\text{diff}}}{d y_0} = \operatorname{const} \times \left[\frac{\bar{\alpha} Y}{\bar{\alpha} y_0 (\bar{\alpha} (Y - y_0))} \right]^{3/2}$$

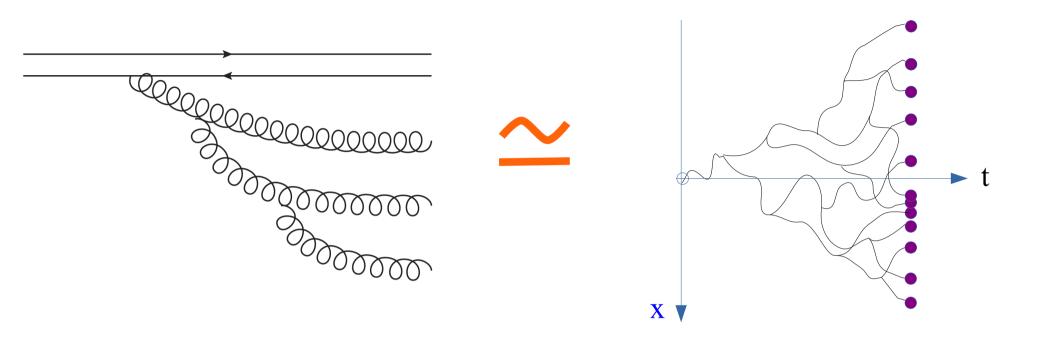
Outline

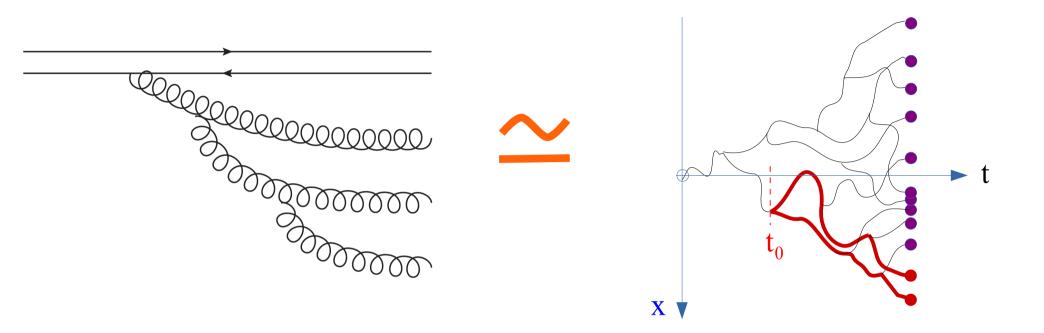
★ Equation for the gap distribution

☆ Picture of onium-nucleus scattering

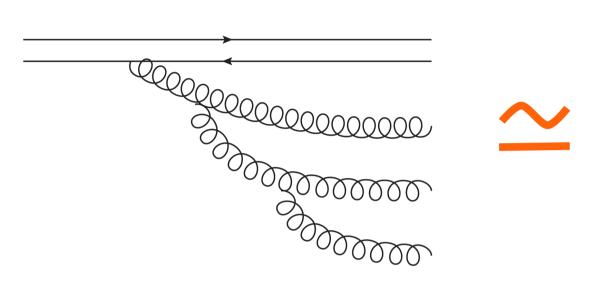
* Ancestry in branching random walks

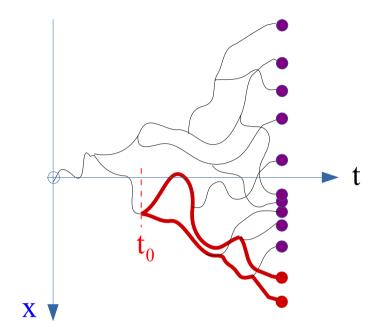
* Numerical checks



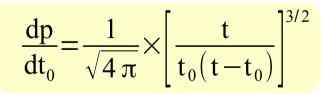


Distribution of decay time of most recent common ancestor?





Distribution of decay time of most recent common ancestor?

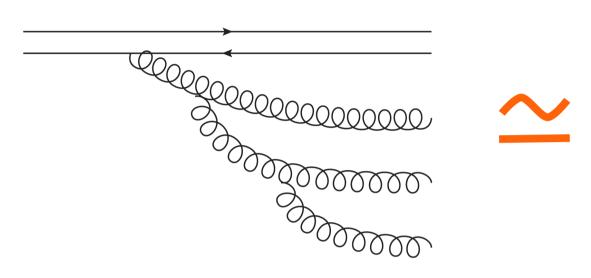


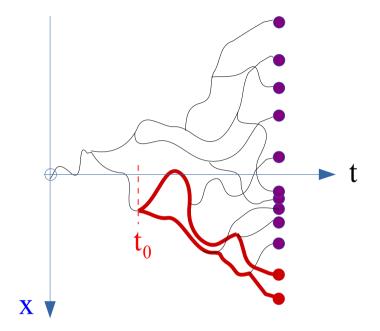
[Derrida, Mottishaw 2016]

(for branching Brownian motion with diffusion constant 2 and splitting rate 1)

 $\bar{\alpha} Y \Leftrightarrow t$

 $\bar{\alpha} y_0 \Leftrightarrow t_0$

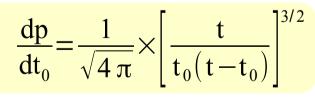




Distribution of rapidity gaps:

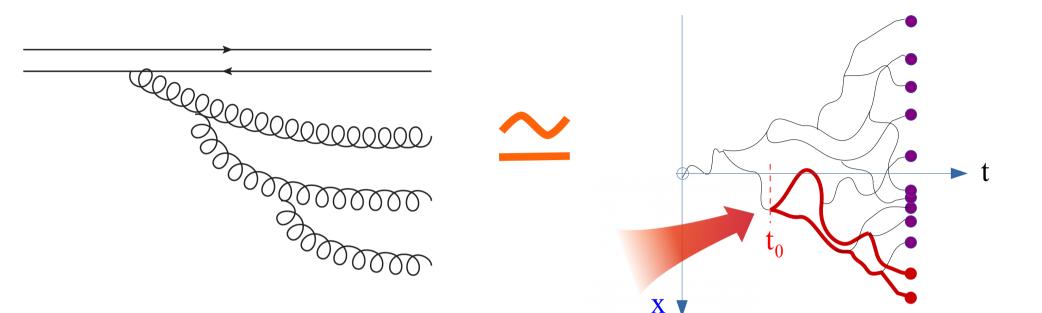
$$\frac{1}{\sigma_{\text{tot}}} \frac{d \sigma_{\text{diff}}}{d y_0} = \text{const} \times \left[\frac{\bar{\alpha} Y}{\bar{\alpha} y_0 (\bar{\alpha} (Y - y_0))} \right]^{3/2}$$

Distribution of decay time of most recent common ancestor?



[Derrida, Mottishaw 2016]

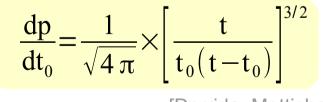
(for branching Brownian motion with diffusion constant 2 and splitting rate 1)



Distribution of rapidity gaps:

 $\frac{1}{\sigma_{\text{tot}}} \frac{d \sigma_{\text{diff}}}{d y_0} = \text{const} \times \left[\frac{\bar{\alpha} Y}{\bar{\alpha} y_0 (\bar{\alpha} (Y - y_0))} \right]^{3/2}$

Distribution of decay time of most recent common ancestor?



[Derrida, Mottishaw 2016]

(for branching Brownian motion with diffusion constant 2 and splitting rate 1)

Physical reason for the correspondence: The common ancestor is an unusually large fluctuation! (here: large value of x)

 $\bar{\alpha} Y \Leftrightarrow t$

 $\bar{\alpha} y_0 \Leftrightarrow t_0$

Outline

★ Equation for the gap distribution

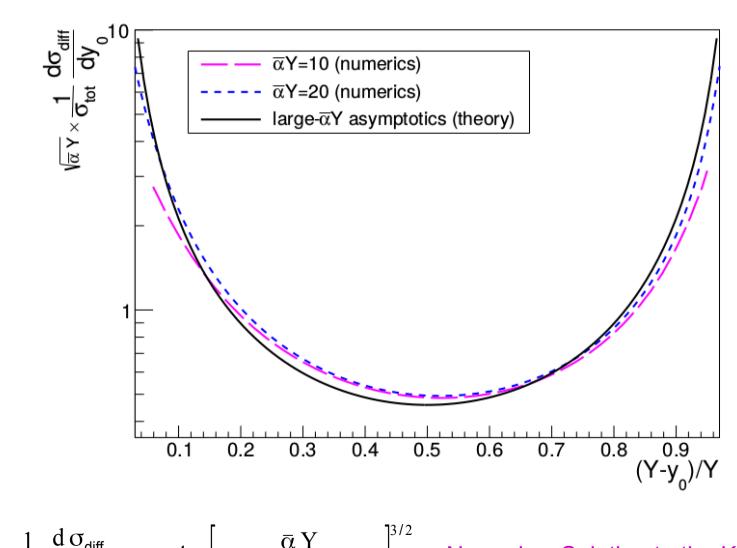
☆ Picture of onium-nucleus scattering

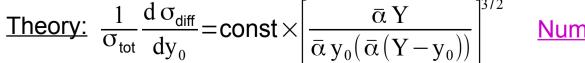
* Ancestry in branching random walks

★ Numerical checks

Comparison to numerics

Very large-Y asymptotics

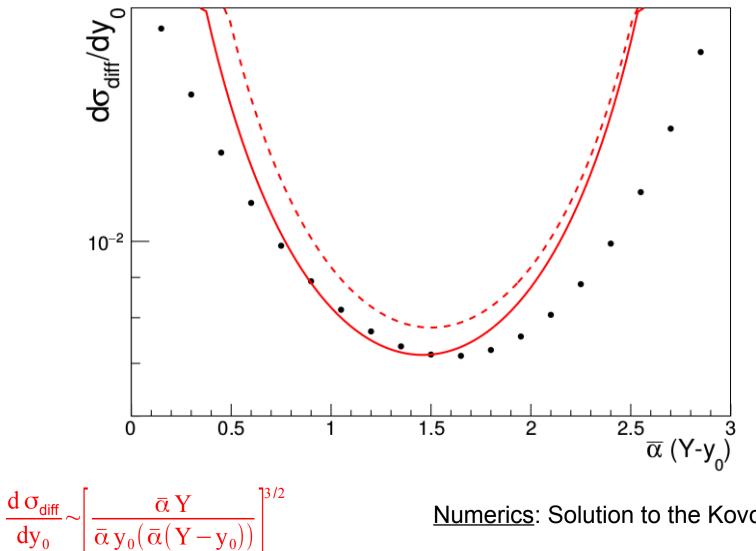




Numerics: Solution to the Kovchegov-Levin eq.

Comparison to numerics

Realistic rapidities (EIC) $\bar{\alpha}$ Y = 3



<u>Theory:</u>

Numerics: Solution to the Kovchegov-Levin eq.

Summary

We have predicted, up to an overall constant, the rapidity gap distribution in diffractive dissociation of a virtual photon off a nucleus:

$$\frac{1}{\sigma_{\text{tot}}} \frac{d \sigma_{\text{diff}}}{d y_0} = \text{const} \times \left[\frac{\bar{\alpha} Y}{\bar{\alpha} y_0 (\bar{\alpha} (Y - y_0))} \right]^{3/2}$$

<u>Partonic interpretation</u>: the rapidity gap is due to a **large fluctuation** (unusually low-transverse momentum gluon) in the course of the QCD evolution of the onium Fock state

There is a deep analogy between this distribution and the distribution of the time at which common ancestors of extreme particles in branching random walks decay

Outlook

We may have an even closer analogy between diffraction and genealogy: The overall constant in the distributions may be the same!

What about the finite-rapidity corrections?

Work in progress...