Recent Elastic and Total Cross-Section Measurements by TOTEM

V. Avati (AGH, Krakow)

On behalf of the TOTEM Collaboration
TOTEM Detectors

Inelastic Telescopes:
T1: $3.1 < \eta < 4.7$
T2: $5.3 < \eta < 6.5$

Roman Pot stations in the LHC tunnel
One of the physics goals of TOTEM is to measure the (elastic, inelastic, total) cross sections at LHC.

- COMPETE Collaboration fits all available hadronic data and predicts at LHC: \(\sigma_{\text{tot}} = 111.5 \pm 1.2 + 4.1/-2.1 \) mb [PRL 89 201801 (2002)]
- Last pp data at the ISR; only ppbar at “high” energy
- Difference of \(\sigma_{pp} \) vs \(\sigma_{\bar{p}p} \)
- \(\sigma_{\text{TOT}}(s) \sim (\ln s)^\gamma \quad \gamma = 2 \)
- \(\sigma_{\text{EL}} / \sigma_{\text{TOT}} \) VS energy

Is the dip still present at high energy?
Is the position of the dip changing?
Large momentum transfer region: oscillations?
Any break in the elastic slope \(B(t) \)?

\[\rho = \Re A^N/\Im A^N \big|_{t=0} \]
- Foreseen to “decrease” at high energy: how fast?
- Test dispersion relation (mix real and imaginary part)
Cross section related measurements in Totem

Run I
- Elastic scattering @ 7 TeV
 EPL 95-41001
- First σ_{tot} @ 7 TeV
 EPL 96-21002
- σ_{tot} lumi independent @ 7 TeV
 PRL 111-12001
- Elastic, inelastic cross section
- Elastic: full t-range
 EPL 101-21004/21003/21002

Run II
- $d\sigma/dt$ elastic: non-exponential behaviour @ 8 TeV
 NPB 899-527
- ρ measurement @ 8 TeV
 EPJ C76-661
- σ_{tot} lumi independent @ 8 TeV
 PoS (DIS2017) 059
- σ_{tot} lumi independent @ 13 TeV
- ρ measurement @ 13 TeV
 CERN-EP-2017-335
- $d\sigma/dt$ elastic: DIP @ 13 TeV Preliminary

2011
- Elastic scattering @ 7 TeV
 EPL 95-41001

2012
- σ_{tot} lumi independent @ 7 TeV

2013
- σ_{tot} lumi independent @ 7 TeV
- Elastic, inelastic cross section
- Elastic: full t-range
 EPL 101-21004/21003/21002

2014
- σ_{tot} lumi independent @ 2.76 TeV
 PoS (DIS2017) 059

2015
- σ_{tot} lumi independent @ 8 TeV
 EPJ C76-661
- $d\sigma/dt$ elastic: non-exponential behaviour @ 8 TeV
 NPB 899-527

2016
- ρ measurement @ 8 TeV

2017
- σ_{tot} lumi independent @ 13 TeV
- ρ measurement @ 13 TeV
 CERN-EP-2017-335

2018
- $d\sigma/dt$ elastic: DIP @ 13 TeV Preliminary

Schematic elastic cross-section
Analysis methods

Total cross section: \(N_{\text{inel}} \) (from T1,T2 telescopes) \(N_{\text{el}} \) (from RomanPots detectors)

\[\sigma_{\text{tot}} = \frac{16\pi}{1 + \rho^2} \frac{(dN_{\text{el}}/dt)_{t=0}}{(N_{\text{el}} + N_{\text{inel}})} \]

L independent

But also:

L dependent/ Elastic Only

\[\sigma_{\text{tot}}^2 = \frac{16\pi}{1 + \rho^2} \frac{1}{\mathcal{L}} \left(\frac{dN_{\text{el}}}{dt} \right)_{t=0} \]

\[\rho \text{ independent} \]

\[\sigma_{\text{tot}} = \sigma_{\text{el}} + \sigma_{\text{inel}} \]

\(\rho \text{ measurement} \): elastic scattering at very low-\(t \) (Coulomb-Nuclear Interference region)

\((d\sigma/dt) \sim |A^C + A^N (1-\alpha G(t))|^2 \)

The differential cross section is sensitive to the phase of the nuclear amplitude

In the CNI both modulus (constrained by measurement in the hadronic \(t \)-region) and phase (\(t \)-dependent) of nuclear amplitude can be tested to determine:

\[\rho \equiv \cot \arg \mathcal{A}^N(0) = \frac{\Re \mathcal{A}^N(0)}{\Im \mathcal{A}^N(0)} \]
Elastic measurement: method

Example: $\beta^*=2.5\text{km}, 13\text{ TeV}$

Trigger: double-arm RP
RP tracks in opposite arm in diagonal topology
Cuts: left-right correlation in several kinematic variables

Corrections to differential rate (mostly data-driven): acceptance, efficiencies (trigger, DAQ, reconstruction), smearing in $|t|$
Integrated rate: differential rate extrapolated to low $|t|$ (unobserved)

\[
\sigma(dN_{el}/d|t|_{t=0}) \sim 1.6 \%
\]
\[
\sigma(N_{el}) \sim 2.3 \%
\]

@ 13 TeV
Inelastic measurement : method

Trigger: activity in T2 either arm

$N_{\text{ev \ in \ T1+T2}} \sim 92\%$ of the inelastic rate

Experimental corrections (mostly data-driven): beam-gas background, trigger efficiency, pileup, T2 reconstruction efficiency, T1-only events

Corrections for final state particles outside T1/T2 acceptance (Monte-Carlo): central diffraction, rapidity gap over T2, low-mass diffraction

Largest contribution from low-mass diffraction ($M< 4.6$ GeV, $|\eta| > 6.5$)

$\sigma(N_{\text{inel}}): 3.7\% \ [\text{at } 13 \text{ TeV}].$
Total Cross section measurements: methods

7 TeV, several methods
Same beam conditions

8 TeV, several methods
Different beam conditions

13 TeV
90m: lumi independent
2500m: ρ measurement
Different beam conditions
Total Cross section measurements

\[\sigma_{\text{TOT}} \sim 2-3\% \]
\[\sigma_{\text{INEL}} \sim 2\% \]
\[\sigma_{\text{EL}} \sim 2-4\% \]

\(\sigma_{\text{tot}} \) fits by COMPETE
\(\sim a + b \ln s + c \ln^2 s \)
(pre-LHC model RRP\(_{nfL2u}\))

\(\sigma_{\text{el}} \) fit by TOTEM
\(11.84 - 1.617 \ln s + 0.1359 \ln^2 s \)
The diffraction cone shrinkage speed up with the collision energy

The increase of σ_{el}/σ_{TOT} with energy is confirmed also at LHC

\[B = \frac{d}{dn} \ln \left(\frac{ds}{dt} \right) \bigg|_{t=0} \] increase with \sqrt{s}

The linear (ln s) behavior is compatible for $\sqrt{s} \leq 3$ TeV
Elastic measurements: dip @ 13 TeV

dip position in |t| decreases with increasing \(\sqrt{s} \)

\[\sqrt{s} = 13 \text{ TeV} \quad \beta^* = 2500 \text{ m} \]

dip = 0.47 GeV\(^2\)
bump/dip ~ 1.8

\[\sqrt{s} = 7 \text{ TeV} \quad \beta^* = 90 \text{ m} \]

dip = 0.53 ± 0.01 GeV\(^2\)
bump/dip ~ 1.7 ± 0.1

\[\sqrt{s} = 13 \text{ TeV} \quad \beta^* = 90 \text{ m} \]

dip = 0.47 GeV\(^2\)
bump/dip ~ 1.77 ± 0.01

Dip is missing in pp
Elastic measurements: dip and structure at high-\(t\)

<table>
<thead>
<tr>
<th>(t)</th>
<th>(-7.8 \pm 0.3 \pm 0.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t)</td>
<td>(-10.95 \pm 0.6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(s = 7) TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta^* = 3.5) m & EPL 95 (2011) 31002</td>
</tr>
<tr>
<td>(\beta^* = 90) m & EPL 101 (2013) 21002</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(s = 8) TeV (scaled 10(\times))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta^* = 90) m & PRL 111-12001</td>
</tr>
<tr>
<td>(\beta^* = 1000) m & NPB 899-527</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(s = 13) TeV (scaled 1000(\times))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta^* = 2500) m & CERN-EP-2017-335</td>
</tr>
</tbody>
</table>

No structure seen at high-\(t\)

- \(\sqrt{s} = 7\) TeV
- \(\sqrt{s} = 8\) TeV (scaled 10\(\times\))
- \(\sqrt{s} = 13\) TeV (scaled 1000\(\times\))

Totem Preliminary

\(d\sigma/dt\) (mb/GeV\(^2\))
Elastic Scattering: Non-exponential behavior at low-\(t \)

Already observed at ISR and SPS: confirmed at LHC energies
Change of slope \(\sim 0.1 \text{ GeV}^2 \), faster decrease \(|t| > 0.2 \text{ GeV}^2\)

Pure exponential excluded \(\sim 7\sigma \) significance

Non-exponentiality measured in the nuclear component: contribution of the Coulomb scattering or else?
Elastic Scattering: Non-exponential behavior at low-

Explore in very low-t region the contribution of the interference coulomb-nuclear term and of the nuclear phase

→ the pure exponential behavior of nuclear amplitude is excluded (constant phase excluded, peripheral phase disfavored)
→ Non exponential (n=3) with both constant and peripheral phase is compatible with data
Elastic Scattering : Coulomb interference and ρ parameter

First LHC determination from Coulomb-hadronic interference at 8TeV : $\rho=0.12\pm0.03$
Uncertainty still too high (low statistics)

At 13 TeV : sample with very high statistics allows an unprecedented precision:

| N_b | $|t|_{\text{max}} = 0.07 \text{ GeV}^2$ | $|t|_{\text{max}} = 0.15 \text{ GeV}^2$ |
|------|----------------|----------------|
| | χ^2/ndf | ρ | χ^2/ndf | ρ |
| 1 | 0.7 | 0.09 ± 0.01 | 2.6 | - |
| 2 | 0.6 | 0.10 ± 0.01 | 1.0 | 0.09 ± 0.01 |
| 3 | 0.6 | 0.09 ± 0.01 | 0.9 | 0.10 ± 0.01 |

$|t|_{\text{max}} = 0.07 \text{ GeV}^2$
Comparison with UA4/2 (same t-range)

The new measurement is clearly below the predictions
None of COMPETE models is able to describe simultaneously σ_{TOT} and ρ
σ_{TOT} and ρ parameter: possible interpretation?

T-channel exchange of a colourless 3-gluon bound state ($J^{PC} = 1^{--}$) could decrease ρ in pp collisions at large energy. Odderon hint or first evidence of "slowing down" of σ_{TOT} growth at higher energy?
Summary

- Totem has made extensive measures related to σ_{TOT} and elastic scattering
- Some of the pre-LHC questions are nevertheless still open

- The (experimental) hints of odd-state seems confined in the sensitivity in the t-channel, although several theories predict the existence of such object (Odderon, 3g-bound state, vector glueball)

TOTEM contributions (observed/confirmed) to the predictions:

✔ decrease of ρ at high energies
✔ diffractive dip in the proton-proton elastic t-distribution
✔ the deviation of the elastic differential cross-section from a pure exponential
✔ the deviation of the elastic diffractive slope, B, from a linear log(s) dependence
✔ the variation of the nuclear phase as a function of t
✔ the large-$|t|$ power-law behavior of the elastic t-distribution with no oscillatory behavior
✔ the growth rate of the total cross-section

What next:

✔ Precise measurement of ρ at low energy (900 GeV)
✔ σ_{TOT} at 14 TeV

Beyond Totem:

✔ Differences between the proton-proton and proton-antiproton scattering (ISR)
 LHC in p-pbar?
✗ Observation of 3g-bound state in the s-channel?
Which could be the “three pieces of evidence”?

Once is happenstance. Twice is coincidence. Three times is enemy action.

Ian Fleming

Thanks for your attention!

The speaker acknowledge the support from grant no. MNiSW DIR/WK/2017/07