

Recent Elastic and Total Cross-Section Measurements by TOTEM

V. Avati (AGH, Krakow)

On behalf of the TOTEM Collaboration

TOTEM Detectors

Roman Pot stations in the LHC tunnel

Status pre-LHC

201

One of the physics goal of TOTEM is to measure the (elastic, inelastic, total) cross sections at LHC

- Is the dip still present at high energy?
- Is the position of the dip changing?
- · Large momentum transfer region: oscillations?
- Any break in the elastic slope B(t)?

- · Last pp data at the ISR; only ppbar at "high" energy
- Difference of σ_{pp} vs $\sigma_{\bar{p}p}$?
- $\sigma_{\text{TOT}}(s) \sim (\ln s)^{\gamma} \quad \gamma = 2$?
- $\sigma_{\rm EL}/\sigma_{\rm TOT}$ VS energy

- $\rho = \Re \left. \mathsf{A}^{\text{N}} / \Im \mathsf{A}^{\text{N}} \right|_{\mathsf{t}=\mathsf{0}}$
- Foreseen to "decrease" at high energy: how fast?
- Test dispersion relation (mix real and imaginary part)

Cross section related measurements in Totem

 σ_{tot} lumi independent @ 2.76 TeV PoS (DIS2017) 059

2018

- σ_{to t}lumi independent @ 13 TeV CERN-EP-2017-321
- ρ measurement @ 13 TeV CERN-EP-2017-335

2012

PRL 111-12001

- σ_{tot} lumi independent @7 TeV
- Elastic, inelastic cross section
- · Elastic: full t-range EPL 101-21004/21003/21002

2011

- Elastic scattering @7 TeV EPL 95-41001
- First σ_{tot} @ 7 TeV EPL 96-21002

• dσ/dt elastic: DIP @ 13 TeV

Preliminary

Analysis methods

Total cross section: N_{inel} (from T1,T2 telescopes) N_{el} (from RomanPots detectors)

L independent

$$\sigma_{tot} = \frac{16\pi}{(1+\rho^2)} \frac{(dN_{el}/dt)_{t=0}}{(N_{el}+N_{inel})}$$

But also:

L dependent/ Elastic Only

$$\sigma_{tot}^2 = \frac{16\pi}{(1+\rho^2)} \frac{1}{\mathcal{L}} \left(\frac{dN_{el}}{dt}\right)_{t=0} \qquad \qquad \sigma_{tot} = \sigma_{el} + \sigma_{inel}$$

ρ independent

$$\sigma_{tot} = \sigma_{el} + \sigma_{inel}$$

p measurement: elastic scattering at very low-t (Coulomb-Nuclear Interference region)

$$(d\sigma/dt) \sim |A^C + A^N (1-\alpha G(t))|^2$$

Coulomb hadronic "interference" amplitude amplitude terms

The differential cross section is sensitive to the phase of the nuclear amplitude

In the CNI both modulus (constrained by measurement in the hadronic t-region) and phase (t-dependent) of nuclear amplitude can be tested to dermine:

$$\rho \equiv \cot \arg \mathscr{A}^{N}(0) = \frac{\Re \mathscr{A}^{N}(0)}{\Im \mathscr{A}^{N}(0)}$$

Elastic measurement: method

Trigger: double-arm RP RP tracks in opposite arm in diagonal topology Cuts: left-right correlation in several kinematic variables

Corrections to differential rate (mostly data-driven): acceptance, efficiencies (trigger, DAQ, reconstruction), smearing in |t| Integrated rate: differential rate extrapolated to low |t| (unobserved)

Inelastic measurement: method

Trigger: activity in T2 either arm

 N_{ev} in T1+T2 ~ 92% of the inelastic rate

Experimental corrections (mostly data-driven): beam-gas background, trigger efficiency, pileup, T2 reconstruction e ciency, T1-only events

Corrections for final state particles outside T1/T2 acceptance (Monte-Carlo): central diffraction, rapidity gap over T2, low-mass diffraction

Largest contribution from low-mass diffraction (M< 4.6 GeV, $|\eta| > 6.5$)

 $\sigma(N_{inel})$: 3.7% [@13 TeV]

Total Cross section measurements: methods

7 TeV, several methods Same beam conditions

8 TeV, several methods Different beam conditions

13 TeV 90m : lumi independent 2500m: ρ measurement

Different beam conditions

Total Cross section measurements

Total Cross section measurements: implications

The diffraction cone shrinkage speed up with the collision energy

The increase of σ_{el}/σ_{TOT} with energy is confirmed also at LHC

B=d/dn In (ds/dt) | $_{t=0}$ increase with \sqrt{s} The linear (ln s) behavior is compatible for $\sqrt{s} \le 3$ TeV

Elastic measurements: dip @ 13 TeV

dip position in |t| decreases with increasing \sqrt{s}

Elastic measurements: dip and structure at high-t

No structure seen at high-t

Elastic Scattering: Non-exponential behavior at low-t

Already observed at ISR and SPS: confirmed at LHC energies Change of slope $\sim 0.1~\text{GeV}^2$, faster decrease |t|>0.2 GeV²

Pure exponential excluded \sim 7σ significance

Non-exponentiality measured in the nuclear component: contribution of the Coulomb scattering or else?

Elastic Scattering: Non-exponential behavior at low-t

Explore in very low-t region the contribution of the interference coulomb-nuclear term and of the nuclear phase

- → the pure exponential behavior of nuclear amplitude is excluded (constant phase excluded, peripheral phase disfavored)
- → Non exponential (n=3) with both constant and peripheral phase is compatible with data

Elastic Scattering : Coulomb interference and ρ parameter

First LHC determination from Coulomb-hadronic interference at 8TeV : ρ =0.12±0.03 Uncertainty still too high (low statistics)

At 13 TeV: sample with very high statistics allows an unprecedented precision:

	$ t _{\text{max}} = 0.07 \text{ GeV}^2$		$ t _{\text{max}} = 0.15 \text{ GeV}^2$	
N_b	χ^2 /ndf	ρ	χ^2 /ndf	ρ
1	0.7	0.09 ± 0.01	2.6	_
2	0.6	$\textbf{0.10} \pm \textbf{0.01}$	1.0	0.09 ± 0.01
3	0.6	$\textbf{0.09} \pm \textbf{0.01}$	0.9	0.10 ± 0.01

 $|t|_{max}$ = 0.07 GeV2 Comparison with UA4/2 (same t-range)

The new measurement is clearly below the predictions

σ_{TOT} and ρ parameter : model comparison

——— RPdPL2_20, RPdPL2u_17, RPdPL2u_19, RPdPqcL2u_16, RRcdPL2u_15, RRcdPqcL2u_14, RRPL2u_19, RRPL2u_21

- - - RRPEu_19

RqcRcL2qc_12, RRcL2qc_15, RRL2_18, RRL2qc_17

 $RqcRcLqc_12, RqcRLqc_14, RRcLqc_15, RRcPL_19, RRL_18, RRL_19, RRLqc_17, RRPL_21, RRPL2_20, RRPL2qc_18$

None of COMPETE models is able to describe simultaneously $\sigma_{\text{\tiny TOT}}$ and ρ

σ_{TOT} and ρ parameter : possible interpretation?

t-channel exchange of a colourless 3-gluon bound state ($J^{PC} = 1^{-}$) could decrease ρ in pp collisions at large energy

Odderon hint or first evidence of "slowing down" of σ_{TOT} growth at higher energy?

Summary

- Totem has made extensive measures related to $\sigma_{\scriptscriptstyle TOT}$ and elastic scattering
- Some of the pre-LHC questions are nevertheless still open
- The (experimental) hints of odd-state seems confined in the sensitivity in the t-channel, although several theories predict the existence of such object (Odderon, 3g-bound state, vector glueball)

TOTEM contributions (observed/confirmed) to the predictions:

- \checkmark decrease of ρ at high energies
- ✓ diffractive dip in the proton-proton elastic t-distribution
- the deviation of the elastic differential cross-section from a pure exponential
- ✓ the deviation of the elastic diffractive slope, B, from a linear log(s) dependence
- the variation of the nuclear phase as a function of t
- ✓ the large-|t | power-law behavior of the elastic t -distribution with no oscillatory behavior.
- the growth rate of the total cross-section

What next:

- \checkmark Precise measurement of ρ at low energy (900 GeV)
- σ_{TOT} at 14 TeV

Beyond Totem:

- Differences between the proton-proton and proton-antiproton scattering (ISR) LHC in p-pbar?
- Observation of 3g-bound state in the s-channel?

19

Which could be the "three pieces of evidence"?

Thanks for your attention!