

Diffraction and Low-x 2018

26 August 2018 to 1 September 2018 Reggio Calabria, Italy

Odderon and LHC data

<u>O.V. Selyugin</u> <u>BLTPh, JINR</u> in collaboration with **J.-R. CUDELL** STAR, Univ. Liege

Contents

- * New "open" of max-Odderon
 - * Elastic hadron scattering new data LHC
 - * Phenomenological analysis of the new data
 - * ρ and σ_{tot}
 - * Comparing the data with High Energy Generalized Structure model (HEGSh)
 - * Overlapping function at $\sqrt{s} = 13 \ TeV;$
 - * Total cross sections
 - * Results and Summery

Physics Letters D

www.elsevier.com/locate/physlett

Did TOTEM experiment discover the Odderon?

Evgenij Martynov^{a,*}, Basarab Nicolescu^b

At $s \to \infty$ we have

$$\Delta\sigma(s) \equiv \sigma_{tot}^{\bar{p}p}(s) - \sigma_{tot}^{pp}(s) \to 2O_1 \pi \ln(s/m^2)$$
(16)

$$\Delta\rho(s) \equiv \rho^{\bar{p}p}(s) - \rho^{pp}(s) \to -2\frac{O_1}{H_1}$$
(17)

E.Leader, P. Gauron, B. Nicolescu, Nucl.Phys.B (1988)

$$\rho(s,t) = \operatorname{Re}F_h(s,t) / \operatorname{Im}F_h(s,t);$$

Table 1The values of parameters of FMO model.ParameterValueError H_1 (mb)0.24964+0.02452+0.03058+0.86147

-0.31854

-0.05098

30.012

-0.63729 +4.304

-6.363

+0.01050

-0.00989

$\Delta \rho = -2(-0.05098/0.24964) = 0.408;$ hence $\rho_{p\bar{p}} = 0.5;$

We would like to stress that there is no general argument against the FMO approach.

Volume 232, number 2

PHYSICS LETTERS B

30 November 1989

FORWARD SCATTERING AT COLLIDER ENERGIES AND EIKONAL UNITARIZATION OF THE ODDERON *

J. FINKELSTEIN

Department of Physics, San Jose State University, San Jose, CA 95192, USA

H.M. FRIED, K. KANG and C-I TAN

Department of Physics Brown University. Providence. RI 02912, USA

(8) behaves as $s^{-\sigma}$, and so $\Delta \sigma_{\rm T}(s) \rightarrow O(s^{-\delta}\log s)$.

 H_2 (mb)

 H_3 (mb)

 O_1 (mb)

(ii) Bare odderon coincides with bare pomeron trajectory. In this case, $\delta = 0, r \rightarrow \alpha'_{-}/\alpha'_{+} = 1$, and the first integral in (8) goes to a real constant. Since Re $B_{-} \sim \log s$, Im $B_{-} = -2\pi\alpha'_{-}$, we find that Re $F_{-} \sim s \log s$ and Im $F_{-} \sim s$, as claimed earlier by an analyticity argument.

Wa have abarra that if - 1-

CERN
$$pp \rightarrow pp$$
 $\sqrt{s} = 540 \text{ GeV}$ Problems
 $\rho = 0.24 \pm 0.04$ (UA4 Coll. M. Bozzo et al.)
 $\rho = 0.135 \pm 0.015$ (UA4/2 Coll., C.Augier et al.)

<u>Comment</u>

1992 $\rho = 0.24 \rightarrow 0.19 \pm 0.03$ (O.V. Selyugin, Yad.Fiz. 55, 841) 1995 $\rho = 0.135 \rightarrow 0.17 \pm 0.02$ (O.V. Selyugin, Phys. Lett. B 198, 583) 2009 $\rho = 0.172 \pm 0.009$

(A.Kendi, E.Ferreira, T.Kodama, arXiv: 0905.1955(hep - ph))

ODDERON s and t dependence

Max Odderon - $\operatorname{Re}(O_{-}) \propto \ln(s/s_{0})^{2}$; $\operatorname{Im}(O_{-}) \propto \ln(s/s_{0})$;

E. Martynov, arXiv: 1305.3093 (E.Leader, P. Gauron, B. Nicolescu, Phys.Lett.B (1990)

$$O(s,t) = z t [O_1(s,t) + O_2(s,t) + O_3(s,t)]$$

O.V.S. HEGS model

$$O(s,t) = \frac{h_t t}{1 + r_o^2 t} e^{Bt/4 \ln(s/s_0)};$$

Simple phenomenological analysis of 13 TeV data

$$F_1^{em}(t) = \alpha f_1^2(t) \frac{s - 2m^2}{t}; \quad F_3^{em}(t) = F_1^{em};$$

and for spin-flip amplitudes:

$$F_2^{em}(t) = \alpha \frac{f_2^2(t)}{4m^2} s; \quad F_4^{em}(t) = -F_2^{em}(t),$$

$$F_5^{em}(t) = \alpha \frac{s}{2m\sqrt{|t|}} f_1(t) \ f_2(t),$$

where the form factors are:

$$f_1(t) = \frac{4m_p^2 - (1+k) t}{4m_p^2 - t} G_d(t);$$

$$f_2(t) = \frac{4m_p^2 k}{4m_p^2 - t} G_d(t);$$

$$\frac{dN}{dt} = \mathcal{L} \left[\frac{4\pi\alpha^2}{|t|^2} G^4(t) - \frac{2\alpha \left(\rho(s,t) + \phi_{CN}(s,t)\right) \sigma_{tot} G^2(t) e^{-\frac{B(s,t)|t|}{2}}}{|t|} + \frac{\sigma_{tot}^2 (1 + \rho(s,t)^2) e^{-B(s,t)|t|}}{16\pi} \right]$$
(6)

Non-exponential behavior (origins)

- 1. Non-linear Regge trajectory
 - a) Contributions of the meson cloud (J.Pumplin, G.L. Kane; O.V.S.)
 - b) Pion loops (Anselm, Gribov, Khoze, Martin; Jenkovski et al.)

- 2. Different slopes of the other contributions (real part, odderon, spin-flip amplitude)
- 3. Unitarization

$$\begin{split} \Gamma(b) &= e^{-b^2/R^2}; \quad \to \quad F_1(t) \approx e^{5t}; \\ \Gamma(b) &= \delta(R_0); \quad \to \quad F_1(t) \approx J_0(R\sqrt{|t|}); \\ \Gamma(b) &= e^{-(b-R_0)^{h/2}/R_0^2}; \to \quad F_1(t) \approx e^{2.8t} J_0(2.8\sqrt{|t|}); \\ \Gamma(b) &= C(0-R_0); \quad \to \quad F_1(t) \approx J_1(R_0\sqrt{|t|}) / R_0\sqrt{|t|}; \\ \Gamma(b) &= e^{-\mu(\sqrt{4R_o^2-t})}; \quad \to \quad F_1(t) \approx e^{-5R_0(\sqrt{\mu^2-t}-\mu)}; \end{split}$$

Phenomenologic analysis (exponentials)

F

$$F^{h}(s,t) = (i+\rho) \frac{\sigma_{tot}}{4\pi 0.38938} e^{Bt/2}$$

$$F^{h}(s,t) = (i+\rho) \frac{\sigma_{tot}}{4\pi 0.38938} e^{Bt/2 - Ct^{2}}$$

$$F^{h}(s,t) = (i+\rho) \frac{\sigma_{tot}}{4\pi 0.38938} e^{Bt/2 + D(\sqrt{4\mu^{2} - t} - 2\mu)]}$$

$$^{h}(s,t) = [i+\rho(t)] \frac{\sigma_{tot}}{4\pi 0.38938} e^{Bt/2 + D(\sqrt{4\mu^{2} - t} - 2\mu)] + Ct^{2}} f(t)_{em.}^{2};$$

$$F^{h}(s,t) = h \frac{\sigma_{tot}}{4\pi 0.38938} e^{Bt/2 + i\varphi(t)}$$

TOTEM analysis 13 TeV

$$0.0085 \le |t| \le 0.07 \ GeV^2; \ N = 80$$

$ t _{\rm max} = 0.07 {\rm GeV^2}$					
N_b	χ^2/ndf	ρ			
1	0.7	0.09 ± 0.01			
2	0.6	0.10 ± 0.01			
3	0.6	0.09 ± 0.01			

Table 5: Summary of results for various fit config

1. Normalization on	
---------------------	--

 $\sigma_{el} = 31.0 \pm 1.7 \ mb(5.5\%).$ $\sigma_{tot} = 110.6 \pm 3.4 \ mb(3.1\%).$

2. "unprecedented precision" $\rho = 0.1 \pm 0.01 \ mb(10\%)$.

UA4/2 – (in text) $\rho = 0.135 \pm 0.007 \ mb(5.\%)$.

3. CNI term from $A_N(1-i\alpha G(t))$;

TOTEM 13 TeV

$$0.00085 \le |t| \le 0.07 \ GeV^2; \ N = 80.$$

Simple exponential (Born term)

$$F_B^h(s,t) = h[i - \rho_0(1+at)] f_1(t)^2 \sigma_{tot} e^{\alpha t}$$

totrho

Eikonal representation

$$F_B^h(s,t) = h \,\hat{s}^{\Delta} \, f_1(t)^2 \, \sigma_{tot} \, e^{\alpha^{i}t \, Ln(\hat{s})}$$

 $\rho_{Born}(\sqrt{s} = 13TeV, t = 0) = 0.089 \pm 0.013;$

 $\rho_{Unitar.}(\sqrt{s} = 13TeV, t = 0) = 0.11 \pm 0.016;$

Dhashi? sik

14 (6)

TOTEM 13 TeV (extraction ReF(s,t) from experimental data)

O.S. "VI Intern. Conf. On Diffraction...", Blois, France,(1995); O.S., P. Gauron, B. Nicolescu, Phys.Lett. B629 (2005) 83-92;

$$\Delta_{R}^{th}(t) = [\operatorname{Re} F^{h}(t) + \operatorname{Re} F^{C}(t)]^{2}; \quad \sigma_{tot} mb, B(t), \ \rho(t=0), \ n;$$

$$\Delta_{R}^{Exp}(t) = \left[\frac{d\sigma}{dt}\Big|_{\exp} - k\pi \left(\operatorname{Im} F^{h}(t) + \operatorname{Im} F^{C}(t)\right)^{2} / (k\pi)\right]$$

$$F_h(s,t) = h (1+\rho) \sigma_{tot} e^{Bt/2};$$

$$\sigma_{tot} = 110.6 \ mb, \ B = 20.36 \ GeV^{-2}, \ \rho(t=0) = 0.1, \ n=1.;$$

 $F_B^h(s,t) = h \ (i+\rho) \ \sigma_{tot} \ e^{\alpha t} \ f_1(t)^2;$

 $\sigma_{tot} = 108 \ mb, \ \rho(t=0) = 0.108, \ n = 1.06;$

 $t_0 = -0.0063 \ GeV^2$; $F_C(t_0) = -2.25$; Re $F_h = 2.25$; $\rho(t_0) = 0.105$;

17 (8)

Odderon and HEGS model

High Energy General Structure (HEGS) model O.V.S. - Eur. Phys. J. C (2012) 72:2073 Extending of model (HEGS1) – O.V. S. Phys.Rev. D 91, (2015) 113003

$$\hat{s} = s / s_0 e^{-i\pi/2}; \qquad s_0 = 4m_p^2.$$

$$n = 980 \rightarrow 3416; \quad 9 \le \sqrt{s} \le 8000 \, GeV; \quad 0.00037 < |t| < 15 \, GeV^2;$$

$$F_1^B(s,t) = h_1 G_{em}(t) \quad (\hat{s})^{\Delta_1} e^{\alpha_1 t \ln(\hat{s})}; \qquad F_2^B(s,t) = h_2 G_A(t)^2 \quad (\hat{s})^{\Delta_1} e^{\alpha_1 / 4t \ln(\hat{s})}$$

$$F^B(\hat{s},t) = F_1^B(\hat{s},t) \quad (1+R_1 / \sqrt{\hat{s}} \) \] + F_2^B(\hat{s},t) \quad (1+R_2 / \sqrt{\hat{s}} \) \] + F_{odd}^B(s,t);$$

$$F_{odd}^B(s,t) = h_{odd} \quad G_A(t)^2 \quad (\hat{s})^{\Delta_1} \quad \frac{t}{1-r_o^2 t} e^{\alpha_1 / 4t \ln(\hat{s})};$$

$$B(t) = (\alpha_1 + k_0 \, q \, e^{k_0 t \ln\hat{s}} \) \ln \hat{s}.$$

$$5 + 4 - \text{fitting parameters}$$

General Parton Distributions - GPDs

Electromagnetic form factors (charge distribution)

Gravitation form factors (matter distribution)

$$F_{1}^{D}(t) = \frac{4M_{p}^{2} - t\mu_{p}}{4M_{p}^{2} - t}G_{D}(t);$$

$$G_{D}(t) = \frac{\Lambda^{4}}{(\Lambda^{2} - t)^{2}};$$

$$G_{A}(t) = \frac{\Lambda^{4}}{(\Lambda^{2} - t)^{2}};$$

UNITARIZATION → eikonal representation

$$\chi(s,b) = 2\pi \int_0^\infty q \ J_0(bq) \ F_B^h(s,q) \, dq \qquad \qquad \chi(s,b) = -\frac{1}{2k} \int_{-\infty}^\infty dz V[\sqrt{z^2 + b^2}]$$

 ∞

$$F^{h}(s,t) = \frac{1}{2\pi} \int_{0}^{\infty} b J_{0}(bq) \left[1 - e^{-\chi(s,b)}\right] db$$

24 (10)

7 TeV (TOTEM) - t [0.00515 – 0.371] 7 TeV (ATLAS) - t [0.0062 – 0.3636] n = 0.94 n=1.0

8 TeV (TOTEM) - t [0.000741 – 0.201] 8 TeV (ATLAS) - t [0.01050 – 0.3635] n=0.9 n=1.0

HEGS-h model and Odderon

 $n \rightarrow 870; \ 100 \le \sqrt{s} \le 13000 \, GeV; \ 0.0008 < |t| < 3 \, GeV^2;$

$$F_{Odd}^{B}(s,t) = G_{A}(t)^{2} (\hat{s})^{\Delta_{1}} (h^{c}_{Odd} + h^{t}_{Odd} \frac{t}{1 - r_{o}^{2}t}) e^{B(t)/4t\ln(\hat{s})};$$

$$B(t) = \alpha_1 [1 + q e^{\alpha_0 t \ln \hat{s}} / (1 + \alpha_0 \ln \hat{s})].$$

Without Oddron – 2 fitting parameters – pomerons constants: h_1 ; h_2 ; $\sum \chi^2 = 1207$;

With Oddron – 5 fitting parameters (+ 3) : $+ h_{Odd}^c; h_{Odd}^t; r_0^2;$

 $(5) \rightarrow \sum \chi^2 = 1132;$

The amplitude of pp at $\sqrt{s} = 13TeV$ with h_{Odd}^{t} dashed line $-\operatorname{Im} F(t)$; hard line $\operatorname{Re} F(t)$; with h_{Odd}^{C} and h_{Odd}^{t} ($\Box -\operatorname{Im} F(t)$; O $-\operatorname{Re} F(t)$);

hard line pp; long dushed $p\overline{p}$ (*HEGSh*); dotted – pp; short – dashed – $p\overline{p}$ (without Odderon);

$$\begin{split} HEGSh &\to -t_{\min} = 0.46 \, GeV^2; -t_{\max} = 0.62 \, GeV^2; \, R = 1.78; \\ TOTEM &\to -t_{\min} = 0.47 \, GeV^2; -t_{\max} = 0.638 \, GeV^2; \, R = 1.78; \\ \text{Nemez, talk on workshop , May 28 (2018)} \end{split}$$

 $\rho(t)$ at $\sqrt{s} = 13 TeV$; long dashed line – pp; short dashed line – $p\overline{p}$;

 $\rho(s,t=0);$ hard line - pp;
dashed line - $p\overline{p};$ Δ and ∇ with h_{Odd}^{C} .

The G(b) of pp at $\sqrt{s} = 13 TeV$ with h_{Odd}^t dashed line - ImG(b); hard line ReG(t); with h_{Odd}^C and h_{Odd}^t (\Box -ImG(t); O - ReG(t));

Extending of model (HEGS1) – O.V. S. Phys.Rev. D 91, (2015) 113003

The profile function $\Gamma(s,b)$: the real part (<u>left</u>) and imaginary part (<u>middle</u>) at energies *s*=9.8 GeV (dashed line), *s*=52.8 GeV (dash-dotted line), *s*=7 TeV (long dashed line), *s*=14 TeV (<u>solid</u> line). he spin-flip amplitude in the *b*- representation (right) (<u>solid</u> line - eq.(12),

dashed line - eq.(13) long dashed line - with q factor and normal exponential form

"New Physics" arXiv:1807.06471

A.Alkin, E.Martynov, O.Kovalenko, S.Troshin

 $\operatorname{Im} H(s, b = 0) = 0.572 \pm 0.001;$

 $\sigma_{tot} = 112.05 \pm 0.05; \ \rho(t=0) = 0.099 \pm 0.001;$ TOTEM

 $\sigma_{tot} = 110.6 \pm 3.4 \, mb; \ \rho(t=0) = 0.1 \pm 0.01;$

$$F^{h}(s,t) = \frac{1}{2\pi} \int_{0}^{\infty} b \ J_{0}(bq) \ G(s,b) \, db$$

 $-t_1 \ge 0.0156 \ GeV^2 - Coulomb$ free;

$$I_{i} = \sqrt{\frac{16\pi s^{2}}{k_{\rm mb}}} \left. \frac{d\sigma}{dt} \right|_{t=t_{i}} - \left(\operatorname{Re} A(t)\right)^{2}.$$
(12)
$$I_{i} = |\operatorname{Im} A(t)|;$$

$\rho_{eik.}(\sqrt{s} = 13 TeV, t = 0) = 0.11 \pm 0.015;$

2. HEGSh model:

 $\rho_{HEGS} \left(\sqrt{s} = 13 TeV, t = 0 \right) = 0.13 \pm 0.015;$ $\sigma_{tot} \left(\sqrt{s} = 13 TeV \right) = 106 \pm 2.5 mb;$

3. B(t) – non-linear behavior (form factor, eikonalization);

4. The max-Odderon contribution at t=0 is very small;

- The form of the diffraction minimum at 13 TeV shows the Odderon contribution; most important Odderon contribution at low energies and non-small t.
- 6. Eikonalization leads to Re (Odd $_{max}$) growth as Log(s/s0);
- 7. The standard eikonal approximation works perfectly from Sqrt(s}=9 GeV up to 13 TeV.

THANKS FOR YOUR ATTENTION

analysis 13 TeV

$$F^{h}(s,t) = (i+\rho)\frac{\sigma_{tot}}{4\pi 0.38938}e^{Bt/2}$$

σ_{tot} , mb	B(=0)	ρ (t=0)	n	$\Sigma \chi^2$
107.2 fx	18.23	-0.146	1. fx	377
110.6fx	20.17	0.024	1 fx	617
114.0 fx	21.7	0.103	1 fx	2253
111.8	20.78	0.086	1 fx	70.65
114.1	20.26	0.08	0.96	69.85

$$F^{h}(s,t) = (i+\rho) \frac{\sigma_{tot}}{4\pi 0.38938} e^{Bt/2} f_{em}(t)^{2}$$

σ_{tot} , mb	B(=0)	ρ (t=0)	n	$\Sigma \ \chi^2$
107.2 fx	9.82	-0.15	1 fx	436
110.6 fx	11.27	0.015	1 fx	954
114.0	12.9	0.114	1 fx	1827
112.1	12.02	0.098	1 fx	70.2
108.8	12.06	0.108	1.07	68.25

TOTEM 7 TeV

O.V. S., "Total cross sections and \$\rho\$ at high energy", Nucl. Phys. A 922, 180-190, 2014.

-		and the second se			the second s	and the second second	and a second
	N	$\sum_{i=1}^{N} \chi_i^2$	ρ	B	C	n	σ_{tot}, mb
	47	77.84	0.14fixed	20.0	0fix	1.05	96.8 ± 0.1
	47	71.65	0.1 ffix	20.	0.fix	1.05	97.1 ± 0.1
	47	66.3	0.05 fix	20.	0.fix	1.05	97.2 ± 0.1
	47	62.8	0.fix	19.4	0.fix	1.05	97.1 ± 0.1
	47	63.1	0.14fixed	17.2	2.1 ± 0.5	1.05	97.56 ± 0.2
	47	61.9	0.1 fix	17.7	1.87 ± 0.5	1.05	97.7 ± 0.2
	47	61.0	0.05 fix	18.2	1.24 ± 0.5	1.05	97.7 ± 0.2
	47	60.6	0.fix	18.8	0.8 ± 0.5	1.05	97.4 ± 0.2
	47	60.8	-0.05 fix	19.3	0.4 ± 0.5	1.05	96.9 ± 0.3
	47	61.1	-0.064 ± 0.05	19.8	0.fix	1.05	96.57 ± 0.58
	47	60.6	-0.011 ± 0.09	18.9	0.7 ± 0.9	1.05	97.3 ± 0.9

Table 10: The basic parameters of the model are determined by fitting experimental data.

"Now our calculations show the inconsistency of the size of \rho=0.14 with the parameters of the scattering amplitude obtained by the TOTEM Collaboration."

O.V.S. – Nucl.Phys. A (2016)

$$t_{\min} = a_1 / [(1 + a_2 \ln(s / s_0)^2];$$

$$a_1 = 1.85 \pm 0.08; a_2 = 0.009 \pm 0.001; s_0 = 4m_p.$$

 $W_{1/2h} = c_1 + c_2 / (c_4 / \sqrt{s} + (\sqrt{s})^{\varepsilon}];$

tm2

Whh

Rinv

BSW₁ - C. Bourrely, J. Soffer, T.T. Wu - ()

BSW₂ - C. Bourrely, J. Soffer, T.T. Wu - ()

HEGS₀ – O.V.S. -HEGS₁ – O.V.S. -

	BSW ₁	BSW ₂	HEGS ₀	HEGS ₁
N _{exp}	369	955	980	3416
N _{par}	7+Regge	11+Regge	3+2	5+4
√ <i>s</i> , <u>GeV</u>	24 ÷ 630	13.4 ÷ 1800	52 ÷ 1800	9 ÷ 8000
Δt, <u>GeV</u> ²	0.1 ÷ 2.6	0.1 ÷ 5	8.7·10 ⁻⁴ ÷ 10	3.7·10 ⁻⁴ ÷ 15
(Σx²)/N	4.45	1.95	1.8	1.28

