

Constraints on proton PDFs by measurements with the ATLAS Detector

Claire Gwenlan, Oxford

on behalf of the ATLAS collaboration

ATLAS SM measurements

... providing insight into pQCD, proton structure (pdfs), non-pert. effects, and other SM parameters

proton pdfs – why do they matter?

PDF Channel Muon Elec. Recoil Bckg. OCD EW $m_{W^+} - m_{W^-}$ Stat. Total Unc. [MeV] Unc. Unc. Unc. Unc. Unc. Unc. Unc. Unc. -29.70.9 0.0 30.7 $W \rightarrow e \gamma$ 17.5 0.0 4.9 5.4 0.5 24.1-28.616.3 $W \rightarrow \mu \nu$ 11.70.0 1.1 5.0 0.4 0.0 26.0 33.2 -29.212.8 3.3 4.1 23.9 28.0 Combined 1.0 4.5 0.4 0.0

crucial for SM and BSM physics at hadron colliders

(other questions: validity of factorisation in pp, intrinsic charm/beauty in proton, small x dynamics, ...)

ATLAS 2017

LHC measurements sensitive to pdfs

- wealth of SM measurements from ATLAS, sensitive to pdfs, provide:
- **1. pdf discrimination**, by confronting theoretical predictions with data
- 2. pdf improvements, by including LHC data in QCD fits

Measurement	pdf sensitivity
Inclusive W, Z and asymmetries	Quark flavor separation (u,d,s)
W with charm quarks	Direct sensitivity to s-quark
Off peak Drell-Yan at low and high mass	Quarks at low and high x (u,d), photon pdf
Inclusive jet, dijets, trijets	High x quarks and gluon (alphas)
ttbar production (total, differential)	Gluon (alphas)
Zpt	Gluon sensitivity
W,Z, W/Z production with jets	Medium x gluon
Isolated photons	Medium and high x gluon
γ or Z+c,b production	c, b quarks, intrinsic charm
Single top production	Gluon and b quark

ATLAS inclusive W, Z

- sensitivity to light quarks (u, d, s)
- different quark combinations contribute to each process; flavour separation

experimentally very precise; state-of-the-art theory available (NNLO QCD + NLO EW) (accurate modelling of contribution from second-generation quarks essential for precision physics)

ultimate precision W,Z differential cross sections

ATLAS incl. W,Z differential cross sections: W[±] |η|, Z |y|| (3 ml central, 2 ml forward)

4.6 fb⁻¹; extraordinary total experimental precision (< 1% uncertainty) light quark pdf constraints; enhanced from provision of both W,Z with full syst. correlations

a strange story

impact on modern global pdfs

δ**xu_v/xu**_v

0.9

0.8

0.8¹

δ**xd_v/xd_v**

10-3

ATLAS

10⁻¹

¥

10⁻²

EPJ C77 (2017) 367 xs(x,Q²) $Q^2 = 1.9 \text{ GeV}^2$ $Q^2 = 1.9 \text{ GeV}^2$ ATLAS **4** CT14 0.6 ↔ CT14 profiled ≁ ММНТ14 AMMHT14 profiled 0.5 0.4 uv strange pdf 0.3 ATLAS 10⁻² **10**⁻¹ 0.2 $Q^2 = 1.9 \text{ GeV}^2$ **4** CT14 → CT14 profiled 0.1 0 10⁻³ 10⁻² **10**⁻¹ Χ dv

profiling exercise to study impact of ATLAS inclusive W,Z
 (4.6 pb⁻¹) differential cross sections on global pdf fits

ATLAS inclusive W,Z @ 13 TeV

(pdfs shown use different combinations of HERA, Tevatron and LHC data)

 measurements at higher CM energy give access to different kinematic region in x, providing new and complementary pdf sensitivity

consistent with LHC Run 1 results and provides extra handle to constrain pdfs

ATLAS W and Z cross section ratios @ 13 TeV

PLB 759 (2016) 601

sensitive to valence quarks at low x

constrains strange quark density

cross section ratio measurements: partial cancellation of systematics

sensitivity to pdf differences; W/Z ratio consistent with enhanced strange

ATLAS inclusive jet and dijets

JHEP05 (2018) 195

gluon at high x very poorly known – direct impact on BSM searches

- jet production in pp sensitive to gluon and quarks at high x
- new ATLAS 13 TeV measurements of inclusive jets (dijets) reach to pt=3.5 TeV (mjj = 9 TeV)

ATLAS inclusive jets in detail

cf. NLO QCD – quantitative comparisons performed for CT14, MMHT14, NNPDF3.0, ABMP16, HERAPDF2.0

tension when considering all rapidity bins together; also seen previously with 7,8 TeV measurements; sensitive to exact assumptions on corrs. for two-point systs. ie. those evaluated from difference between two model choices; see EG. JHEP09 (2017) 020

ATLAS top quark pair differential cross sections (1)

mainly via gg channel – constraints on gluon

wealth of useful top measurements from ATLAS

EG. dilepton channel ttbar measurement (8TeV, 20.2 fb⁻¹) of **leptonic variables**; comparison of normalised cross sections to NLO QCD, corrected for QED FSR ↓

ATLAS top quark pair differential cross sections (2)

NNLO QCD calcs. for differential distributions with stable top quarks also now available, and implemented in fastNLO (PRL 116 (2016), 082003; JHEP04 (2017) 071)

NEW for this conference:

ATLAS NNLO QCD analysis: HERA I+II + ATLAS W,Z + ATLAS ttbar cross sections in lepton+jet and di-lepton FS †

multiple spectra considered simult., taking into account stat+syst corrs

NB, **statistial correlations for lj**, within and between spectra, **newly available**; in addition to syst corrs for all lj+ll spectra

ATLAS-PHYS-PUB-2018-017

ATLAS top quark pair differential cross sections (2)

fit quality dependent on choice of spectra (Ij: mtt, pTt, yt, ytt; II: mtt, ytt), and treatment of two-point[†] systematic correlations (impact of stat corrs small, but non-negligible)

tension observed with lepton+jet yt, ytt distributions other spectra fit well individually; in combination, quality sensitive to treatment of two-point systematics, especially parton shower uncertainty

final choice of spectra: mtt+p⊤t (lj) + ytt (ll)

ATLAS-PHYS-PUB-2018-017

ATLAS top quark pair differential cross sections (2)

NEW ATLASepWZtop18 pdf: HERA I+II + ATLAS W,Z + ATLAS ttbar (mtt+pTt (lj) + ytt (ll))

17

experimentally, very precise

ATLAS: ee, $\mu\mu$ channels; combined precision better than 0.5% precision for pt < 100 GeV

theoretically challenging — low pt region dominated by soft particle emission (resummation, shower models); high pt region dominated by emission of hard partons (pdfs)

ATLAS prompt photon

PLB 770 (2017) 473

isolated photons: mainly sensitive to gluon at medium to high x

(syst uncerts. 5 - 19% at highest Et^{γ}; lumi uncert: 2.1%)

- clean experimental environment
- cf. JETPHOX (NLO QCD) theory uncertainties dominate across most of phase space
- measurements available at different CM energies – similar Et, Q² regions sample different x
- NNLO corrections available
 PRL 118 (2017) 222001

(see, also, talk by: G. Callea)

examples of c,b from ATLAS

20

2 R_{t}

impact of LHC data on modern global pdf fits

data from ATLAS, CMS and LHCb

many measurements shown in this talk are yet to be included

much more still to come...

MMHT

summary

ATLAS has extensive and growing portfolio of **pdf-sensitive** measurements **only a tiny subset presented here** – others not discussed here include: LM/HM DY; W+c; QCD jets at 2.76,7,8 TeV; many more top measurements; W,Z+Jets; ...

measurements of same process at **different CM energies**, and **ratio measurements** (EG. of different processes, or same process at different energies) with partially cancelling systematics can provide significant **pdf constraints**

new ATLAS NNLO QCD pdf, incl. top quark pair differential cross sections

NNLO QCD calculations available for other important physics processes – developments in grid technology (APPLfast) mean these data should be useable in rigorous NNLO pdf fits in the near future

still much to come from ATLAS from both Run 1 and Run 2 SM analyses

extras

ultimate precision W, Z differential cross sections

Data set	n.d.f.	ABM12	CT14	MMHT14	NNPDF3.0	ATLAS-epWZ12
$W^+ \to \ell^+ \nu$	11	11 21	10 26	11 37	11 18	12 15
$W^- ightarrow \ell^- ar{ u}$	11	12 20	8.9 27	8.1 31	12 19	7.8 17
$Z/\gamma^* \rightarrow \ell\ell \ (m_{\ell\ell} = 46 - 66 \text{ GeV})$	6	17 21	11 30	18 24	21 22	28 36
$Z/\gamma^* \rightarrow \ell\ell \ (m_{\ell\ell} = 66 - 116 \text{ GeV})$	12	24 51	16 66	20 116	14 109	18 26
Forward $Z/\gamma^* \rightarrow \ell\ell \ (m_{\ell\ell} = 66 - 116 \text{ GeV})$	9	7.3 9.3	10 12	12 13	14 18	6.8 7.5
$Z/\gamma^* \rightarrow \ell\ell \ (m_{\ell\ell} = 116 - 150 \text{ GeV})$	6	6.1 6.6	6.3 6.1	5.9 6.6	6.1 8.8	6.7 6.6
Forward $Z/\gamma^* \rightarrow \ell\ell \ (m_{\ell\ell} = 116 - 150 \text{ GeV})$	6	4.2 3.9	5.1 4.3	5.6 4.6	5.1 5.0	3.6 3.5
Correlated χ^2		57 90	39 123	43 167	69 157	31 48
Total χ^2	61	136 222	103 290	118 396	147 351	113 159

EPJ C77 (2017) 367

ultimate precision W,Z differential cross sections

	$\delta\sigma_{W+}$	$\delta\sigma_{W-}$	$\delta \sigma_Z$	$\delta\sigma_{\text{forward }Z}$
	[%]	[%]	[%]	[%]
Trigger efficiency	0.03	0.03	0.05	0.05
Reconstruction efficiency	0.12	0.12	0.20	0.13
Identification efficiency	0.09	0.09	0.16	0.12
Forward identification efficiency	_	_	_	1.51
Isolation efficiency	0.03	0.03	_	0.04
Charge misidentification	0.04	0.06	_	_
Electron $p_{\rm T}$ resolution	0.02	0.03	0.01	0.01
Electron $p_{\rm T}$ scale	0.22	0.18	0.08	0.12
Forward electron $p_{\rm T}$ scale + resolution	—	—	_	0.18
$E_{\rm T}^{\rm miss}$ soft term scale	0.14	0.13	_	_
$E_{\rm T}^{\rm miss}$ soft term resolution	0.06	0.04	_	_
Jet energy scale	0.04	0.02	_	_
Jet energy resolution	0.11	0.15	_	_
Signal modelling (matrix-element generator)	0.57	0.64	0.03	1.12
Signal modelling (parton shower and hadronization)	0.24	0.25	0.18	1.25
PDF	0.10	0.12	0.09	0.06
Boson $p_{\rm T}$	0.22	0.19	0.01	0.04
Multijet background	0.55	0.72	0.03	0.05
Electroweak+top background	0.17	0.19	0.02	0.14
Background statistical uncertainty	0.02	0.03	< 0.01	0.04
Unfolding statistical uncertainty	0.03	0.04	0.04	0.13
Data statistical uncertainty	0.04	0.05	0.10	0.18
Total experimental uncertainty	0.94	1.08	0.35	2.29
Luminosity			1.8	

	δστιν	δσω	$\delta \sigma_{\pi}$
	[%]	[%]	[%]
Trigger efficiency	0.08	0.07	0.05
Reconstruction efficiency	0.19	0.17	0.30
Isolation efficiency	0.10	0.09	0.15
Muon $p_{\rm T}$ resolution	0.01	0.01	< 0.01
Muon $p_{\rm T}$ scale	0.18	0.17	0.03
$E_{\rm T}^{\rm miss}$ soft term scale	0.19	0.19	_
$E_{\rm T}^{\rm miss}$ soft term resolution	0.10	0.09	-
Jet energy scale	0.09	0.12	_
Jet energy resolution	0.11	0.16	-
Signal modelling (matrix-element generator)	0.12	0.06	0.04
Signal modelling (parton shower and hadronization)	0.14	0.17	0.22
PDF	0.09	0.12	0.07
Boson $p_{\rm T}$	0.18	0.14	0.04
Multijet background	0.33	0.27	0.07
Electroweak+top background	0.19	0.24	0.02
Background statistical uncertainty	0.03	0.04	0.01
Unfolding statistical uncertainty	0.03	0.03	0.02
Data statistical uncertainty	0.04	0.04	0.08
Total experimental uncertainty	0.61	0.59	0.43
Luminosity		1.8	

e channel

µ channel

ATLASepWZ16 QCD fit parameterisation

$$\begin{aligned} xu_{\rm V}(x) &= A_{u_{\rm V}} x^{B_{u_{\rm V}}} (1-x)^{C_{u_{\rm V}}} (1+E_{u_{\rm V}} x^2), \\ xd_{\rm V}(x) &= A_{d_{\rm V}} x^{B_{d_{\rm V}}} (1-x)^{C_{d_{\rm V}}}, \\ x\bar{u}(x) &= A_{\bar{u}} x^{B_{\bar{u}}} (1-x)^{C_{\bar{u}}}, \\ x\bar{d}(x) &= A_{\bar{d}} x^{B_{\bar{d}}} (1-x)^{C_{\bar{d}}}, \\ xg(x) &= A_{g} x^{B_{g}} (1-x)^{C_{g}} - A'_{g} x^{B'_{g}} (1-x)^{C'_{g}}, \\ x\bar{s}(x) &= A_{\bar{s}} x^{B_{\bar{s}}} (1-x)^{C_{\bar{s}}}, \end{aligned}$$

total of 15 free parameters

with constraints:

$$A_{\bar{u}} = A_{\bar{d}}$$

$$B_{\bar{s}} = B_{\bar{d}} = B_{\bar{u}}$$

(momentum sum)

$$A_{u_v} A_{d_v}$$
 (number sum)

Γ

impact on modern global pdfs

 profiling exercise to study impact of ATLAS W, Z (4.6 pb⁻¹) differential cross sections on proton pdfs from global fitters

ATLAS inclusive W, Z

PLB 759 (2016) 601

energy dependence well described

ATLAS inclusive W, Z

impact of unsuppressed strange on W,Z inclusive cross sections

Phys Rev Lett 109 (2012) 012001

JHEP05 (2018) 195

ATLAS inclusive jets

			Pohe		
Rapidity ranges	CT14	MMHT 2014	NNPDF 3.0	HERAPDF 2.0	ABMP16
$p_{\mathrm{T}}^{\mathrm{max}}$					
y < 0.5	67%	65%	62%	31%	50%
$0.5 \le y < 1.0$	5.8%	6.3%	6.0%	3.0%	2.0%
$1.0 \le y < 1.5$	65%	61%	67%	50%	55%
$1.5 \le y < 2.0$	0.7%	0.8%	0.8%	0.1%	0.4%
$2.0 \le y < 2.5$	2.3%	2.3%	2.8%	0.7%	1.5%
$2.5 \le y < 3.0$	62%	71%	69%	25%	55%
$p_{\mathrm{T}}^{\mathrm{jet}}$					
y < 0.5	69%	67%	66%	30%	46%
$0.5 \le y < 1.0$	7.4%	8.9%	8.6%	3.4%	2.0%
$1.0 \le y < 1.5$	69%	62%	68%	45%	54%
$1.5 \le y < 2.0$	1.3%	1.6%	1.4%	0.1%	0.5%
$2.0 \le y < 2.5$	8.7%	6.6%	7.4%	1.0%	3.6%
$2.5 \le y < 3.0$	65%	72%	72%	28%	59%

Table 2: Summary of observed P_{obs} values from the comparison of the inclusive jet cross-section and the NLO pQCD prediction corrected for non-perturbative and electroweak effects for various PDF sets, for the two scale choices and for each rapidity bin of the measurement.

χ^2/dof all $ y $ bins	CT14	MMHT 2014	NNPDF 3.0	HERAPDF 2.0	ABMP16
$p_{\mathrm{T}}^{\mathrm{max}}$	419/177	431/177	404/177	432/177	475/177
$p_{\mathrm{T}}^{\mathrm{jet}}$	399/177	405/177	384/177	428/177	455/177

Table 3: Summary of χ^2 /dof values obtained from a global fit using all p_T and rapidity bins, comparing the inclusive jet cross-section and the NLO pQCD prediction corrected for non-perturbative and electroweak effects for several PDF sets and for the two scale choices. All the corresponding *p*-values are $\ll 10^{-3}$.

ATLAS inclusive jets cf. NLO QCD

JHEP05 (2018) 195

ATLAS inclusive jets cf. NNLO QCD

JHEP05 (2018) 195

scale: pt^{max}

ATLAS inclusive jets at NNLO QCD

JHEP05 (2018) 195

scale: pt^{jet}

ATLAS dijets at NLO QCD

JHEP05 (2018) 195

ATLAS dijets at NLO QCD

JHEP05 (2018) 195

ttbar and Z inclusive cross sections and their ratios, plus ratios at different CM (7,8,13 TeV)

state-of-the-art theory: **z**: NLO QCD (DYNNLO) + NLO EW (FEWZ); ttbar: NNLO+NNLL (Top++) 36

JHEP02 (2017) 117

constraints on medium-to-high-x sea quark and gluon pdfs

JHEP02 (2017) 117

JHEP02 (2017) 117

JHEP02 (2017) 117

ATLAS top quark pair differential cross sections

		lepton+jets spectra				
		p_T^t and y_t	p_T^t and y_t	p_T^t and m_{tt}	p_T^t and m_{tt}	
		with statistical	without statistical	with statistical	without statistical	
		correlations	correlations	correlations	correlations	
Total χ^2/NDF		1264 / 1068	1260 / 1068	1290 / 1070	1287 / 1070	
Partial χ^2/NDP	HERA	1148 / 1016	$1147 \ / \ 1016$	$1162 \ / \ 1016$	$1162 \ / \ 1016$	
Partial χ^2/NDP	ATLAS $W, Z/\gamma^*$	$82.7 \ / \ 55$	$83.5 \ / \ 55$	$83.2 \ / \ 55$	$83.1 \ / \ 55$	
Partial χ^2/NDP	ATLAS $t\bar{t}$	33 / 13	30 / 13	45 / 15	42 / 15	

		lepton+jets spectra				
		p_T^t and y_t	p_T^t and m_{tt}	p_T^t and m_{tt}		
		decorrelate	decorrelate	decorrelate		
		2-point uncertainties	2-point uncertainties	parton-shower model uncertainty		
Total χ^2/NDF		1259 / 1068	1247 / 1070	1248 / 1070		
Partial χ^2/NDP	HERA	1147 / 1016	1154 / 1016	$1153 \ / \ 1016$		
Partial χ^2/NDP	ATLAS $W, Z/\gamma^*$	$83.9 \ / \ 55$	$81.9 \ / \ 55$	$81.6 \ / \ 55$		
Partial χ^2/NDP	ATLAS $t\bar{t}$	$27.8 \ / \ 13$	11.5 / 15	$14.1 \ / \ 15$		

NEW ATLAS-PHYS-PUB-2018-017

W+Jets: mainly sensitive to gluon at medium x

ATLAS High Mass Drell Yan

- sensitive to quarks, quark flavour at high x (complementary to Z peak measurements) •
- important contribution from irreducible photon induced (PI) contribution:

top quark pair @ 7,8,13 TeV

- wealth of top quark pair total and differential cross section measurements
- mainly constrains high x gluon; also sensitive to guarks at large top-pt and mtt
- yet more measurements to come •

CT10 NLO

NNPDE23nlc

dileptons

HERAPDF15NLO (EIG+VAR)

2000

2500

m, [GeV]

10

10-4

10⁻⁵

0.5

500

1000

1500

1/ 0_{tf} .

Prediction Data