

There are various reasons to worry that conventional LO and NLO In(Q²) summations – as embodied in the DGLAP equations may be inadequate

It was a surprise to see F_2 steep at small x - even for very very low Q^2 , $Q^2 \sim 1$ GeV^2

- 1. Should perturbative QCD work? α_s is becoming large α_s at Q² ~ 1 GeV² is ~ 0.4
- There hasn't been enough lever arm in Q² for evolution, but even the starting distribution is steep- the HUGE rise at low-x makes us think
- 3. there **should be ln(1/x)** resummation (BFKL) as well as the traditional ln(Q²) DGLAP resummation- BFKL predicted $F_2(x,Q^2) \sim x^{-\lambda s}$, with λ_s =0.5, even at low Q^2
- 4. and/or there should be non-linear high density corrections for x < 5 10 -3

Extending the conventional DGLAP equations across the x, Q2 plane

Plenty of debate about the positions of these lines!

