Results from the CMS-TOTEM Precision Proton Spectrometer (PPS)

Ksenia Shchelina
(University and INFN Torino)
on behalf of the CMS and TOTEM collaborations

Diffraction and Low-x 2018 Aug 28, 2018

PPS in a nutshell

- Proton spectrometer designed for operation at highest LHC intensities
- Measurement of processes in which proton(s) stay(s) intact after interaction

(One arm in 2016 configuration shown. The other arm is symmetric with respect to the CMS IP.)

Initial data taking in 2016

- Using existing TOTEM Si-strips for tracking, integrated with CMS DAQ
- First data to establish proton reconstruction and start physics analyses
- Results with 9.4 fb⁻¹ public (this talk)

PPS physics motivation

Primary goal: study central exclusive production in $\gamma\gamma$ or gg collisions

- proton tag advantages:
 - closure of event kinematics
 - effective background rejection
 - reduced theory uncertainties related to proton dissociation

Opportunity to access a variety of topics: from diffraction to BSM physics

- proton structure (generalized parton distributions)
- anomalous couplings with high sensitivity
- new resonances in very clean final state

First physics: $\gamma\gamma \to \ell^+\ell^-$ with proton tag

 Idea: look at "simple" SM process, explore correlation between kinematics of the dilepton system and that of the forward proton(s)

- ⇒ Validation of the optics and alignment
- \Rightarrow Observation of the first proton-tagged $\gamma\gamma$ collisions at the EWK scale

Key proton variable: relative momentum loss $\xi = \Delta p/p$

• Defines dilepton system:

$$M = \sqrt{\xi_1 \xi_2} \sqrt{s}$$
, Rapidity= $Y = \frac{1}{2} ln(\frac{\xi_1}{\xi_2})$

SM contribution in double-tagged region very low — hence consider both double and single-tagged $\ell^+\ell^-$ events

Strategy

Look for correlation between

- direct proton ξ measurement by CT-PPS
- dilepton system measured by CMS

 ξ can be derived from lepton p_T and η :

$$\xi^{\pm} = rac{1}{\sqrt{s}} imes (p_T(\ell_1)e^{\pm \eta(\ell_1)} + p_T(\ell_2)e^{\pm \eta(\ell_2)})$$

 $(\pm \eta$ solutions correspond to the protons in the +z and -z direction.)

Expected backgrounds:

- will fake signal by overlapping with pileup or beam halo protons
- can be largely suppressed by selection cuts

Event selection

- ▶ Pair of opposite sign leptons with $p_T(\ell) > 50$ and $M(\ell\ell) > 110$ GeV (above Z-peak)
- ► To suppress background:
- Veto additional tracks around dilepton vertex (within 0.5mm)
- Require back-to-back leptons:

$$|1 - \Delta\phi(\mu^+\mu^-)/\pi| < 0.009$$
 (<0.006 for e^+e^-)

Signal candidates required to have $\xi(\ell\ell)$ and $\xi(proton)$ matching within 2σ of resolution

Data-driven background estimate

Use sample of pileup protons from Z-peak events (data)

Drell-Yan contribution:

- count number of Z-peak events with $\xi(\ell\ell)$ and $\xi(\operatorname{proton})$ correlated within 2σ
- use MC to extrapolate to the signal region

Double-dissociative contribution:

 mix double-dissociative simulated events (LPAIR) and protons from data to derive number of matching events

Total number of expected matching background events:

$$\mu^{+}\mu^{-}$$
: 1.49 ± 0.07 (stat) ± 0.53 (syst) $e^{+}e^{-}$: 2.36 ± 0.09 (stat) ± 0.47 (syst)

Final result: *ξ* correlations

Right arm

- 20 events with matching kinematics $(12\mu^+\mu^- + 8e^+e^-)$
- $\mu^{+}\mu^{-}$ background: 1.49 \pm 0.07 (stat) \pm 0.53 (syst)
- e^+e^- background: 2.36 \pm 0.09 (stat) \pm 0.47 (syst)

Combined significance: $> 5.1\sigma$

$$> 5.1\sigma$$

arXiv:1803.04496 JHEP07(2018)153

Signal candidates properties

- Dilepton M and Y consistent with single arm acceptance
- No double-tagged events observed, consistent with SM xsection*efficiency

Mass extends up to \sim 900 GeV – first tagged $\gamma\gamma$ collisions at EWK scale!

Prospects with the new data

2017-2018: successful data taking after major upgrade

- ➤ 3D Si pixels for tracking → capability of resolving multiple tracks in high pileup conditions
- ▶ Operation of diamond detectors
 → timing measurements

Obs. TOTAL Patientinary 2017

Description of the country of the co

Track Occupancy Percentage Vs PU SEC45

Total integrated luminosity:

15 fb $^{-1}$ (2016)

 $40 \text{ fb}^{-1} (2017)$

 $\sim 35 \text{ fb}^{-1} (2018) - \text{so far}$

Rich physics program ahead:

exclusive diphotons, $t\bar{t}$, quartic gauge couplings with photons(Z/ZZ/WW), search for dark matter, axion-like particles and more.

Conclusions

- Successful operation of CT-PPS Roman Pot detectors in high luminosity runs at the LHC since 2016
- First paper using 2016 data published
- More than 75 fb⁻¹ of good quality data collected during 2017-18 operation, multiple analyses ongoing

Expect much more physics in 2018-2019.

Backup

Survival probability

- Using suppression factors by Durham model arXiv:1601.03772
- ▶ Good description of the data at Y=0, but values too large for non-zero rapidities.
- ► A Y dependence of the rapidity gap survival probability is expected in several models, see e.g. arXiv:1410.2983, arXiv:1508.02718, arXiv:1502.03323

Alignment

- Alignment procedure performed in 2 steps
 - · 1: Absolute alignment
 - · 2: Fill-by-fill alignment
- Step 1: Use elastic scattering (pp→pp) events, in special alignment runs where both horizontal and vertical RPs approach very close to the beam
- Step 2: Use inclusive sample of protons triggered by central CMS detectors
 - Match distribution of proton track positions to that of alignment runs

Optics determination

- Final physics variable of interest is the proton momentum loss "\xi"
- Reconstruction from measured RP track position requires precise knowledge of LHC optics & dispersion D_x
 - Standard TOTEM optics matching with elastic events [New J. Phys. 16 (2014) 103041] using measured quadrupole strengths
 - Dispersion calibration using L_y(x) = 0 point
 - LHC lattice/optics matching of crossing-angle and quadrupole positions using measured dispersions and the beam position as measured by RPs and BPMs"

- Final result is a (non-linear) calibration of ξ vs. the measured track x position
- Overall ξ resolution of ~5.5%

- In particular, search for exclusive diphoton production
- Multiple extensions of SM predict extra yields/different kinematic differences wrt SM
- Very low expected background after proton tag requirement:

Also, part of program is to explore quartic gauge couplings with photons: $\gamma\gamma\to\gamma Z/ZZ/WW$ (with timing detector)