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Motivations and backgrounds

e Mueller-Tang jets at LL

From LL to NLL

e Non-forward eigenfunction in momentum space

NLO vet vertex

e Calculation strategy
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Regge theory and the Pomeron

Regge Theory grew out

of pre-QCD S-matrix theory of the 50's and
60's. Amplitudes are seen as unitary, Lorentz
invariant functions of analytic momenta.
(doesn't assume an underlying theory) At asymptotic
energies s > —t, using partial wave analysis,
the interaction is seen as an exchange of . L
an entire trajectory of particles. The Pomeron ot e R ‘
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is the dominant trajectory. oot ~ s P.(t) ! [hepfex/l?l607.061205] 1 mAE[GeV]
This soft Pomeron has been used to fit to p-p
total cross sections since '70s.

Authors ap(0)
Donnachie-Landshoff (1992) 1.0808
Cudell, Kang and Kim (1997) 1.09679 %%
Cudell et al. (2000) 1.093 + 0.003
COMPETE Collaboration (2002) | 1.0959 + 0.0021
Luna and Menon (2003) 1.085 - 1.104
Menon and Silva (2013) 1.0926 + 0.0016

Promising tool to interpolate between perturbative and unperturbative regimes.
What QCD has to say about the Pomeron?

NLL Mueller-Tang jets 30/8/18 3/18



The hard-Pomeron  [VINETEEVRSES

Looking at jets to see the Pomeron

Semi-hard regimes s > —t > Agcp QCDp — BFKL resummation — power-like growth
of cross-section in s.

Mueller Navelet jets

p + p — jet1 + jetr 4+ anything else Tagged jets far apart
in rapidity. Preferred testing ground for BFKL dynamics. Phenomenology
study at NLL available [arXiv:1010.0160]

But.. at intermediate energies a5 log(s/—t) < 1 large contaminations from
other limits (DGLAP, finite order) tend to hide the Pomeron signature.
Need tuning of renorm. scale (BLM) and/or asymmetric observables (seeF.
Celiberto Monday talk.)

Mueller Tang jets

p+ p — jet1 + jeto + gap

Dijets separated by a large rapidity gap can probe
the finite-momentum structure of the Pomeron.

Subleading compared to M-N (d& (xozg ) but the lower background promises

gap

a cleaner recognition of the Pomeron contribution. cross-section lowered by

proton remnant rescattering, I'll say few more words later...
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The hard-Pomeron Mueller Tang jets

e The absence of any additional emission
over a large rapidity region suggests that
the color-singlet exchange contributes sub-
stantially to the jet-gap-jet cross section.

e The BFKL predictions for these processes
have been studied at LL accuracy and par-
tially also at NLL order

e The last ingredients that have to be taken
into account to complete the approxima-
tion order are the NLO impact factors

FD, DC, TR NLL Mueller-Tang jets
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e Fixed rapidity gap [n| < 1, no
charged particles and no pho-
tons or neutral hadrons with
pr > 0.2 GeV.

e Dijet events with at least 2
hard jets with p/f* > 40 GeV
and || > 1.5
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BFKL description of Mueller-Tang jets

BFKL dynamic effects
are predicted to appear as the rapidity Y between

the two jets increases. The imposition of a veto on B
any other form of radiation favors the description ki i
|
§ G

Va

of the interaction thorough the exchange of a color
singlet compared to other color representations.

G

>
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e In general the cross section for these
processes is given as a multiple convolution
between the the jet vertices and the GGFs.
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———— = [ d’k1d’k'1d°kad’k’> Vi (k1, ko, 1,
dJid)d?q / 1d°K' 1d°kod K’z Vi (ki, ko, J1, q) %
G(k1,k'1,q, Y)G(k2,k'2,q, YI)Vu(K'1,k'2, Jo,q),  J={ks,x;}.

e The explicit form of the jet vertex and the Green function depends on the
approximation level.

NLL vertex is known [Hentschinski, Madrigal Martinez, Murdaca, Sabio Vera].
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Mueller Tang jets Mueller-Tang jets at LL

LL approximation: Non forward gluon Green function

The GGF is given by the Mellin transform of the function f,, which is the solution of the
BFKL equation. The solution of the non forward BFKL equation is more naturally
expressed in the impact parameter space.

+iinf

dw Yw /

G(k, k Y — fo(k, k',
(kK.qY) / I Ytk K )
+ inf +mf
f — nl/ * / / Enu
(P17P2:P17P2) me/ - w_w(n ) nu(p17p2) (p17p2)
(o—p2\" (i =5\ 1\" 1\ [-1\"[-1\"
E”V(p17p2) - * -\ — — — — -
pLp2 P1P2 P2 P2 p1 P1
Lipatov term Mueller-Tang correction

E,. are the eigenfunctions in the impact parameter space.
The GGF in momentum space is recovered applying a Fourier transformation to the
eigenfunctions.

~ d’rnd?r. . .
En(k,q) = (21 )42 m,(,o1,p2)€ (k-ri+(a—k)-r2)
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Mueller Tang LL GGF

Pomeron exchange amplitude

menta the partonic cross section can be expressed as the square ‘ ‘
modulus of an amplitude that is nothing more than the GGF g G %
1

With the leading order vertex independent from the loop mo- k‘% a l§ % 5

integrated in its transverse momenta.

dé 2

dqay ~ 167 A9l

The amplitude can be written in terms of the averaged eigenfunctions

En(a) = [ d*kEn (K, q).

The integration over the transverse momenta greatly simplifies the calculation of the
Fourier transform of the eigenfunctions canceling the Lipatov term contribution. The
Pomeron exchange amplitude is given by the simple expression

YWnu 4
Rnu (?)

This can be easily extended to include the GGF at NLL w'*(n,v) — w™t(n,v).

)

A(Y,q) = hShE/kodzk’G(k,k’,q, Y),

+ inf +mf

A(Y,q) = h2h) Z /

—inf inf
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Previous fits and analysis

P = 60-100 GeV

0.41 pb’ (7 TeV)

CcMS -4~ Data

Events

.

s .
==

0% ==

]

0°k PYTHIA 6 (normalized for N
[0 HERWIG 6 (normalized at N,

Kl ==

>3)
=0)

racks

racks

o o

o)

ey

0 10 20 30 40 50

Data/(HERWIG 6+PYTHIA 6)

e Charged-particle multiplicity in the gap region be-
tween the tagged jets compared to PYTHIA and

HERWIG predictions.

e HERWIG 6: include contributions from color sin-
glet exchange (CSE), based on BFKL at LL.

e PYTHIA 6: inclusive dijets (tune Z2*), no-CSE.

FD, [ TR, CR (KU)
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NLL Mueller-Tang jets
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A closer look shows the failure of the MT

model in reproducing any detail of the

observed distribution. Not surprising

considering the size of the NLL corrections.

[CMS-PAS-FSQ-12-001]
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Previous fits and analysis
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Left: LL & NLL BFKL at Tevatron [hep-ph/1012.3849]. | O T N
An,
: NLL* BFKL ; ; i
e Ratio R = “5rsses of jet-gap-jet
- NLOQCD. NLL* BFKL calculations different implementations of th
events to inclusive dijet events as a calcu ations different impleme tat.o s of the
! . soft rescattering processes (EEl models), describe many
function of p: and the rapidity gap Y. L . ?
features of the data, but none of the implementations is

able to simultaneously describe all the features of the
measurement. Ekstedt, Enberg, Ingelman, [1703.10919]
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incorporating NLO jet vertex

<___ "~ >
7

A full NLL/O calculation is within reach. %9 iﬁ % a-lo
. ke O

a
NLO MT impact factors recently calculated. T

Very complicated! (not in a factorizable a L e )
form!) '*"/% K g \/%
But...only certain combinations of jet vertex a R
and Green's function approximation orders
contribute effectively to the NL order of the
cross section.

ki
K
e GGF NLL + LO vertices. Simplest case. Cross section as amplitude squared.

e GGF LL + LO vertex + NLO vertex. The non trivial dependence of the NLO jet
vertex from the reggeon momenta introduces an important complication.

e GGF LL + both NLO vertices. Discarded because subleading.
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The decision to keep just the pure NL contribution brings some

simplification o
% v >
_dz :/d2k1d2k2V1(k1,k2,q;J1)>< . Ok % q,kg
dJidJrd?q R ¢ W@ S

. , . , o é Glr ) e ‘
d°k'1G(ki,k'1,9,Y) [ d°k'2G(ka, k2,9, Y) V' ()2, q) § % § . %

G(ky,a,Y) G(kp,a,Y)

e Large increase in computation time due to the high-dimensional multiple integration.
The average G is

Glwxe, 0, A0, K) = Enu (6,0 — ) [ Ik En (K, q — K) = En (.0 = K)E7 (a):

The full form of the eigenfunction in momentum space E,, (k, k') is known [Bartels, Braun,
Colferai, Vacca]but it has been proven very hard to implement.

e The momentum dependence of the eigenfunction is expressed through Gauss
hypergeometric functions.
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Hypergeometric function

Numerical analysis

Peculiar characteristics of the NLO the jet vertex.

e Non trivial dependence from the reggeon momenta — ‘“con-
nects” the two GGFs over the cut.

:

e Up to two partons emitted by the same vertex — dependence from the jet
reconstruction algorithm. (1) The two partons form the same jet or (2) one of the
two has energy lower than the calorimeter threshold and so it is not detected.

e The parton emission below threshold in the prohibited region alter the alignment

between the forward and the backward jet. Jets not back-to-back anymore

&(q> Y) - 6'(kJ1a k12?0J27127 Y)'

e Calculation of the partonic cross section.
(1) G as a grid of its parameters { ki, g;, 0;, Ym}. It involves
a numerical integration over v and a sum over n for each Lo

set of the parameters. .,,,
(2) Partonic cross section as the interpolation of G grids ERRE
and the NLO vertex. Q1 oo
[ B

& (kyy ks 001,005 Y) = o Y Y
kodY' S E V(kl,'v k2/7 elm 02m’ J)G(kl,'v qr, 01,17 YI)G(k2j7 qr, 92m

NLL Mueller-Tang jets
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Numerical analysis

The non-forward BFKL eigenfunction at LL is given in terms of Gauss hypergeometric
functions.

VS

- i _ k - - k
Eny (K, K') o [k*“*zk’*h 2 0R(1—h2— k2, —) A= h2—h2 -
1

)+{1—>2}]

K=q—kh= (152 +iv), h= (5" +iv)
Hypergeometric functions are hard to compute. 2Fi(a, b;c,z) =3, (azggf)" i—?
What about the rest of the complex plane?

Several transformations connect the various re-
gions of the conplex plane: z, 1, 21— Z=1 Spe

1z 720 z B AE
. _ N u A
cial care must be taken for b— a~ 7Z~ and near E B A=Y
z={0,1,inf, exp(£in/3)}. 0 Pl
u Az)

Michel and Stoitsov [arXiv:0708.0116, math-ph], Doornik,
[Math. Comp. 84 (2015), 1813-1833].

1 depends on (n,v)
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Calculation strategy v integral

Numerical analysis

None of the cited codes for the hypergeometric function work for S(a), S(b) = 7.

_ o meven . . o -
G(XIXZ’q’Ae’F) o Xm: /d”[k e Y (1*/7,2*/1,2; 7?) 2F1 <17h,27h,2;7k* )+{1 +2}]].
e Integrand is highly oscillatory and slowly falling with v. Need to integrate up to very

large values of v (2 100). h = 1%” +iv

e Bending the contour helps but for some z the two terms rise with v and convergence
is met only after the sum is taken.

Solution: Patch different methods depending on the parameters.

(1) Summing the series.
(2) integrating the differential equation. 15
(3) Steepest descent estimate of the

asymEtotic expansion for large v. g
Check the code against the known pure
LL contribution to MT 05

GG

N [A(q, Y)|? ’s 1 5 6 7 8 9 10

rapidity separation Y’

rati

L
+
+

ratio(q, Y)
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Not conclusions but future outcomes

Outcomes

What has been done..

e Implementation of Gauss hypergeometric function is finally general enough to
be used for the non-forward BFKL eigenfunction.

e Code up and running for generation of gluon-Green function grids to
interpolate with the NLL impact factors.

What's next..

e Run code on HPC at KU (40 cores at 2.4 GHz with 192 GB 2666 MHz DDR4 memory) .

Look at the NLL vertex corrections and play with the observable definition to
identify physical region where cross-section is “more factorizable”.

Include full corrections into MC generator with ad hoc parametrization.

e Where else can be useful the momentum space BFKL eigenfunction?

FD, DC, TR NLL Mueller-Tang jets 30/8/18 16 / 18



Details of NLO jet vertex
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Eny(ki, ko) =

_ K ok
N(n, v) [kl*”*Zk;h*Z 2Fi(1—h,2 — b2, —é) 2F(1—h,2 — B2, _721 )+ {12}

h= ("% +iv), h=(%5—-iv)

for example for |z| > 1and d = b — a:
r(9r(=4)
I(a)f(c — b)

each term naively diverges when dZ

1
2Fi(a, b;c,z) = (—2) "2 2FA(b,1 —c+ b;14+d, =)+ {a — b}
z
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