Quarkonia production at the LHC in NRQCD with k_T -factorization

Sergey Baranov

P.N.Lebedev Institute of Physics, Moscow

Artem Lipatov

D.V.Skobeltsyn Institute of Nuclear Physics, MSU, Moscow

PLAN OF THE TALK

- 0. Introduction: experimental observables
- 1. First acquaintance with k_t -factorization
- 2. Implementing the Quarkonium physics
- 3. Numerical results
- 4. Conclusions

EXPERIMENTAL OBSERVABLES

- Differential cross sections for charm and bottom families
- Differential cross sections for ground states and excited states
- Direct to indirect production ratios (feed-down from χ_c and χ_b)
- *P*-wave production ratios $\sigma(\chi_{c1})/\sigma(\chi_{c2})$, $\sigma(\chi_{b1})/\sigma(\chi_{b2})$
- Polarization

THEORETICAL APPROACHES

Several approaches are competing: Color-Singlet versus Color-Octet model; both may be extended to NLO or tree-level NNLO*; both may be incorporated with collinear or k_T -factorization. This talk is devoted to k_T -factorization.

- Deep theory: a method to calculate high-order contributions (ladder-type diagrams enhanced with "large logarithms").
- Practice: making use of so called k_T -dependent parton densities. (Unusual properties: nonzero k_T and longitudinal polarization.)

First acquaintance with k_T -factorization PARTON OFF-SHELLNESS AND NONZERO k_T

QED

Weizsäcker-Williams approximation (collinear on-shell photons)

 $F_{\gamma}(x) = \frac{\alpha}{2\pi} \left[1 + (1 - x^2) \right] \log \frac{s}{4m^2}$

Equivalent Photon approximation

 $F_{\gamma}(x,Q^2) = \frac{\alpha}{2\pi} \frac{1}{Q^2} \left[1 + (1-x^2) \right]$ $Q^2 \approx k_t^2 / (1-x)$

Photon spin density matrix

 $L^{\mu\nu} \approx p^{\mu}p^{\nu}$

use $k = xp + k_t$, then do gauge shift $\epsilon \rightarrow \epsilon - k/x$

QCD Conventional Parton Model (collinear gluon density)

 $x G(x, \mu^2)$

Unintegrated gluon density $\mathcal{F}(x, k_t^2, \mu^2)$ $\int \mathcal{F}(x, k_t^2, \mu^2) dk_t^2 = x G(x, \mu^2)$

Gluon spin density matrix

 $\epsilon^{\mu}\epsilon^{\nu*} = k_t^{\mu}k_t^{\nu}/|k_T|^2$

so called nonsense polarization with longitudinal components

Looks like Equivalent Photon Approximation extended to strong interactions.

Sergey Baranov,

The underlying theory: Initial State Radiation cascade

Every elementary emission gives $\alpha_s \cdot 1/x \cdot 1/q^2$ x = longitudinal momentum fraction $q^2 = gluon virtuality$

Integration over the phase space yields $\alpha_s \cdot \ln x \cdot \ln q^2$ so called large logarithms, the reason to focus on this type of diagrams

Random walk in the
$$k_T$$
-plane: ... $\langle k_{Ti-1} \rangle \ll \langle k_{Ti} \rangle \ll \langle k_{Ti+1} \rangle$... $\langle x_{i-1} \rangle > \langle x_i \rangle > \langle x_{i+1} \rangle$...

Technical method of summation: integro-differential QCD equationsBFKLE.A. Kuraev, L.N. Lipatov, V.S. Fadin, Sov. Phys. JETP 45, 199 (1977);Ya. Balitsky, L.N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978);or CCFM

S.Catani, F.Fiorani, G.Marchesini, Phys.Lett.B 234, 339 (1990); Nucl.Phys. B336, 18 (1990); G.Marchesini, Nucl.Phys. B445, 49 (1995); M.Ciafaloni, Nucl.Phys. B296, 49 (1998);

CCFM is more convenient for programming because of strict angular ordering $...\theta_{i-1} < \theta_{i-1} < \theta_{i+1}... \Rightarrow A$ step-by-step solution.

k_t -factorization is:

A method to collect contributions of the type $\alpha_s^n [\ln(1/x)]^n [\ln(Q^2)]^n$ up to infinetly high order. Sometimes it may be better than conventional calculations to a fixed order. (None of the methods is compete.)

The evolution cascade is part of the hard interaction process; it affects both the kinematics (initial k_T) and the polarization (off-shell spin density matrix). The corrections always have the same (ladder) structure, irrespective of the 'central' part of hard interaction, and can be conveniently absorbed into redefined parton densities $\Rightarrow k_T$ -dependent = "unintegrated" distribution functions $\mathcal{F}(x, k_t^2, \mu^2)$

Advantages:

With the LO matrix elements for 'central' subprocess we get access to effects requiring complicated next-to-leading order calculations in the collinear scheme. Many important results have been obtained in the k_t -factorization approach much earlier than in the collinear case.

Includes effects of soft resummation and makes predictions applicable even to small p_t region.

Implementing the Quarkonium production Color-Singlet mechanism

Perturbative production of a heavy quark pair within QCD; standard rules except gluon polarization vectors: $\epsilon_q^{\mu} = k_T^{\mu}/|k_T|$

E.A. Kuraev, L.N. Lipatov, V.S. Fadin, Sov. Phys. JETP 45, 199 (1977); Ya. Balitsky, L.N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978); L.V. Gribov, E.M. Levin, M. G. Ryskin, Phys. Rep. 100, 1 (1983). Spin projection operators to guarantee the proper quantum numbers:

> for Spin-triplet states $\mathcal{P}({}^{3}S_{1}) = \not \in_{V}(\not p_{Q} + m_{Q})/(2m_{Q})$ for Spin-singlet states $\mathcal{P}({}^{1}S_{0}) = \gamma_{5}(\not p_{Q} + m_{Q})/(2m_{Q})$

Probability to form a bound state is determined by the wave function: for S-wave states $|R_S(0)|^2$ is known from leptonic decay widths; for P-wave states $|R'_P(0)|^2$ is taken from potential models. E. J. Eichten, C. Quigg, Phys. Rev. D 52, 1726 (1995)

If $L \neq 0$ and $S \neq 0$ we use the Clebsch-Gordan coefficients to reexpress the $|L, S\rangle$ states in terms of $|J, J_z\rangle$ states, namely, the χ_0, χ_1, χ_2 mesons.

What was wrong with Color-Singlet Model?

– Wrong p_t dependence of the cross sections \Rightarrow an indication that something important is missing. Partly corrected by k_T -factorization. – Quarkonium formation is assumed to be completed already at the perturbative stage; but what if the $Q\bar{Q}$ pair is produced in the color octet state? Treating soft gluons in a perturbative manner is wrong: soft gluons cannot resolve the $Q\bar{Q}$ pair into quarks. Need another language to describe the emission of gluons by the entire $Q\bar{Q}$ system, not by individual quarks. Come to NRQCD.

What was wrong with Color-Octet Model (NRQCD)?

– Assumes that soft gluons can change the color and other quantum numbers of a $Q\bar{Q}$ system without changing the energy-momentum. An obvious conflict with confinement that prohibits radiation of infinitely soft colored quanta. Need to consider not infinitely small energy-momentum exchange. Not only a kinematric correction! – Long-distance matrix elements (LDMEs) for ${}^{3}S_{1}^{[8]} \rightarrow J/\psi$ transitions are treated as spin-blind numbers. Need to replace them with ampli-

tudes showing well defined spin structure.

Modified Color-Octet mechanism

- Step 1: use perturbative QCD to create a heavy quark pair $Q\bar{Q}$ in the hard gluon-gluon fusion subprocess.

- Step 2: use multipole expansion for soft gluon radiation. Another perturbation theory where the small parameter is the relative quark velocity (or the size of the $Q\bar{Q}$ system over the gluon wavelength)

Both steps are combined into a single amplitude: QQ spin density matrix is contracted with E1 transition amplitudes (same as for real χ_c decays).

Color-Electric Dipole transitions

$$\mathcal{A}\left(\chi_{c0}(p) \to J/\psi(p-k) + \gamma(k)\right) \propto k_{\mu}p^{\mu}\varepsilon_{(J/\psi)}^{\nu}\varepsilon_{\nu}^{(\gamma)}$$
$$\mathcal{A}\left(\chi_{c1}(p) \to J/\psi(p-k) + \gamma(k)\right) \propto \epsilon^{\mu\nu\alpha\beta}k_{\mu}\varepsilon_{\nu}^{(\chi_{c1})}\varepsilon_{\alpha}^{(J/\psi)}\varepsilon_{\beta}^{(\gamma)}$$
$$\mathcal{A}\left(\chi_{c2}(p) \to J/\psi(p-k) + \gamma(k)\right) \propto p^{\mu}\varepsilon_{(\chi_{c2})}^{\alpha\beta}\varepsilon_{\alpha}^{(J/\psi)}\left[k_{\mu}\varepsilon_{\beta}^{(\gamma)} - k_{\beta}\varepsilon_{\mu}^{(\gamma)}\right]$$

A.V.Batunin, S.R.Slabospitsky, Phys.Lett.B 188, 269 (1987)
P.Cho, M.Wise, S.Trivedi, Phys. Rev. D 51, R2039 (1995)

One or two subsequent transitions to convert a color octet into J/ψ : ${}^{3}P_{J}^{[8]} \rightarrow J/\psi + g$ or ${}^{3}S_{1}^{[8]} \rightarrow {}^{3}P_{J}^{[8]} + g$, ${}^{3}P_{J}^{[8]} \rightarrow J/\psi + g$, J = 0, 1, 2.

Dashed = ${}^{\circ}P_2$; dash-doted = ${}^{\circ}P_1$; doted = ${}^{\circ}P_0$ Approximate cancellation between ${}^{3}P_1^{[8]}$ and ${}^{3}P_2^{[8]}$ channels.

11

$\psi(2S)$ production at ATLAS, CMS, LHCb

Artem Lipatov et al., Eur. Phys. J. C 75, 455 (2015)

χ_{c1} and χ_{c2} production at ATLAS, CMS, LHCb

Artem Lipatov et al., Phys. Rev. D 93, 094012 (2016)

J/ψ production at ATLAS, CMS, LHCb

Artem Lipatov et al., Phys. Rev. D 96, 034019 (2017)

12th Quarkonium Group Workshop, Beijing, Nov.2017

Fitted $\psi(2S)$ LDME values

	$\langle \mathcal{O}\left[{}^3S_1^{(1)} ight] angle/{ m GeV^3}$	$\langle \mathcal{O}\left[{}^1S_0^{(8)} ight] angle/{ m GeV^3}$	$\langle \mathcal{O}\left[{}^3S_1^{(8)} ight] angle/{ m GeV^3}$	$\langle \mathcal{O}\left[{}^{3}P_{0}^{(8)} ight] angle / \mathrm{GeV}^{5}$
A0	7.04×10^{-1}	0.0	5.64×10^{-4}	3.71×10^{-3}
$_{ m JH}$	7.04×10^{-1}	0.0	3.19×10^{-4}	7.14×10^{-3}
KMR	7.04×10^{-1}	8.14×10^{-3}	2.58×10^{-4}	1.19×10^{-3}
[1]	6.50×10^{-1}	7.01×10^{-3}	1.88×10^{-3}	-2.08×10^{-3}
[2]	5.29×10^{-1}	-1.20×10^{-4}	3.40×10^{-3}	9.45×10^{-3}

[1] M.Butenschön, B.A.Kniehl, Phys. Rev. Lett. 106, 022003 (2011)
[2] B.Gong, L.-P.Wan, J.-X.Wang, H.-F.Zhang, Phys. Rev. Lett. 110, 042002 (2013)

Color-singlet wave function was taken as a free parameter; the fitted value is consistent with $\Gamma(\psi(2S) \rightarrow \mu^+ \mu^-)$ width.

Color-octet matrix elements are typically much smaller than in collinear fits.

Fitted χ_{c1} and χ_{c2} LDME values

	$ \mathcal{R}_{\chi_{c1}}^{\prime(1)}(0) ^2/{ m GeV^5}$	$ \mathcal{R}_{\chi_{c2}}^{\prime(1)}(0) ^2/{ m GeV^5}$	$\langle \mathcal{O}^{\chi} \left[{}^{3}S_{1}^{(8)} ight] angle / \mathrm{GeV}^{3}$
A0	3.85×10^{-1}	6.18×10^{-2}	8.28×10^{-5}
JH	5.23×10^{-1}	9.05×10^{-2}	4.78×10^{-5}
KMR	3.07×10^{-1}	6.16×10^{-2}	1.40×10^{-4}
[3]	7.50×10^{-2}	7.50×10^{-2}	2.01×10^{-3}
[4]	3.50×10^{-1}	3.50×10^{-1}	4.40×10^{-4}

[3] H.-F.Zhang, L.Yu, S.-X.Zhang, L.Jia, Phys. Rev. D 93, 054033 (2016)
[4] A.K.Likhoded, A.V.Luchinsky, S.V.Poslavsky, Phys. Rev. D 90, 074021 (2014)

Color-singlet χ_{c1} and χ_{c2} wave functions were taken as independent free parameters; the fitted value is consistent with $\Gamma(\chi_{c2} \to \gamma\gamma)$ width.

Color-octet matrix elements are typically much smaller than in collinear fits.

12th Quarkonium Group Workshop, Beijing, Nov.2017

Fitted J/ψ LDME values

	$\langle \mathcal{O}\left[{}^3S_1^{(1)} ight] angle/{ m GeV^3}$	$\langle \mathcal{O}\left[{}^{1}S_{0}^{(8)} ight] angle/\mathrm{GeV}^{3}$	$\langle \mathcal{O}\left[{}^3S_1^{(8)} ight] angle/{ m GeV^3}$	$\langle \mathcal{O}\left[{}^{3}P_{0}^{(8)} ight] angle / \mathrm{GeV^{5}}$
A0	1.97	0.0	9.01×10^{-4}	0.0
IH	1.62	1 71×10 ⁻²	2.83×10^{-4}	
KMR	1.58	8.35×10^{-3}	2.33×10^{-4}	0.0
[1]	$\begin{array}{c} 1.32 \\ 1.16 \end{array}$	3.04×10^{-2}	1.68×10^{-3}	-9.08×10^{-3}
[2]		9.7×10^{-2}	-4.6×10 ⁻³	-2.14×10^{-2}

[1] M.Butenschön, B.A.Kniehl, Phys. Rev. Lett. 106, 022003 (2011)
[2] B.Gong, L.-P.Wan, J.-X.Wang, H.-F.Zhang, Phys. Rev. Lett. 110, 042002 (2013)

Color-singlet wave function was taken as a free parameter; the fitted value is consistent with $\Gamma(J/\psi \to \mu^+\mu^-)$ width.

Color-octet matrix elements are typically much smaller than in collinear fits.

CONCLUSIONS

Two important innovations:

- k_T -factorization to describe the initial state Includes initial state radiation and soft gluon resummation; makes the required CO LDMEs smaller than in the collinear case
- Multipole radiation formalism to describe the final state Explicit spin-dependent expressions for transition amplitudes; probably solves the quarkonium polarization problem.

After all, a reasonably good agreement is achieved with the data: J/ψ , χ_{c1} , χ_{c2} , $\psi(2S)$ p_t spectra; J/ψ , $\psi(2S)$ polarization; ATLAS, CMS, LHCb data in the whole kinamatic range.

Thank You!