Quarkonia production at the LHC in NRQCD with k_{T}-factorization

Sergey Baranov
P.N.Lebedev Institute of Physics, Moscow

Artem Lipatov

D. V.Skobeltsyn Institute of Nuclear Physics, MSU, Moscow

```
PLAN O F THE T A L K
```

0 . Introduction: experimental observables

1. First acquaintance with k_{t}-factorization
2. Implementing the Quarkonium physics
3. Numerical results
4. Conclusions

EXPERIMENTAL OBSERVABLES

- Differential cross sections for charm and bottom families
- Differential cross sections for ground states and excited states
- Direct to indirect production ratios (feed-down from χ_{c} and χ_{b})
- P-wave production ratios $\sigma\left(\chi_{c 1}\right) / \sigma\left(\chi_{c 2}\right), \quad \sigma\left(\chi_{b 1}\right) / \sigma\left(\chi_{b 2}\right)$
- Polarization

THEORETICAL APPROACHES

Several approaches are competing: Color-Singlet versus Color-Octet model; both may be extended to NLO or tree-level NNLO*; both may be incorporated with collinear or k_{T}-factorization. This talk is devoted to k_{T}-factorization.

- Deep theory: a method to calculate high-order contributions (ladder-type diagrams enhanced with "large logarithms").
- Practice: making use of so called k_{T}-dependent parton densities. (Unusual properties: nonzero k_{T} and longitudinal polarization.)

First acquaintance with k_{T}-factorization
 PARTON OFF-SHELLNESS AND NONZERO k_{T}

QED

Weizsäcker-Williams approximation (collinear on-shell photons)

$$
F_{\gamma}(x)=\frac{\alpha}{2 \pi}\left[1+\left(1-x^{2}\right)\right] \log \frac{s}{4 m^{2}}
$$

Equivalent Photon approximation

$$
\begin{aligned}
F_{\gamma}\left(x, Q^{2}\right) & =\frac{\alpha}{2 \pi} \frac{1}{Q^{2}}\left[1+\left(1-x^{2}\right)\right] \\
Q^{2} & \approx k_{t}^{2} /(1-x)
\end{aligned}
$$

Photon spin density matrix

$$
L^{\mu \nu} \approx p^{\mu} p^{\nu}
$$

use $k=x p+k_{t}$, then do gauge shift

$$
\epsilon \rightarrow \epsilon-k / x
$$

QCD

Conventional Parton Model (collinear gluon density)

$$
x G\left(x, \mu^{2}\right)
$$

Unintegrated gluon density

$$
\begin{gathered}
\mathcal{F}\left(x, k_{t}^{2}, \mu^{2}\right) \\
\int \mathcal{F}\left(x, k_{t}^{2}, \mu^{2}\right) d k_{t}^{2}=x G\left(x, \mu^{2}\right)
\end{gathered}
$$

Gluon spin density matrix

$$
\epsilon^{\mu} \epsilon^{\nu *}=k_{t}^{\mu} k_{t}^{\nu} /\left|k_{T}\right|^{2}
$$

so called nonsense polarization with longitudinal components

Looks like Equivalent Photon Approximation extended to strong interactions.

The underlying theory: Initial State Radiation cascade

 Every elementary emission gives $\alpha_{s} \cdot 1 / x \cdot 1 / q^{2}$
$x=$ longitudinal momentum fraction
$q^{2}=$ gluon virtuality
Integration over the phase space yields $\alpha_{s} \cdot \ln x \cdot \ln q^{2}$ so called large logarithms, the reason
to focus on this type of diagrams
Random walk in the k_{T}-plane: ... $\left\langle k_{T i-1}\right\rangle \ll\left\langle k_{T i}\right\rangle \ll\left\langle k_{T i+1}\right\rangle$...

$$
\ldots\left\langle x_{i-1}\right\rangle>\left\langle x_{i}\right\rangle>\left\langle x_{i+1}\right\rangle \ldots
$$

Technical method of summation: integro-differential QCD equations

BFKL
or CCFM
E.A. Kuraev, L.N. Lipatov, V.S. Fadin, Sov. Phys. JETP 45, 199 (1977); Ya. Balitsky, L.N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978);
S.Catani, F.Fiorani, G.Marchesini, Phys.Lett.B 234, 339 (1990); Nucl.Phys. B336, 18 (1990); G.Marchesini, Nucl.Phys. B445, 49 (1995); M.Ciafaloni, Nucl.Phys. B296, 49 (1998);

CCFM is more convenient for programming because of strict angular ordering ... $\theta_{i-1}<\theta_{i-1}<\theta_{i+1} \ldots \Rightarrow \mathbf{A}$ step-by-step solution.
k_{t}-factorization is:
A method to collect contributions of the type $\alpha_{s}^{n}[\ln (1 / x)]^{n}\left[\ln \left(Q^{2}\right)\right]^{n}$ up to infinetly high order. Sometimes it may be better than conventional calculations to a fixed order. (None of the methods is compete.)

The evolution cascade is part of the hard interaction process; it affects both the kinematics (initial k_{T}) and the polarization (off-shell spin density matrix). The corrections always have the same (ladder) structure, irrespective of the 'central' part of hard interaction, and can be conveniently absorbed into redefined parton densities $\Rightarrow k_{T}$-dependent $=$ "unintegrated" distribution functions $\mathcal{F}\left(x, k_{t}^{2}, \mu^{2}\right)$

Advantages:

With the LO matrix elements for 'central' subprocess we get access to effects requiring complicated next-to-leading order calculations in the collinear scheme. Many important results have been obtained in the k_{t}-factorization approach much earlier than in the collinear case.
Includes effects of soft resummation and makes predictions applicable even to small p_{t} region.

Implementing the Quarkonium production

Color-Singlet mechanism
Perturbative production of a heavy quark pair within QCD; standard rules except gluon polarization vectors: $\quad \epsilon_{g}^{\mu}=k_{T}^{\mu} /\left|k_{T}\right|$ E.A. Kuraev, L.N. Lipatov, V.S. Fadin, Sov. Phys. JETP
Ya. Balitsky, L.N. Lipatov, Sov. J. Nucl. Phys. 199 (1977);
L.V. Gribov, E.M. Levin, M. G. Ryskin, Phys. Rep. 100, 1 (1988); Spin projection operators to guarantee the proper quantum numbers:

$$
\begin{array}{ll}
\text { for Spin-triplet states } & \mathcal{P}\left({ }^{3} S_{1}\right)=k_{V}\left(p_{Q}+m_{Q}\right) /\left(2 m_{Q}\right) \\
\text { for Spin-singlet states } & \mathcal{P}\left({ }^{1} S_{0}\right)=\gamma_{5}\left(p_{Q}+m_{Q}\right) /\left(2 m_{Q}\right)
\end{array}
$$

Probability to form a bound state is determined by the wave function: for S-wave states $\left|R_{S}(0)\right|^{2}$ is known from leptonic decay widths; for P-wave states $\left|R_{P}^{\prime}(0)\right|^{2}$ is taken from potential models.
E. J. Eichten, C. Quigg, Phys. Rev. D 52, 1726 (1995)

If $L \neq 0$ and $S \neq 0$ we use the Clebsch-Gordan coefficients to reexpress the $|L, S\rangle$ states in terms of $\left|J, J_{z}\right\rangle$ states, namely, the $\chi_{0}, \chi_{1}, \chi_{2}$ mesons.

What was wrong with Color-Singlet Model?

- Wrong p_{t} dependence of the cross sections \Rightarrow an indication that something important is missing. Partly corrected by k_{T}-factorization. - Quarkonium formation is assumed to be completed already at the perturbative stage; but what if the $Q \bar{Q}$ pair is produced in the color octet state? Treating soft gluons in a perturbative manner is wrong: soft gluons cannot resolve the $Q \bar{Q}$ pair into quarks. Need another language to describe the emission of gluons by the entire $Q \bar{Q}$ system, not by individual quarks. Come to NRQCD.

What was wrong with Color-Octet Model (NRQCD)?

- Assumes that soft gluons can change the color and other quantum numbers of a $Q \bar{Q}$ system without changing the energy-momentum. An obvious conflict with confinement that prohibits radiation of infinitely soft colored quanta. Need to consider not infinitely small energy-momentum exchange. Not only a kinematric correction!
- Long-distance matrix elements (LDMEs) for ${ }^{3} S_{1}^{[8]} \rightarrow J / \psi$ transitions are treated as spin-blind numbers. Need to replace them with amplitudes showing well defined spin structure.

Modified Color-Octet mechanism

- Step 1: use perturbative QCD to create a heavy quark pair $Q \bar{Q}$ in the hard gluon-gluon fusion subprocess.
- Step 2: use multipole expansion for soft gluon radiation. Another perturbation theory where the small parameter is the relative quark velocity (or the size of the $Q \bar{Q}$ system over the gluon wavelength)

Both steps are combined into a single amplitude: $Q \bar{Q}$ spin density matrix is contracted with E1 transition amplitudes (same as for real χ_{c} decays).

Color-Electric Dipole transitions

$$
\begin{gathered}
\mathcal{A}\left(\chi_{c 0}(p) \rightarrow J / \psi(p-k)+\gamma(k)\right) \propto k_{\mu} p^{\mu} \varepsilon_{(J / \psi)}^{\nu} \varepsilon_{\nu}^{(\gamma)} \\
\mathcal{A}\left(\chi_{c 1}(p) \rightarrow J / \psi(p-k)+\gamma(k)\right) \propto \epsilon^{\mu \nu \alpha \beta} k_{\mu} \varepsilon_{\nu}^{\left(\chi_{c 1}\right)} \varepsilon_{\alpha}^{(J / \psi)} \varepsilon_{\beta}^{(\gamma)} \\
\mathcal{A}\left(\chi_{c 2}(p) \rightarrow J / \psi(p-k)+\gamma(k)\right) \propto p^{\mu} \varepsilon_{\left(\chi_{c 2}\right)}^{\alpha \beta} \varepsilon_{\alpha}^{(J / \psi)}\left[k_{\mu} \varepsilon_{\beta}^{(\gamma)}-k_{\beta} \varepsilon_{\mu}^{(\gamma)}\right]
\end{gathered}
$$

A.V.Batunin, S.R.Slabospitsky, Phys.Lett.B 188, 269 (1987) P.Cho, M.Wise, S.Trivedi, Phys. Rev. D 51, R2039 (1995)

One or two subsequent transitions to convert a color octet into J / ψ : ${ }^{3} P_{J}^{[8]} \rightarrow J / \psi+g \quad$ or $\quad{ }^{3} S_{1}^{[8]} \rightarrow{ }^{3} P_{J}^{[8]}+g,{ }^{3} P_{J}^{[8]} \rightarrow J / \psi+g, J=0,1,2$.

Dashed $={ }^{3} P_{2} ; \quad$ dash-doted $={ }^{3} P_{1} ; \quad$ doted $={ }^{3} P_{0}$
Approximate cancellation between ${ }^{3} P_{1}^{[8]}$ and ${ }^{3} P_{2}^{[8]}$ channels.

Dash $={ }^{3} P_{2}$; dash-dot $={ }^{3} P_{1}$; dot $={ }^{3} P_{0}$; Solid $={ }^{3} S_{1}^{[8]}$ spin preserved.

J / ψ from ${ }^{3} S_{1}^{[8]}$ polarization
 Pure ${ }^{3} P_{J}^{[8]}$ states Interfering channels

Solid $=\left|{ }^{3} P_{2}^{[8]}+{ }^{3} P_{2}^{[8]}+{ }^{3} P_{2}^{[8]}\right|^{2}$ normalized to $\sqrt{2 J+1}$

Model versus CMS and LHCb data

Helicity frame $\psi(2 S)$

Collins-Soper frame $\psi(2 S)$

$\psi(2 S)$ production at ATLAS, CMS, LHCb

Artem Lipatov et al., Eur. Phys. J. C 75, 455 (2015)

$\chi_{c 1}$ and $\chi_{c 2}$ production at ATLAS, CMS, LHCb

J / ψ production at ATLAS, CMS, LHCb

Artem Lipatov et al., Phys. Rev. D 96, 034019 (2017)

Fitted $\psi(2 S)$ LDME values

	$\left\langle\mathcal{O}\left[{ }^{3} S_{1}^{(1)}\right]\right\rangle / \mathrm{GeV}^{3}$	$\left\langle\mathcal{O}\left[{ }^{1} S_{0}^{(8)}\right]\right\rangle / \mathrm{GeV}^{3}$	$\left\langle\mathcal{O}\left[{ }^{3} S_{1}^{(8)}\right]\right\rangle / \mathrm{GeV}^{3}$	$\left\langle\mathcal{O}\left[{ }^{3} P_{0}^{(8)}\right]\right\rangle / \mathrm{GeV}^{5}$
A 0	7.04×10^{-1}	0.0	5.64×10^{-4}	3.71×10^{-3}
JH	7.04×10^{-1}	0.0	3.19×10^{-4}	7.14×10^{-3}
KMR	7.04×10^{-1}	8.14×10^{-3}	2.58×10^{-4}	1.19×10^{-3}
$[1]$	6.50×10^{-1}	7.01×10^{-3}	1.88×10^{-3}	-2.08×10^{-3}
$[2]$	5.29×10^{-1}	-1.20×10^{-4}	3.40×10^{-3}	9.45×10^{-3}

[1] M.Butenschön, B.A.Kniehl, Phys. Rev. Lett. 106, 022003 (2011)
[2] B.Gong, L.-P.Wan, J.-X.Wang, H.-F.Zhang, Phys. Rev. Lett. 110, 042002 (2013)
Color-singlet wave function was taken as a free parameter; the fitted value is consistent with $\Gamma\left(\psi(2 S) \rightarrow \mu^{+} \mu^{-}\right)$width.
Color-octet matrix elements are typically much smaller than in collinear fits.

Fitted $\chi_{c 1}$ and $\chi_{c 2}$ LDME values

	$\left\|\mathcal{R}_{\chi c 1}^{\prime(1)}(0)\right\|^{2} / \mathrm{GeV}^{5}$	$\left\|\mathcal{R}_{\chi_{c 2}}^{\prime(1)}(0)\right\|^{2} / \mathrm{GeV}^{5}$	$\left\langle\mathcal{O}^{\chi}\left[{ }^{3} S_{1}^{(8)}\right]\right\rangle / \mathrm{GeV}^{3}$
A 0	3.85×10^{-1}	6.18×10^{-2}	8.28×10^{-5}
JH	5.23×10^{-1}	9.05×10^{-2}	4.78×10^{-5}
KMR	3.07×10^{-1}	6.16×10^{-2}	1.40×10^{-4}
$[3]$	7.50×10^{-2}	7.50×10^{-2}	2.01×10^{-3}
$[4]$	3.50×10^{-1}	3.50×10^{-1}	4.40×10^{-4}

[3] H.-F.Zhang, L.Yu, S.-X.Zhang, L.Jia, Phys. Rev. D 93, 054033 (2016)
[4] A.K.Likhoded, A.V.Luchinsky, S.V.Poslavsky, Phys. Rev. D 90, 074021 (2014)
Color-singlet $\chi_{c 1}$ and $\chi_{c 2}$ wave functions were taken as independent free parameters; the fitted value is consistent with $\Gamma\left(\chi_{c 2} \rightarrow \gamma \gamma\right)$ width.
Color-octet matrix elements are typically much smaller than in collinear fits.

Fitted J / ψ LDME values

	$\left\langle\mathcal{O}\left[{ }^{3} S_{1}^{(1)}\right]\right\rangle / \mathrm{GeV}^{3}$	$\left\langle\mathcal{O}\left[{ }^{1} S_{0}^{(8)}\right]\right\rangle / \mathrm{GeV}^{3}$	$\left\langle\mathcal{O}\left[{ }^{3} S_{1}^{(8)}\right]\right\rangle / \mathrm{GeV}^{3}$	$\left\langle\mathcal{O}\left[{ }^{3} P_{0}^{(8)}\right]\right\rangle / \mathrm{GeV}^{5}$
A 0	1.97	0.0	9.01×10^{-4}	0.0
JH	1.62	1.71×10^{-2}	2.83×10^{-4}	0.0
KMR	1.58	8.35×10^{-3}	2.32×10^{-4}	0.0
$[1]$	1.32	3.04×10^{-2}	1.68×10^{-3}	-9.08×10^{-3}
$[2]$	1.16	9.7×10^{-2}	-4.6×10^{-3}	-2.14×10^{-2}

[1] M.Butenschön, B.A.Kniehl, Phys. Rev. Lett. 106, 022003 (2011)
[2] B.Gong, L.-P.Wan, J.-X.Wang, H.-F.Zhang, Phys. Rev. Lett. 110, 042002 (2013)
Color-singlet wave function was taken as a free parameter; the fitted value is consistent with $\Gamma\left(J / \psi \rightarrow \mu^{+} \mu^{-}\right)$width.

Color-octet matrix elements are typically much smaller than in collinear fits.

CONCLUSIONS

Two important innovations:

- k_{T}-factorization to describe the initial state

Includes initial state radiation and soft gluon resummation; makes the required CO LDMEs smaller than in the collinear case

- Multipole radiation formalism to describe the final state Explicit spin-dependent expresions for transition amplitudes; probably solves the quarkonium polarization problem.

After all, a reasonably good agreement is achieved with the data: $J / \psi, \chi_{c 1}, \chi_{c 2}, \psi(2 S) \quad \boldsymbol{p}_{\boldsymbol{t}}$ spectra; $J / \psi, \psi(2 S)$ polarization; ATLAS, CMS, LHCb data in the whole kinamatic range.

Thank You!

