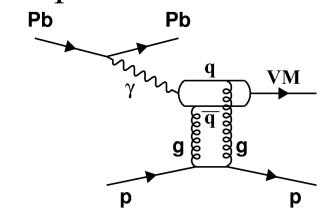


Latest results of diffractive and exclusive measurements with CMS

Alexander Bylinkin

On behalf of the CMS Collaboration


DifLowx 2018: Diffraction and Low-x 2018, 26 Aug-1 Sep 2018, Reggio Calabria, Italy

Outline

- CMS Experiment is a perfect facility to study exclusive processes
 - Exclusive Upsilon production in pPb (FSQ-13-009) @ Diffraction 2016
 - LbL scattering in PbPb (FSQ-16-012) see talk by Michael Murray tomorrow
 - Exclusive J/Psi in PbPb (HIN-12-009)
- Exclusive photoproduction of ρ^0 meson in pPb collisions (FSQ-16-007)
 - Motivation
 - CMS Detector
 - Signal extraction and backgrounds
 - Experimental results
 - Total cross-section as a function of $W_{\gamma p}$
 - Differential cross sections as a function of |t| ($t \approx p_T^2$)
- Outlook

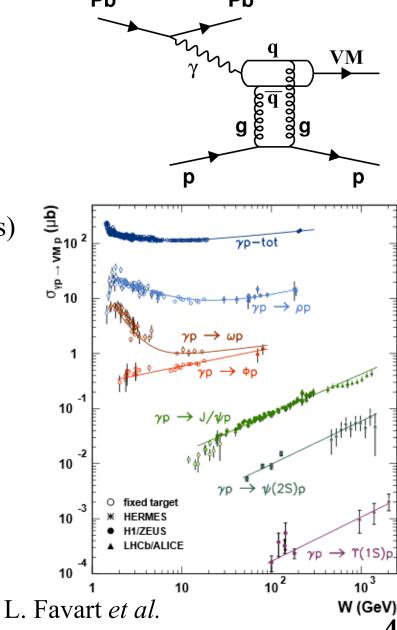
Motivation: Exclusive vector meson production

- The exclusive production is studied in ultraperipheral pPb collisions
- Ions interact via photons
- The photon flux grows with the square of the charge, Z^2

Motivation: Exclusive vector meson production

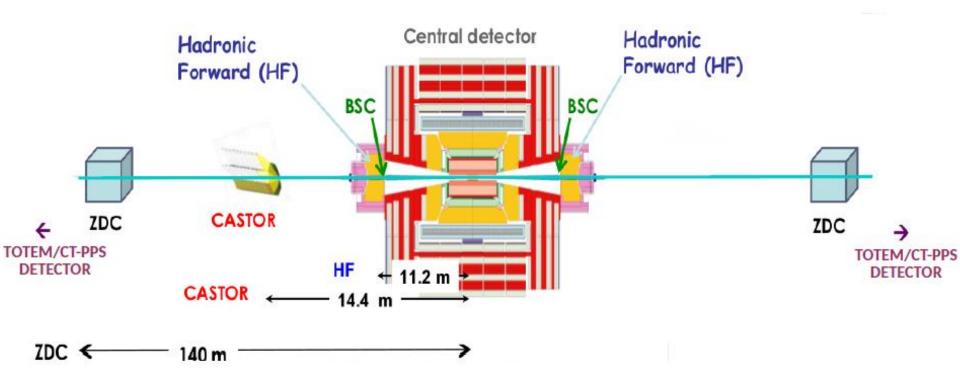
- The exclusive production is studied in ultraperipheral pPb collisions
- Ions interact via photons
- The photon flux grows with the square of the charge, Z^2
- Photoproduction process is sensitive to the gluon density squared in the nucleon (nucleus)

$$\frac{d\sigma_{\gamma p,A \to V p,A}}{dt}\Big|_{t=0} = \frac{\alpha_s^2 \Gamma_{ee}}{3\alpha M_V^5} 16\pi^3 [xG(x,Q^2)]^2$$


$$\sigma_{\gamma p \to VMp} = \frac{1}{b} \frac{d\sigma_{\gamma p, A \to VM} p, A}{dt}|_{t=0}$$

• Probe gluon distributions in the proton at low x $(10^{-4} \text{ to } 2 \cdot 10^{-2})$

 $\sigma \propto W_{s}^{\circ}$


$$x = (M_{VM}/W_{\gamma p})^2$$

• Photonuclear cross-section shows power law dependence with $W_{\gamma p}$

Eur. Phys. J. A 52 (2016) 158

Forward CMS Detectors

Hadron Endcap Calorimeter (HE): $1.3 < |\eta| < 3.0$

Hadron Forward Calorimeter (HF): $3.0 < |\eta| < 5.2$

CASTOR Calorimeter: $-6.6 < \eta < -5.2$

Zero Degree Calorimeter (ZDC): $|\eta| > 8.3$

CMS offers perfect coverage in the forward region

Exclusive ρ^0 -meson photoproduction

- 2013 pPb data at 5.02 TeV with 16.9 nb^{-1}
 - Ultra-peripheral collisions

CMS-FSQ-16-007

•	Exc	lusivity	se	lection:
---	-----	----------	----	----------

- Only two tracks (π^{\pm})
- No calorimeter signal

Selection	Number of selected events	
	pPb	Pbp
Integrated luminosity	$7.4 \ \mu b^{-1}$	9.6 μb^{-1}
Leading HF tower < 3.0 GeV	52 508	66 278
Exactly two tracks	17 771	21 583
Track purity [26]	16 085	20 278
$ \eta_{\rm track} < 2.0$,	12 707	16 037
$p_{\rm T}^{\rm leading} > 0.4 \text{ GeV}, p_{\rm T}^{\rm subleading} > 0.2 \text{ GeV}$	12 364	15 572
$ z_{\text{vertex}} < 15 \text{cm}$	11 924	15 052
Leading HE tower < 1.95 GeV	11 563	14 643
CASTOR energy < 9 GeV	9405	-
ZDC ⁺ energy < 500 GeV	-	12 475
ZDC ⁻ energy < 2000 GeV	9099	-
Opposite-sign pairs	8507	11 553
Same-sign pairs	592	922

The sign of the rapidity is changed for one of the samples before merging

More than 20 000 ρ^0 -candidates found in the combined pPb and Pbp data sample!

Two main backgrounds to ρ^0 signal known from HERA Experiments:

1. Proton dissociation – high- p_T region

Data driven approach requiring activity in the forward detectors (HF, CASTOR or ZDC)

CMS-FSQ-16-007

 $0.5 < M(\pi^{+}\pi^{-}) < 1.2 \text{ GeV}$

Two main backgrounds to ρ^0 signal known from HERA Experiments:

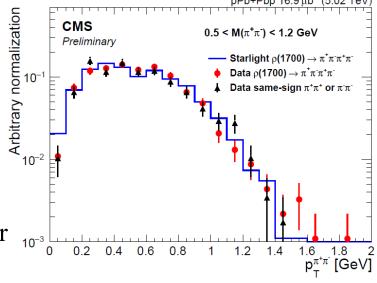
- 1. Proton dissociation high- p_T region Data driven approach requiring activity in the forward detectors
- 2. $\rho(1700)^0 \to \pi^+\pi^-\pi^+\pi^-$ mid- p_T region

Arbitrary normalization ত্

CMS

Preliminary

CMS-FSQ-16-00′

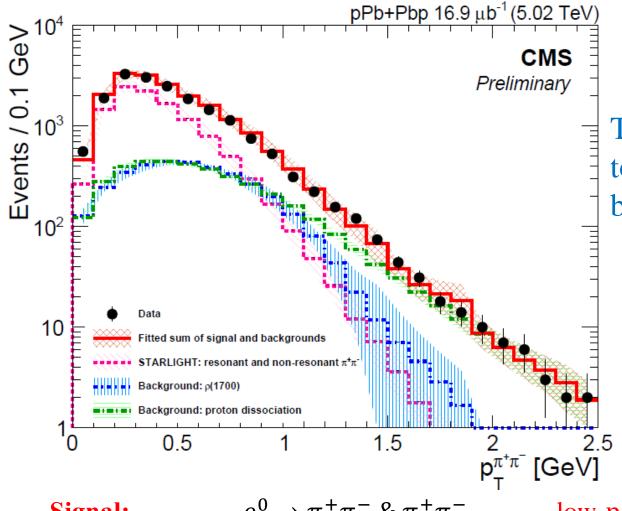

Two main backgrounds to ρ^0 signal known from HERA Experiments:

1. Proton dissociation – high- p_T region

Data driven approach requiring activity in the forward detectors

2.
$$\rho(1700)^0 \to \pi^+\pi^-\pi^+\pi^-$$
 - mid- p_T region

- Generated by the STARLIGHT MC Generator
- The main source of same-sign events



Validation is performed by comparing the shapes of p_T distributions of 2 track events

Other considered background contributions:

- 3. non-resonant $\pi^+\pi^-$ and ω -production Accounted in the invariant mass fits
- 4. $\phi \rightarrow K^+K^-$ Removed by M $(K^+K^-) > 1.04$ GeV cut similar to HERA
- 5. DPE and γPb -interactions Found to be negligible in this analysis

CMS-FSQ-16-007

Template fit is performed to extract the residual background contributions

Signal:

Backgrounds:

 $\rho^0 \to \pi^+ \pi^- \& \pi^+ \pi^-$

 $\rho(1700)^0 \to \pi^+\pi^-\pi^+\pi^-$

p-diss background

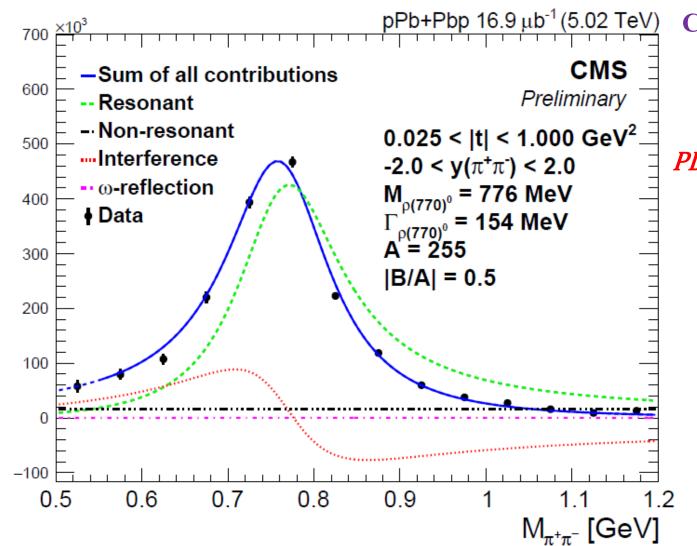
low-p_T

mid-p_T

high-p_T

Starlight

Starlight & Data


Data

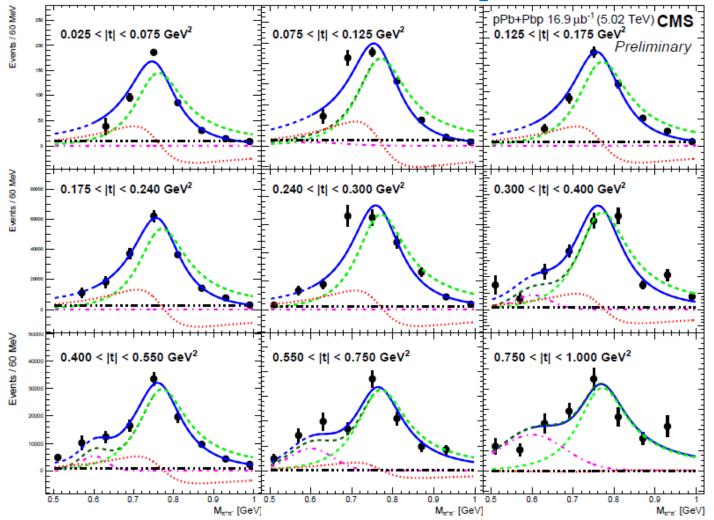
Invariant mass fits

for unfolded distributions

Events / 50 MeV

Söding model
$$\frac{d\sigma}{dM_{\pi\pi}} = \left| A \frac{\sqrt{M_{\pi\pi}M_{\rho^0}\Gamma(M_{\pi\pi})}}{M_{\pi\pi}^2 - M_{\rho^0}^2 + iM_{\rho^0}\Gamma(M_{\pi\pi})} + B \right|$$

CMS-FSQ-16-007


PDG-values:

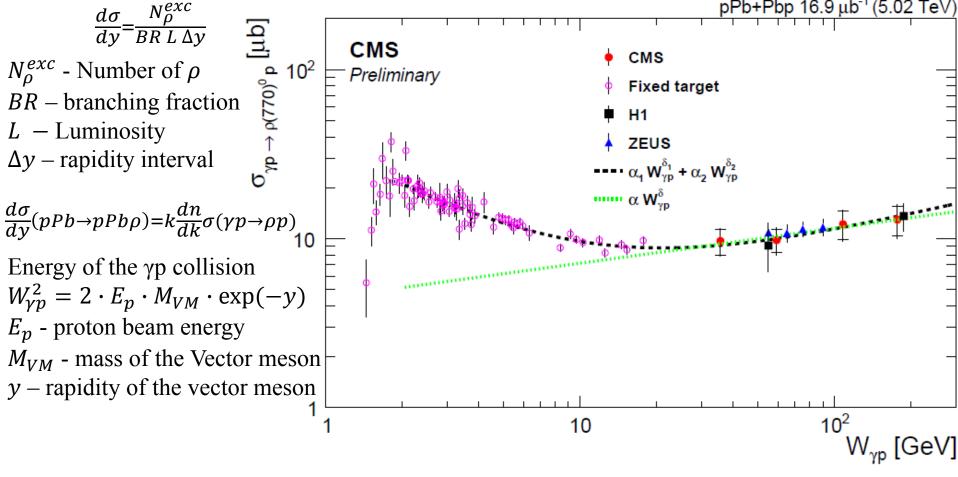
$$M = 775 MeV$$

 $\Gamma = 149 MeV$

Invariant mass fits

Repeated for each |t| and rapidity bin

CMS-FSQ-16-007

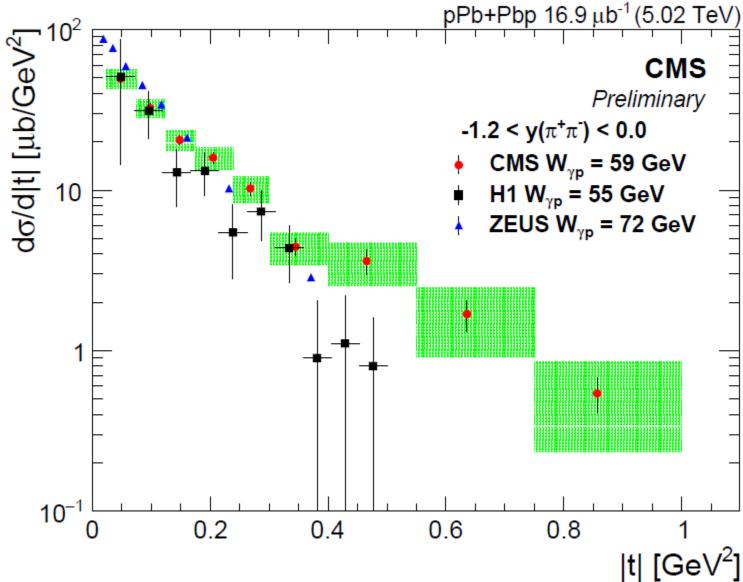

Similar to HERA Experiments:

non-resonant $\pi^+\pi^-$ production decreases at high-|t| values $\omega \to \pi^0\pi^+\pi^-$ decay mimics mainly high-|t| events

Exclusive ρ^0 -meson photoproduction cross section

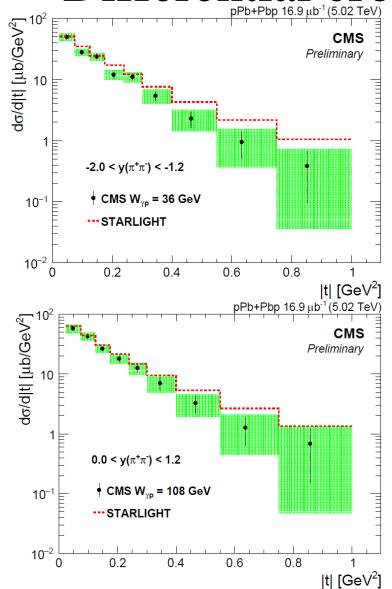
Corrected by the photon flux

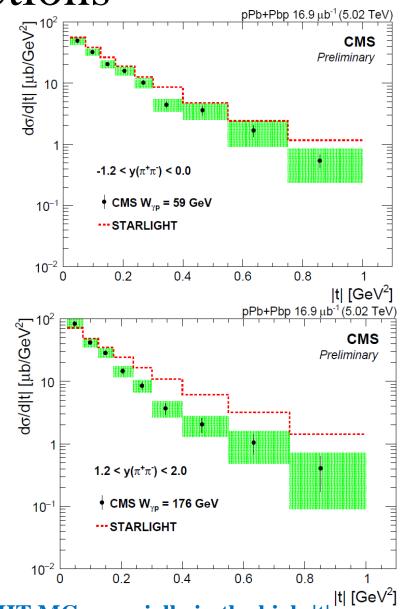
CMS-FSQ-16-007 pPb+Pbp 16.9 μb⁻¹ (5.02 TeV)


 $29 < W_{\gamma p} < 213 \; {
m GeV}$

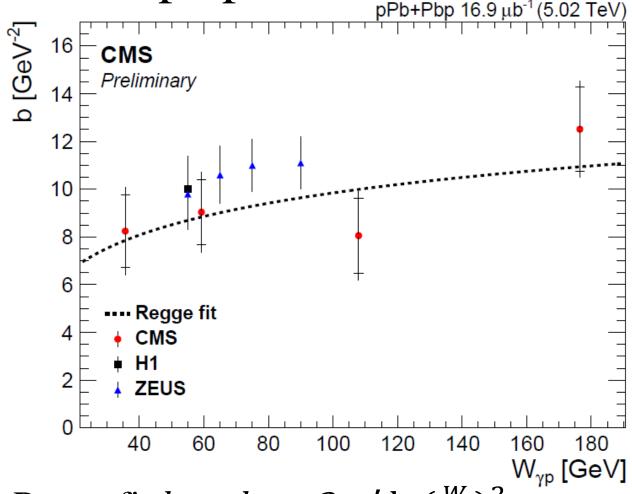
The CMS Experiment extends the energy range measured at HERA

Good agreement with the HERA data and theoretical models.
$$\sigma \propto W_{yp}^{\delta}$$
 $\delta = 0.23 \pm 0.14(stat.) \pm 0.04(syst.)$


Differential cross sections


CMS-FSQ-16-007

Differential cross sections


CMS-FSQ-16-007

The data are systematically lower than STARLIGHT MC, especially in the high-|t| region. This trend becomes more significant as $W\gamma p$ increases.

b-slope parameter

CMS-FSQ-16-007

Exponential fits $\rho - bt + ct^2$

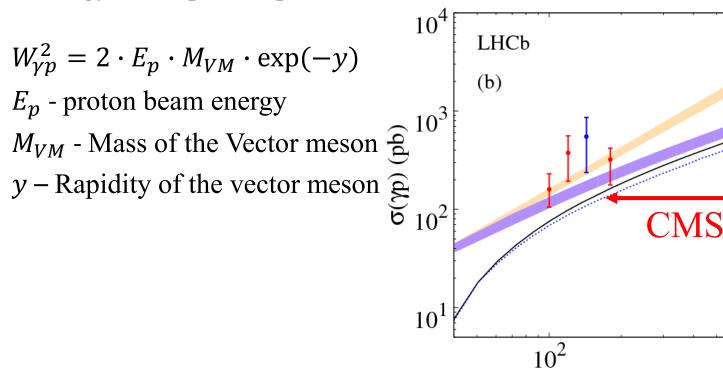
Regge fit $b = b_0 + 2 \alpha' \ln(\frac{W}{W_0})^2$

Pomeron slope extracted using the CMS data only:

$$\alpha' = 0.48 \pm 0.33(stat.) \pm 0.12(syst.)$$

Consistent with the ZEUS value $(0.23 \pm 0.15(stat.) \pm 0.10(syst.))$ and Regge expectations. $\boxed{4}$

Summary


- The first measurement of exclusive ρ^0 photoproduction in pPb collisions at $\sqrt{S_{NN}} = 5.02$ TeV at the LHC has been presented
- The measured cross-sections are compatible with the power-law dependence of $(W_{\nu p})$ observed at HERA
- The differential cross-sections $d\sigma/dt$ are in agreement with earlier measurements and consistent with Regge expectations
- The CMS Experiment has good capabilities to study photoproduction in ultra-peripheral heavy-ion collisions. More analyses ongoing.

Thank you for your attention!

Backup

Motivation: Exclusive Y production

• Energy of the photon-proton collision

	CMS	HERA	LHCb
E_p [GeV]	4000	820	3000, 4000
y-range	(-2.2;2.2)	(-1.5;1.5)	(2;4.5)
$W_{\gamma p}$ [GeV]	91-826	60-220	900-2000

LHCb sensitivity

B.G. bCGC — Gauss LC bCGC ……

LHCb run 1 +

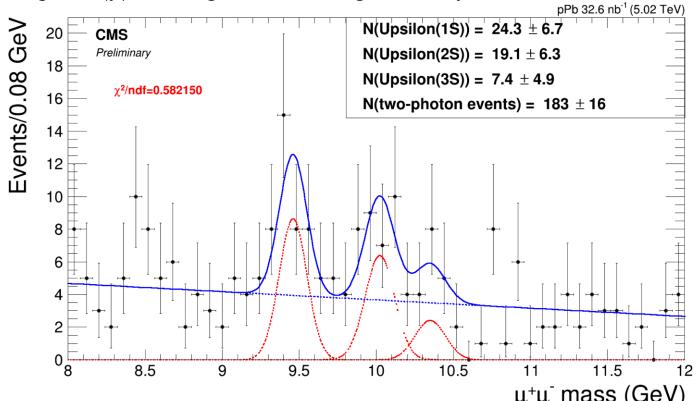
ZEUS 1998/2009 -

 10^3

W (GeV)

LO

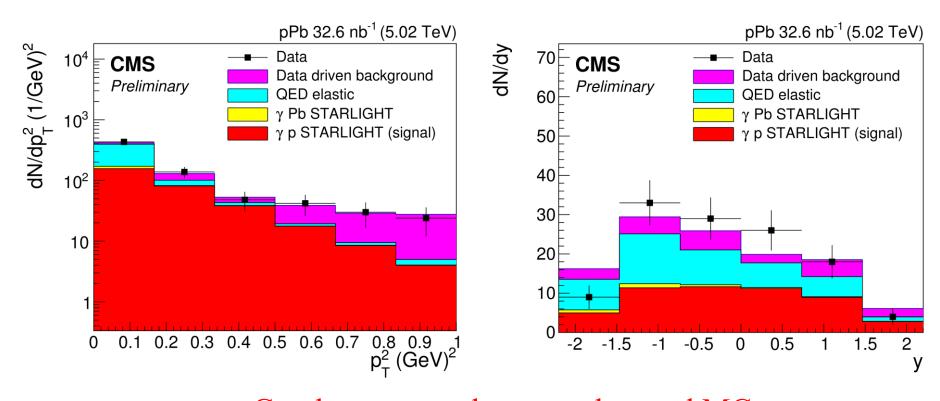
NLO


H1 2000 →

Exclusive upsilon production

• 2013 pPb data at 5.02 TeV with 32.6 nb^{-1}

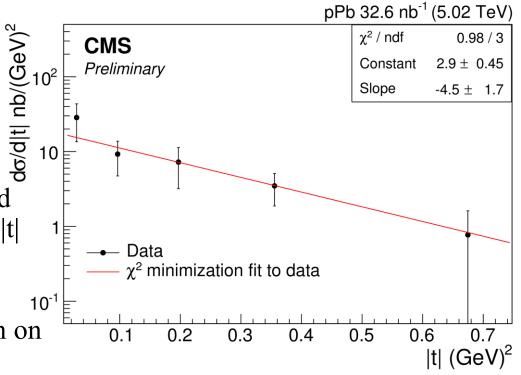
CMS-FSQ-13-009


- Offline exclusive $pPb \to \Upsilon(\gamma p) \to \mu^+\mu^-$ signal selection
 - Invariant mass ($\mu\mu$): 9.12 10.64 GeV
 - Opposite-sign μμ pair (final state) originating from common primary vertex
 - No extra tracks at primary vertex to remove non-exclusive background
 - Upsilon p_T : 0.1-1 GeV to suppress QED and proton dissociation
 - Upsilon |y| < 2.2 high muon finding efficiency

Exclusive upsilon production

CMS-FSQ-13-009

- Data compared to simulation (contains different contributions)
- Low p_T : QED elastic background, estimated by STARLIGHT
- High p_T : Non-exclusive background estimated from data
- Starlight MC: γPb (small contribution) and reweighted γp contribution


Good agreement between data and MC

Photoproduction cross-section as a function of |t|

• The differential cross section is calculated according to

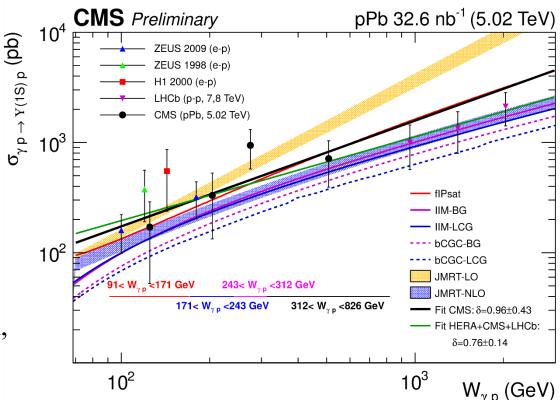
$$\frac{d\sigma_{\Upsilon}}{dt} = \frac{N_{sig}^{Unfolded}}{L \cdot \Delta t}$$

- $\frac{d\sigma_{\Upsilon}}{dt} = \frac{N_{sig}^{Unfolded}}{L \cdot \Delta t}$ N_{sig} , the background subtracted, $\frac{\partial \sigma}{\partial t}$ unfolded and acceptance corrected number of upsilon events in each |t| bin.
- $d\sigma/dt$ fitted with an exponential function, provides the information on the transverse profile of the interaction region.

CMS Results $b = 4.5 \pm 1.7 \text{ (stat.)} \pm 0.6 \text{ (syst.)} \text{ GeV}^{-2}$ Data is in agreement with ZEUS measurements and consistent with predictions based on pQCD models

ZEUS for Y(1S) $b = 4.3^{+2.0}$ (stat) Phys.Lett.B 708 (2012) 14

CMS-FSQ-13-009


Cross-section as a function of $W_{\nu p}$

CMS-FSQ-13-009

• The cross section is estimated by

$$\sigma_{\gamma p \to \Upsilon(1S)p} = \frac{1}{\Phi} \frac{d\sigma_{\Upsilon(1S)}}{dy}$$

- Rapidity distribution of Y(1S+2S+3S) used to estimate $\sigma_{\Upsilon(1S)}$ vs $W_{\gamma p}$
- The cross-section is corrected for muonic branching ratio, feed-down, upsilon (1S) fraction

A fit with power-law $\mathbf{A} \times (\mathbf{W}/400)^{\delta}$ to the CMS data $\delta = (0.96 \pm 0.43)$, $\mathbf{A} = 655 \pm 196$ Data compatible with power-law dependence of $\sigma(\mathbf{W}_{\infty})$, disfavours LO pQCD predictions

ZEUS $\delta = 1.2 \pm 0.8$ PLB 680(2009) 4-12 **b**5