2010, Cargese, Corsica

Introduction to QCD Phenomenology at Hadron Colliders

Peter Skands (CERN-TH)

"Nothing" Gluon action density: 2.4x2.4x3.6 fm QCD Lattice simulation from D. B. Leinweber, hep-lat/0004025

Collider Physics

Comparisons to Collider observables

Collider Physics

Comparisons to Collider observables

Collider Physics

Comparisons to Collider observables

A) Theoretical Idea B) SM Physics Model is wrong

Disclaimer

Focus on (perturbative) QCD for collider physics

QCD, Factorization, Hard Processes Monte Carlo Event Generators Matching & Tuning

Still, some topics not touched, or only briefly

Not much time for Underlying Event, Hadronization, Min-Bias, ... Heavy flavor physics (e.g., B mesons, J/Psi, ...) Physics of hadrons, Lattice QCD Heavy ion physics DIS New Physics Prompt photon production, polarized beams, forward physics, diffraction, BFKL, ...

Gauge Group (= local internal space) Special Unitary group in 3 (complex) dimensions, SU(3) (Group of 3x3 unitary complex matrices with det=1)

Gluons

One gauge boson for each linearly independent such matrix $3^2-1 = 8$: gluons are octets

Quarks

One quark color for each degree of SU(3)

3 : quarks are triplets (e.g., vectors on which matrices operate)

 $\mathcal{L} = \bar{\psi}_q^i (i\gamma^\mu) (D_\mu)_{ij} \psi_q^j - m_q \bar{\psi}_q^i \psi_{qi} - \frac{1}{4} F^a_{\mu\nu} F^{a\mu\nu}$

(Antonio used G_{μ} instead of TA_{μ} and G_{μ} instead of A_{μ})

Quark-Gluon interactions

Colour Factors

We already saw pion decay and the "R" ratio depended on how many "color paths" we could take All QCD processes have a "colour factor". It counts the enhancement from the sum over colours.

11:25

Colour Factors

Colour Factors

Colour Factors

Colour Factors

Quick Guide to Colour Algebra

(from lectures by G. Salam)

Quick Guide to Colour Algebra

(from lectures by G. Salam)

Quick Guide to Colour Algebra

(from lectures by G. Salam)

Homework

• The dominant process at Hadron Colliders is $QCD 2 \rightarrow 2$ scattering (Rutherford Scattering)

Question: what is the colour factor? (hint: important to keep track of who has 3 indices and who has 8)

The Strong Coupling

Bjorken scaling

To first approximation, QCD is SCALE INVARIANT

(a.k.a. conformal)

A jet inside a jet inside a jet inside a jet ...

If the strong coupling did not run, this would be absolutely true (e.g., N=4 SYM)

Conformal QCD

No running

$$Q^2 \frac{\partial \alpha_s}{\partial Q^2} = \beta(\alpha_s), \qquad \beta(\alpha_s) = 0$$

This simplification (QCD at fixed coupling) already captures some of the important properties of QCD

Conformal QCD

Bremsstrahlung

Rate of bremsstrahlung jets mainly depends on the RATIO of the jet $p_{\rm T}$ to the "hard scale"

Conformal QCD

(Computed with SUSY-MadGraph)

Caused by the conformal nature of quantum fluctuations inside fluctuations inside fluctuations ...

Brems

Charges Stopped

ISR

The harder they stop, the harder the fluctations that continue to become strahlung

22

Gluons ≠ Photons

Gluon-Gluon Interactions $\mathcal{L} = \bar{\psi}_q^i (i\gamma^\mu) (D_\mu)_{ij} \psi_q^j - m_q \bar{\psi}_q^i \psi_{qi} - \frac{1}{4} F^a_{\mu\nu} F^{a\mu\nu}$ Gluon field strength tensor: $F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g_s f^{abc} A^b_\mu A^c_\nu$ Structure constants of SU(3): $f_{123} = 1$ $f_{147} = f_{246} = f_{257} = f_{345} = \frac{1}{2}$ $f_{156} = f_{367} = -\frac{1}{2}$ $f_{458} = f_{678} = \frac{\sqrt{3}}{2}$ $-ig_{\epsilon}^{2}f^{XAC}f^{XBD}[g^{\mu\nu}g^{\rho\sigma} -g_s f^{ABC}[(p-q)^{\rho}g^{\mu\nu}]$ Antisymmetric in all indices $g^{\mu\sigma}g^{\nu\gamma}] + (C,\gamma) \leftrightarrow$ $+(q-r)^{\mu}g^{\nu\rho}$

 $(D, \rho) + (B, \nu) \leftrightarrow (C, \gamma)$

 $+(r-p)^{\nu}g^{\rho\mu}$]

All other $f_{ijk} = 0$

Gluon self-interaction

Scaling Violation

 $\frac{\text{In real QCD}}{Q^2 \frac{\partial \alpha_s}{\partial Q^2}} = \beta(\alpha_s), \qquad \beta(\alpha_s) = -\alpha_s^2(b_0 + b_1\alpha_s + b_2\alpha_s^2 + \dots),$

$$b_0 = \frac{11C_A - 2n_f}{12\pi}, \qquad b_1 = \frac{17C_A^2 - 5C_An_f - 3C_Fn_f}{24\pi^2} = \frac{153 - 19n_f}{24\pi^2}$$

The coupling runs logarithmically with the energy

Asymptotic freedom in the ultraviolet Infrared slavery (confinement) in the IR

UV and IR

At current scales

Coupling actually runs rather fast

Explodes at a scale somewhere below ≈ 1 GeV

So we usually give its value at a unique reference scale that everyone agrees on

The Fundamental Parameter(s)

... And all their cousins

 $\begin{array}{l} \alpha_{s}(m_{Z})_{LO} \; \alpha_{s}(m_{Z})_{N}{}^{n}{}_{LO} \; \alpha_{s}(m_{Z})_{N}{}^{n}{}_{LO+N}{}^{n}{}_{LL} \; \alpha_{s}(m_{Z})^{DIS} \; \alpha_{s}(m_{Z})^{DR} \; , \; ... \\ \Lambda^{(3)} \; \Lambda^{(4)} \; \Lambda^{(5)} \; \Lambda_{CMW} \; \Lambda_{FSR} \; \Lambda_{ISR} \; \Lambda_{MPI} \; , \; ... \end{array}$

Other parameters

The emergent is unlike its components insofar as ... it cannot be reduced to their sum or their difference." G. Lewes (1875)

Emergent phenomena

Cannot guess non-perturbative phenomena from perturbative QCD \rightarrow "Emerge" due to confinement

Hadron masses, Decay constants, Fragmentation functions Parton distribution functions,...

Difficult/Impossible to compute given only knowledge of perturbative QCD

- → Lattice QCD (only for "small" systems)
- → Experimental fits (for reference)
- → Phenomenological models (for everything else)

The Way of the Chicken

- ► Who needs QCD? I'll use leptons
 - Sum inclusively over all QCD
 - Leptons almost IR safe by definition
 - WIMP-type DM, Z', EWSB \rightarrow may get some leptons

The Way of the Chicken

- ► Who needs QCD? I'll use leptons
 - Sum inclusively over all QCD
 - Leptons almost IR safe by definition
 - WIMP-type DM, Z', EWSB \rightarrow may get some leptons
 - Beams = hadrons for next decade (RHIC / Tevatron / LHC)
 - At least need well-understood PDFs
 - High precision = higher orders \rightarrow enter QCD (and more QED)
 - Isolation → indirect sensitivity to QCD
 - Fakes → indirect sensitivity to QCD
 - Not everything gives leptons
 - Need to be a lucky chicken ...

The unlucky chicken

• Put all its eggs in one basket and didn't solve QCD

Collider Energy Scales

Factorization

Subdivide a calculation

 Q^2

Perturbative, Calculable

Universal Fit/Tune to data (in reference process) Then re-use for all (e.g., PDFs) Resolved Unresolved

Factorization

Factorization

Factorization Theorem

(See also Dieter Zeppendfeld's 1st lecture)

Factorization: expresses the independence of long-wavelength (soft) emission on the nature of the hard (short-distance) process.

$$\frac{\mathrm{d}\sigma}{\mathrm{d}X} = \sum_{a,b} \sum_{f} \int_{\hat{X}_{f}} f_{a}(x_{a}, Q_{i}^{2}) f_{b}(x_{b}, Q_{i}^{2}) \frac{\mathrm{d}\hat{\sigma}_{ab \to f}(x_{a}, x_{b}, f, Q_{i}^{2}, Q_{f}^{2})}{\mathrm{d}\hat{X}_{f}} D(\hat{X}_{f} \to X, Q_{i}^{2}, Q_{f}^{2})$$

Uncalculated Orders

Naively
$$O(\alpha_s)$$
 - True in e^+e^- !

$$\sigma_1(e^+e^- \to q\bar{q}(g)) = \sigma_0(e^+e^- \to q\bar{q}) \left(1 + \frac{\alpha_s(E_{CM})}{\pi} + O(\alpha_s^2)\right)$$

Generally larger in hadron collisions

Typical "K" factor in pp (= σ_{NLO}/σ_{LO}) $\approx 1.5 \pm 0.5$ Why is this? Many pseudoscientific explanations

Explosion of # of diagrams ($n_{Diagrams} \approx n!$) New initial states contributing at higher orders (E.g., $gq \rightarrow Zq$) Inclusion of low-x (non-DGLAP) enhancements Bad (high) scale choices at Lower Orders, ...

Their's not to reason why // Their's but to do and die

The Charge of the Light Brigade, by Alfred, Lord Tennyson

1. Changing the scale(s)

Scale dependence of calculated orders must be canceled by contribution from uncalculated ones (+ non-pert)

$$\alpha_s(Q^2) = \alpha_s(m_Z^2) \frac{1}{1 + b_0 \ \alpha_s(m_Z) \ln \frac{Q^2}{m_Z^2} + \mathcal{O}(\alpha_s^2)} \frac{1}{b_0 - \frac{11N_C - 2n_f}{12\pi}}$$

 $\rightarrow \alpha_{\rm s}({\rm Q}^{\prime\,2})\,|{\rm M}|^2\,-\,\alpha_{\rm s}({\rm Q}^2)\,|{\rm M}|^2\,\approx\,\alpha_{\rm s}{}^2({\rm Q}^2)\,|{\rm M}|^2\,+\,...$

 \rightarrow Generates terms of higher order, but proportional to what you already have \rightarrow a first naive^{*} way to estimate uncertainty

*warning: some theorists believe it is the only way ... be agnostic!

Dangers

p_{⊥1}= 50 GeV p_{⊥2}= 50 GeV p_{⊥3}= 50 GeV

Dangers

p⊥1= 500 GeV p⊥2= 100 GeV p⊥3= 30 GeV

Complicated final states

Intrinsically <u>Multi-Scale</u> problems with Many powers of α_s

Whatever they might tell you **If you have multiple QCD scales** → variation of µ_R by factor 2 in each direction not good enough! (nor is × 3, nor × 4) Need to vary also functional dependence on each scale!

Main Points

Quarks live in 3D Gluons live in 8D (which is ≈ 9 ≈ color + anticolor)

Bjorken Scaling: fixed coupling \rightarrow scale invariance Characteristic feature: self-similar jet-within-a-jet-within-a-jet-...

RATIOS of scales (hierarchies) : soft/collinear bremsstrahlung enhancements (more in next lecture)

Real-World QCD is UV free ...

But take heed: Multiscale problems \rightarrow large scale uncertainties and IR confined

Factorization \rightarrow meaningful perturbative calculations

Homework

• The dominant process at Hadron Colliders is $QCD 2 \rightarrow 2$ scattering (Rutherford Scattering)

Question: what is the colour factor? (hint: important to keep track of who has 3 indices and who has 8)