

Collider Physics

Comparisons to Collider observables

Collider Physics

Comparisons to Collider observables

Collider Physics

Comparisons to Collider observables

Disclaimer

Focus on (perturbative) QCD for collider physics
QCD, Factorization, Hard Processes
Monte Carlo Event Generators
Matching \& Tuning
Still, some topics not touched, or only briefly
Not much time for Underlying Event, Hadronization, Min-Bias, ...
Heavy flavor physics (e.g., B mesons, J/Psi, ...)
Physics of hadrons, Lattice QCD
Heavy ion physics

This is my hobby / specialty, so please feel free to ask me offline

DIS
New Physics
Prompt photon production, polarized beams, forward physics, diffraction, BFKL, ...

Gauge Group ($=$ Local inkernal space) Special Unitary group in 3 (complex) dimensions, SU(3) (Group of 3×3 unitary complex matrices with det=1)

Gluons

One gauge boson for each linearly independent such matrix $3^{2}-1=8$: gluons are octets

Quarks
One quark color for each degree of $\operatorname{SU}(3)$
3 : quarks are triplets (e.g., vectors on which matrices operate)

$$
\mathcal{L}=\bar{\psi}_{q}^{i}\left(i \gamma^{\mu}\right)\left(D_{\mu}\right)_{i j} \psi_{q}^{j}-m_{q} \bar{\psi}_{q}^{i} \psi_{q i}-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}
$$

Quark fields

$$
\psi_{q}^{j}=\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3}
\end{array}\right)
$$

Covariant Derivative

$$
\begin{aligned}
D_{\mu i j}= & \delta_{i j} \partial_{\mu}-\underline{i g_{s} T_{i j}^{a} A_{\mu}^{a}} \\
& \Rightarrow \text { Feynman rule } \xi^{\mu}
\end{aligned}
$$

Gell-Mann Matrices ($T^{a}=\lambda a / 2$)
$\lambda^{1}=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), \lambda^{2}=\left(\begin{array}{ccc}0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0\end{array}\right), \lambda^{3}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right), \lambda^{4}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$
$\lambda^{5}=\left(\begin{array}{ccc}0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0\end{array}\right), \lambda^{6}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right), \lambda^{7}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0\end{array}\right), \lambda^{8}=\left(\begin{array}{ccc}\frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}} & 0 \\ 0 & 0 & -\frac{2}{\sqrt{3}}\end{array}\right)$

Interactions in Colour Space

Quark-Gluon interactions

$$
\begin{gathered}
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
\mathrm{A}_{1}
\end{gathered} \underset{\Psi_{\mathrm{R}}}{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)}=\underset{\boldsymbol{\Psi}_{G}}{\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)}
$$

Interactions in Colour Space

Colour Factors

We already saw pion decay and the " R " ratio depended on how many "color paths" we could take All QCD processes have a "colour factor". It counts the enhancement from the sum over colours.

\geq Decay:

$\sum_{\text {colours }}|M|^{2}=\sim$ minn

Interactions in Colour Space

Colour Factors

We already saw pion decay and the " R " ratio depended on how many "color paths" we could take All QCD processes have a "colour factor". It counts the enhancement from the sum over colours.

z Decay:

$\sum_{\text {colours }}|M|^{2}=$ mmm $\underbrace{}_{q_{i} \backslash}$

$$
i, j \in\{R, G, B\}
$$

$$
\begin{aligned}
& \propto \delta_{i j} \delta_{j i}^{*} \\
& =\operatorname{Tr}\left[\delta_{i j}\right] \\
& =N_{C}
\end{aligned}
$$

Interactions in Colour Space

Colour Factors

We already saw pion decay and the " R " ratio depended on how many "color paths" we could take All QCD processes have a "colour factor". It counts the enhancement from the sum over colours.

Interactions in Colour Space

Colour Factors

We already saw pion decay and the " R " ratio depended on how many "color paths" we could take All QCD processes have a "colour factor". It counts the enhancement from the sum over colours.

Interactions in Colour Space

Colour Factors

We already saw pion decay and the " R " ratio depended on how many "color paths" we could take All QCD processes have a "colour factor". It counts the enhancement from the sum over colours.

Quick Guide to Colour Algebra

Colour fackors squared produce Eraces

$$
\operatorname{Tr}\left(t^{A} t^{B}\right)=T_{R} \delta^{A B}, \quad T_{R}=\frac{1}{2}
$$

Quick Guide to Colour Algebra

Colour fackors squared produce Eraces

$$
\begin{gathered}
\operatorname{Tr}\left(t^{A} t^{B}\right)=T_{R} \delta^{A B}, \quad T_{R}=\frac{1}{2} \\
\sum_{A} t_{a b}^{A} t_{b c}^{A}=C_{F} \delta_{a c}, \quad C_{F}=\frac{N_{c}^{2}-1}{2 N_{c}}=\frac{4}{3}
\end{gathered}
$$

Quick Guide to Colour Algebra

Colour factors squared produce Eraces

$$
\begin{gathered}
\operatorname{Tr}\left(t^{A} t^{B}\right)=T_{R} \delta^{A B}, \quad T_{R}=\frac{1}{2} \\
\sum_{A} t_{a b}^{A} t_{b c}^{A}=C_{F} \delta_{a c}, \quad C_{F}=\frac{N_{c}^{2}-1}{2 N_{c}}=\frac{4}{3} \\
\sum_{C, D} f^{A C D} f^{B C D}=C_{A} \delta^{A B}, \quad C_{A}=N_{c}=3
\end{gathered}
$$

$$
\xrightarrow[A_{m} \varepsilon^{6 m} \xi_{3} \rightarrow c]{c}
$$

$$
t_{a b}^{A} t_{c d}^{A}=\frac{1}{2} \delta_{b c} \delta_{a d}-\frac{1}{2 N_{c}} \delta_{a b} \delta_{c d} \text { (Fierz) }
$$

(from lectures by G. Salam)

Homework

- The dominant process at Hadron Colliders is QCD $2 \rightarrow 2$ scattering (Rutherford Scattering)

Question: what is the colour factor?
(hint: important to keep track of who has 3 indices and who has 8)

The Strong Coupling

Bjorken scaling

To first approximation, QCD is SCALE INVARIANT
(a.k.a. conformal)

A jet inside a jet inside a jet inside a jet ...

If the strong coupling did not run, this would be absolutely true
(e.g., N=4 SYM)

Conformal QCD

No ruhning

$$
Q^{2} \frac{\partial \alpha_{s}}{\partial Q^{2}}=\beta\left(\alpha_{s}\right), \quad \beta\left(\alpha_{s}\right)=0
$$

This simplification (QCD at fixed coupling) already captures some of the important properties of QCD

Conformal QCD

Bremsstrahlung

Rate of bremsstrahlung jets mainly depends on the RATIO of the jet P_{T} to the "hard scale"

See, e.g., $\begin{array}{r}\text { Plehn, Rainwater, PS: PLB645(2007)217 } \\ \text { Plehn, Tait: 0810.2919 [hep-ph] } \\ \text { Alwall, de Visscher, Maltoni: } \\ 20 \text { JHEP 0902(2009)017 }\end{array}$

Conformal QCD

Naively, brems suppressed by $\alpha \approx \approx 0.1$
Truncate at fixed order = LO, NLO, ...
But beware the jet-within-a-jet-within-a-jet ...

Know your signal
Especially if looking for decay jets of similar P_{\perp}

Example: 100 GeV can be "soft" at the LHC
SUSY pair production at 14 TeV , with Msusy $\approx 600 \mathrm{GeV}$

LHC - spsla - m $\sim 600 \mathrm{GeV}$		Plehn, Rainwater, PS PLB645(2007)217				
FIXED ORDER PQCD	$\sigma_{\text {tot }}[\mathrm{pb}]$	$\tilde{g} \tilde{g}$	$\tilde{u}_{L} \tilde{g}$	$\tilde{u}_{L} \tilde{u}_{L}^{*}$	$\tilde{u}_{L} \tilde{u}_{L}$	$T T$
$p_{T, j}>100 \mathrm{GeV}$	$\sigma_{0 j}$	4.83	5.65	0.286	0.502	1.30
inclusive $\mathbf{X}+1$ "jet"	$\rightarrow \sigma_{1 j}$	2.89	2.74	0.136	0.145	0.73
inclusive $\mathrm{X}+2$ "jets"	$\rightarrow \sigma_{2 j}$	1.09	0.85	0.049	0.039	0.26
$p_{T, j}>50 \mathrm{GeV}$	$\begin{aligned} & \sigma_{0 j} \\ & \sigma_{1 j} \\ & \sigma_{2 j} \\ & \hline \end{aligned}$	4.83	5.65	0.286	0.502	1.30
		5.90	5.37	0.283	0.285	1.50
		4.17	3.18	0.179	0.117	1.21

σ for $X+$ jets much larger than naive estimate
σ for 50 GeV jets \approx larger than total cross section \rightarrow not under control

Charges Stopped

ISR

The harder they stop, the harder the fluctations that continue to become strahlung

Gluons \ddagger Photons

Gluon-Gluon Interactions

$$
\mathcal{L}=\bar{\psi}_{q}^{i}\left(i \gamma^{\mu}\right)\left(D_{\mu}\right)_{i j} \psi_{q}^{j}-m_{q} \bar{\psi}_{q}^{i} \psi_{q i}-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}
$$

Gluon field strength tensor:

$$
F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g_{s} f^{a b c} A_{\mu}^{b} A_{\nu}^{c}
$$

Structure constants of $\mathrm{SU}(3)$:

$$
\begin{gathered}
f_{123}=1 \\
f_{147}=f_{246}=f_{257}=f_{345}=\frac{1}{2} \\
f_{156}=f_{367}=-\frac{1}{2} \\
f_{458}=f_{678}=\frac{\sqrt{3}}{2}
\end{gathered}
$$

Antisymmetric in all indices
All other $f_{i j k}=0$

Gluon self-interaction

Scaling Violation

In real $Q C D$

$$
Q^{2} \frac{\partial \alpha_{s}}{\partial Q^{2}}=\beta\left(\alpha_{\mathrm{s}}\right), \quad \beta\left(\alpha_{\mathrm{s}}\right)=-\alpha_{\mathrm{s}}^{2}\left(b_{0}+b_{1} \alpha_{\mathrm{s}}+b_{2} \alpha_{\mathrm{s}}^{2}+\ldots\right)
$$

$$
b_{0}=\frac{11 C_{A}-2 n_{f}}{12 \pi}, \quad b_{1}=\frac{17 C_{A}^{2}-5 C_{A} n_{f}-3 C_{F} n_{f}}{24 \pi^{2}}=\frac{153-19 n_{f}}{24 \pi^{2}}
$$

The coupling runs logarithmically with the energy

Asymptotic freedom in the ultraviolet

Infrared slavery (confinement) in the IR

UV and IR

At current scales Coupling actually runs rather fast

Explodes at a scale somewhere below

$$
\approx 1 \mathrm{GeV}
$$

So we usually give its value at a unique reference scale that everyone agrees on

The Fundamental Parameters)

QCD has one fundamental parameter

$$
\alpha_{s}\left(m_{Z}\right)^{\overline{\mathrm{MS}}} \alpha_{s}\left(Q^{2}\right)=\alpha_{s}\left(m_{Z}^{2}\right) \frac{1}{1+b_{0} \alpha_{s}\left(m_{Z}\right) \ln \frac{Q^{2}}{m_{Z}^{2}}+\mathcal{O}\left(\alpha_{s}^{2}\right)}
$$

... and its sibling

... And all their cousins

$$
\alpha_{s}\left(m_{z}\right)_{L O} \alpha_{s}\left(m_{z}\right)_{N} n_{L O} \alpha_{s}\left(m_{z}\right)_{N^{n} L O+N^{n} L L} \alpha_{s}\left(m_{z}\right)^{D I S} \alpha_{s}\left(m_{z}\right)^{D R}, \ldots
$$

$$
\Lambda^{(3)} \Lambda^{(4)} \Lambda^{(5)} \Lambda_{C M W} \Lambda_{F S R} \Lambda_{I S R} \Lambda_{M P I}, \ldots
$$

Other parameters

Emergent phenomena

Cannot guess non-perturbative phenomena from perturbative QCD \rightarrow "Emerge" due to confinement

Hadron masses, Decay constants, Fragmentation functions Parton distribution functions,

Difficult/Impossible to compute given only knowledge of perturbative QCD
\rightarrow Lattice QCD (only for "small" systems)
\rightarrow Experimental fits (for reference)
\rightarrow Phenomenological models (for everything else)
\Rightarrow The Way of the Chicken

- Who needs QCD? I'll use leptons
- Sum inclusively over all QCD
- Leptons almost IR safe by definition
- WIMP-type DM, Z', EWSB \rightarrow may get some leptons

\Rightarrow The Way of the Chicken

- Who needs QCD? I'll use leptons
- Sum inclusively over all QCD
- Leptons almost IR safe by definition
- WIMP-type DM, Z', EWSB \rightarrow may get some leptons

- Beams = hadrons for next decade (RHIC / Tevatron / LHC)
- At least need well-understood PDFs
- High precision = higher orders \rightarrow enter QCD (and more QED)
- Isolation \rightarrow indirect sensitivity to QCD
- Fakes \rightarrow indirect sensitivity to QCD
- Not everything gives leptons
- Need to be a lucky chicken ...
- The unlucky chicken
- Put all its eggs in one basket and didn't solve QCD

Collider Energy Scales

Do we really need to calculate all Chis?

These Things Are Your Friends
-IR Safety: guarantees non-perturbative (NP) corrections suppressed by powers of NP scale

- Factorization: allows you to sum inclusively over junk you don't know how to calculate
- Unitarity: allows you to estimate things you don't know from things you know (e.g., loop
singularities $=-$ tree ones; P (fragmentation) $=1, \ldots$)

Factorization

Subdivide a calculation

Factorization

Subdivide a calculation

	Perturbative, Calculable Q^{2}
Single-Scale problems: $Q_{F} \approx Q_{\text {hard }} \approx m$ and/or P_{\perp} Multi-Scale problems: No unique agreement More later...	Resolved

Factorization

Subdivide a calculation

Factorization Theorem

Factorization: expresses the independence of long-wavelength (soft) emission on the nature of the hard (short-distance) process.

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} X}=\sum_{a, b} \sum_{f} \int_{\hat{X}_{f}} f_{a}\left(x_{a}, Q_{i}^{2}\right) f_{b}\left(x_{b}, Q_{i}^{2}\right) \frac{\mathrm{d} \hat{\sigma}_{a b \rightarrow f}\left(x_{a}, x_{b}, f, Q_{i}^{2}, Q_{f}^{2}\right)}{\mathrm{d} \hat{X}_{f}} D\left(\hat{X}_{f} \rightarrow X, Q_{i}^{2}, Q_{f}^{2}\right)
$$

$$
f_{a}\left(x_{a}, Q_{i}^{2}\right) \begin{aligned}
& \text { Parton distribution } \\
& \text { functions (PDF) }
\end{aligned}
$$

- sum over long-wavelength histories leading to a with x_{a} at the scale 2_{i}^{2} (ISR)
$D\left(\hat{X}_{f} \rightarrow X, Q_{i}^{2}, Q_{f}^{2}\right) \begin{aligned} & \text { Fragmentation } \\ & \text { Function (FF) }\end{aligned}$
- Sum over long-wavelength histories from \hat{X}_{f} at $Q 民$ to $X \quad$ (FSR and Hadronization)
+ (At H.O. each of these defined in a specific scheme, usually $\overline{M S}$)

Uncalculated Orders

Naively $0\left(\alpha_{s}\right)$ - True in $e^{+} e^{-}$!

$$
\left.\sigma_{1}\left(e^{+} e^{-} \rightarrow q \bar{q}(g)\right)=\sigma_{0}\left(e^{+} e^{-} \rightarrow q \bar{q}\right)\left(1+\frac{\alpha_{s}\left(E_{C M}\right)}{\pi}\right)+O\left(\alpha_{s}^{2}\right)\right)
$$

Generally Larger in hadron collisions
Typical "K" factor in pp $\left(=\sigma_{\text {NLO }} / \sigma_{\llcorner }\right) \approx 1.5 \pm 0.5$
Why is this? Many pseudoscientific explanations

```
Explosion of # of diagrams (nDiagrams }\approxn!\mathrm{ )
New initial states contributing at higher orders (E.g., gq }->\textrm{Zq}\mathrm{ )
Inclusion of low-x (non-DGLAP) enhancements
Bad (high) scale choices at Lower Orders, ...
```


1. Changing the scale(s)

Why scale varialion \approx uncerlainly?
Scale dependence of calculated orders must be canceled by contribution from uncalculated ones (+ non-pert)

$$
\begin{aligned}
& \alpha_{s}\left(Q^{2}\right)=\alpha_{s}\left(m_{Z}^{2}\right) \frac{1}{1+b_{0} \alpha_{s}\left(m_{Z}\right) \ln \frac{Q^{2}}{m_{Z}^{2}}+\mathcal{O}\left(\alpha_{s}^{2}\right)} \\
& \quad b_{0}=\frac{11 N_{C}-2 n_{f}}{12 \pi} \\
& \rightarrow \alpha_{s}\left(Q^{\prime 2}\right)|M|^{2}-\alpha_{s}\left(Q^{2}\right)|M|^{2} \approx \alpha_{s}^{2}\left(Q^{2}\right)|M|^{2}+\ldots
\end{aligned}
$$

\rightarrow Generates terms of higher order, but proportional to what you already have \rightarrow a first naive* way to estimate uncertainty

Dangers

$$
\begin{aligned}
& P_{\perp 1}=50 \mathrm{GeV} \\
& P_{\perp 2}=50 \mathrm{GeV} \\
& P_{\perp 3}=50 \mathrm{GeV}
\end{aligned}
$$

Complicated final states Intrinsically Multi-Scale problems with Many powers of α_{s}

Hardest imaginable scale
E.g., $W+3$ jets in pp

$$
\alpha_{s}^{3}\left(m_{W}^{2}\right)<\alpha_{s}^{3}\left(m_{W}^{2}+\left\langle p_{\perp}^{2}\right\rangle\right)<\alpha_{s}^{3}\left(m_{W}^{2}+\sum_{i} p_{\perp i}^{2}\right)
$$

Global Scaling: jets don't care about m_{w}

$$
{ }^{3} \alpha_{s}^{3}\left(\min \left[p_{\perp}^{2}\right]\right)<\alpha_{s}^{3}\left(\left\langle p_{\perp}^{2}\right\rangle\right)^{4}<\alpha_{s}^{3}\left(\max \left[p_{\perp}^{2}\right]\right)
$$

MC parton showers: "Local scaling"

$$
\alpha_{s}\left(p_{\perp 1}\right) \alpha_{s}\left(p_{\perp 2}\right) \alpha_{s}\left(p_{\perp 3}\right) \sim \alpha_{s}^{3}\left(\left\langle p_{\perp}^{2}\right\rangle_{\text {geom }}\right)
$$

Dangers

Complicated final stakes

 Intrinsically Multi-Scale problems with Many powers of α_{s}
Whatever they might tell you

 If you have multiple QCD scales\rightarrow variation of μ_{R} by factor 2 in each direction not good enough! (nor is $\times 3$, nor $\times 4$)

Need to vary also functional dependence on each scale!

Main Points

Quarks live in 3D
 Gluons live in 8D (which is $\approx 9 \approx$ color + anticolor)

> Bjorken Scaling: fixed coupling \rightarrow scale invariance Characteristic feature: self-similar jet-within-a-jet-within-a-jet-...

> RATIOS of scales (hierarchies) : soft/collinear bremsstrahlung enhancements «ـ (more in next lecture)

Real-World QCD is UV free ...
But take heed: Multiscale problems \rightarrow large scale uncertainties and IR confined

Factorization \rightarrow meaningful perturbative calculations

Homework

- The dominant process at Hadron Colliders is QCD $2 \rightarrow 2$ scattering (Rutherford Scattering)

Question: what is the colour factor?
(hint: important to keep track of who has 3 indices and who has 8)

