What have we learned from
the Tevatron for the LHC
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Outline

Tevatron: brief history

physics at hadron colliders
@ particle detection, trigger, reconstruction, ...

@ QCD lessons
@ pdf's, NLO, NNLO, ...
@ Flavor lessons:
@ b-physics at hadron collider is possible

@ Precision measurements

@ W mass

Top quark physics

Advanced analysis: multivariate methods
@ top and higgs

@ Will not talk about the new phenomena searches
@ techniques are the same, and no discoveries have been made so far
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Summary of lessons so far

@ LHC will be a 20-30 year program. Be patient!

@ although the delays affected careers of young people and
are generally quite frustrating

@ Hadron colliders are very messy (but the way to get
to the energy frontier)
@ underlying event
@ large occupancies
@ huge total cross-sections — pile-up
@ trigger shapes everything

@ Yet, it is possible to do precision measurements!



Trigger: Selecting the
interesting events (I)

Our starting point is here

@ At the LHC the rate for all collisionsis
40MHz!

@ Although ideal, it's impossible to keep all
the events

Need to decide a priori which are the
“interesting” events to keep/filter

Need to be selective
@ enhance rare processes
@ reduce common ones

If we make bad/unwise choices we will
throw away the new physics!

@ If you don't trigger on it, it's gone
forever!
Theory plays a role in guiding these choices

@ Important to have good communication
between theorists and experimentalists
for coming up with new triggers

Physics priorities of collaboration is
another consideration...
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CMS and ATLAS Triggers

Detectors
N4O MHZ Calo
Digitizers 40 MHz iy e
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> Switching networks L2 accept (~3.5 kHz)
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EF accept ~ 300 MB/s
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~150 Hz
Level 1: Hardware based (electronics)

Level 2: Software based
The decision to keep ~1/200,000 events happens every second.
No room for mistakes!



Tevatron Trigger menu

Q@ lLevel 1:
@ crude reconstruction of tracks, calorimeter clusters, muon tracks
@ some spatial matching between sub-systems
Q@ Level 2:
@ silicon IP information
@ refinement of selection (i.e. topological cuts)

@ Level 3:

@ full detector information, basically a simplified reconstruction results
are available

@ Typical triggers
jet, multijet, acoplanar jets, jets + MET
single electron/photon/muon/tau
two objects (ee, e+mu, etc)

Rate for “low pT” physics is high, and one needs to be inventive to
keep rejection high



Trigger: limitations

@ Physics at hadron colliders is in many respects similar to
looking only under a lamp post.

@ Since the backgrounds are high, any non-standard
signature will fail the trigger unless a new specific
trigger is designed

@ i.e. long-lived particles
@ Some signatures call for very low pT thresholds

@ some new phenomena
@ flavor physics



Tevatron Triggers for flavor physics

@ Level 1: limited options

@ one or two low p; muons (trigger threshold
is the key)

@ two tracks (CDF only)

Q@ Level 2:
@ silicon IP information

@ Level 3:
@ particle combinations, mass windows, etc...



B (By) mixing
@ Gives access to V. (Vi4) and sensitive to new physics

@ Interference between B,,—B,,—X. and B,,— X provides a
window to CP violation
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Precision Measurement of
Electroweak Sector of the
Standard Model

= W boson mass
= Top quark mass
* Implications for the Higgs boson



The W boson, the top quark and the Higgs boson

@ Top quark is the heaviest known
fundamental particle .
@ Today: m,,=173.1+£1.3 GeV var ard

@ Run 1: m,,=178+4.3 GeV/c?

@ Is this large mass telling us
something about electroweak
symmetry breaking?

@ Top Yukawa coupling:

H
w("*w

[
@ <H>/(/2 mtop) = 1.005 + 0.008 .
@ Masses related through radiative 80.5 | ™ L(g'r’eﬁ;?:ajyi"atm"
correctlons:2 _ LEP 1 an DSM o
@ m,~M,, % L roken
o my~In(my) O 4
Q@ If th_ere are new particles the > 80.4 1 SM okay
relation might change: = ”
@ Precision measurement of top quark
and W boson mass can reveal new 80.3 | 4 4 4
physics S & &
& s S
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W Boson mass

@ Real precision measurement:
@ LEP: M,,=80.367+0.033 GeV/c?
@ Precision: 0.04%

@ => Very challenging!

@ Main measurement ingredients:
@ Lepton p; U
@ Hadronic recoil parallel to lepton: u,,
@ Missing ET

@ Z—Il superb calibration sample:

Electron Prw

“2>~.__Neutrino

Hadronic recoil

@ but statistically limited: mr = \/ QPfJbT (1 —cos Ag),
@ About a factor 10 less Z’s than W's - | i |
@ Most systematic uncertainties are related 7) T pPT uy|

to the size of Z sample

@ Will scale with 1/VN, (=1/VL)
mp & 2PT\/l + ) /pr = 2pr + Y
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Lepton Momentum Scale
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@ Systematic uncertainty on momentum scale: 0.04%



Systematic Uncertainties

mr Fit Uncertainties

Source W — uwv W — ev Correlation

Tracker Momentum Scale 17 17 100%

Calorimeter Energy Scale 0 25 0%

Lepton Resolution 3 9 0%

Lepton Efficiency 1 3 0% | Limited by data
Lepton Tower Removal 5 8 100% | statistics

Recoil Scale 9 9 100%

Recoil Resolution 7 7 100%

Backgrounds 9 8 0%

PDFs 1 1 100% | Limited by data
W Boson pr 3 3 100% and theoret_lcal
Photon Radiation 12 11 100% | Understanding
Statistical 54 48 0%

Total 60 62 -

TABLE IX: Uncertainties in units of MeV on the trans-
verse mass fit for mw in the W — pr and W — ev

samples.

@ Overall uncertainty 60 MeV for both analyses
@ Careful treatment of correlations between them

@ Dominated by stat. error (50 MeV) vs syst. (33 MeV)
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Events/0.5 GeV

W Boson Mass

A il N
I Ay N
_: ?H**ﬁ*ﬂﬁﬁwﬁ*WﬁWﬁfﬁ**ﬁ+ﬁ+++tﬁ****ﬁ*ﬁﬁﬁm# skl L

New world average:

M,=80399 + 23 MeV
Ultimate precision:
Tevatron: 15-20 MeV
LHC: unclear (5 MeV?)



Top Quark Production and Decay

@ At Tevatron, mainly produced in pairs via the strong interaction

q /) t
. ” 2000/ 1=
(\\ 9
q /9

@ Decay via the electroweak interactions Br(t =Wb) ~100%
Final state is characterized by the decay of the W boson

Dilepton
Lepton+Jets

All-Jets

l Different sensitivity and challenges in each channel '

17



How to identify the top quark
SM: it pair production, Br(t—bW)=100% , Br(W—Iv)=1/9=11%
dilepton (4/81) 2 leptons + 2 jets + missing E;
I+jets (24/81) 1 lepton + 4 jets + missing E;
fully hadronic (36/81) 6 jets

(here: I=e,u)
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How to identify the top quark
SM: 1t pair production, Br(t—bhW)=100% , Br(W->Iv)=1/9=11%
dilepton (4/81) 2 leptons + 2 jets + missing E;

lepton+jets (24/81) 1 lepton + 4 jets + missing E;
fully hadronic (36/81) 6 jets

lepton(s) Vi)

missing ET
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How to identify the top quark
SM: 1t pair production, Br(t—bhW)=100% , Br(W->Iv)=1/9=11%
dilepton (4/81) 2 leptons + 2 jets + missing E;

lepton-+jets (24/81) 1 lepton + 4 jets + missing E;
fully hadronic (36/81) 6 jets

lepton(s) Vi)

missing ET ‘ more jets ‘
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How to identify the top quark
SM: 1t pair production, Br(t—bhW)=100% , Br(W->Iv)=1/9=11%
dilepton (4/81) 2 leptons + 2 jets + missing E;

lepton+jets (24/81) 1 lepton + 4 jets + missing E;
fully hadronic (36/81) 6 jets

‘ more jets ‘
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Top Event Categories

Dileptons

22

Oe-e  (1/81)
O mu-mu (1/81)
tau-tau (1/81)
Oe-mu (2/81)

Oe-tau (2/81)

B mu-tau (2/81)

Wetjets (12/81)

B mutjets(12/81)

M tautjets(12/81)

Ojets  (36/81)



Power of one event

DO Side View 3-AUG-18993 23:341Run 587%¢ Event él?llO-JAN-1993 02:41
@ found in 1993 at DJ
/muon Poi<Ecls
— ) B4 423 @ electron

. § ” . | Nm23 44433 @ muon

?_ '—'_ i 33443 o 3 jets

. | | 'I 43 - -

y @ Missing ET

}] A '$‘&J |l and re-optimized cuts

of all Run I analyses
electron Q tOp IMass Was
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Finding the Top at Tevatron and LHC

s P do dat
Tevatron CMS Preliminary @ 10pb™ B f cignad
o 600 ] 8 = Ellti (other)
_ _ Wlet
§ L=0.9 fb 2 — g
> E 103 L [ QCD
S w
S 400 LHC
E
5 B Multijet 102
200
10

1 2 3 4 25

0 1 >2 o
Number of tagged jets Jet Multiplicity

@ Tevatron:
@ Top is overwhelmed by backgrounds:
@ Even for 4 jets S/B is only about 0.8
@ Use b-jets or topological analysis to purify sample

@ LHC
@ Signal clear even without b-tagging: S/B is about 1.5-2

24



Finding the b-jets

@ Exploit large lifetime of the b-hadron

@ B-hadron flies before it decays: d=ct
@ Lifetime Tt =1.5 ps!

displaced
tracks

@ d=ct = 460 um vt
@ Can be resolved with silicon detector resolution \ Ly
@ Soft lepton tag vone gl do
@ i.e. muon from B decay with large d, //
@ "Secondary Vertex”:

@ recon StI’U Ct p I‘I Ma ry ve I‘teX . prompt tracks z X

@ resolution ~ 30 um

@ Search tracks inconsistent with primary vertex (large d,):
@ Candidates for secondary vertex
@ See whether three or two of those intersect at one point

@ Require displacement of secondary from primary vertex

@ Form L,,: transverse decay distance projected onto jet axis:
@ L,,>0: b-tag along the jet direction => real b-tag or mistag
@ L,,<0: b-tag opposite to jet direction => mistag!
@ Significance: e.g. 8L, / L,, >7 (i.e. 7o significant displacement)

@ More sophisticated techniques exist
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Characterise the B-tagger: Efficiency

@ Efficiency of tagging a true b-jet
@ Use Data sample enriched in b-jets

@ Select jets with electron or muons
@ From semi-leptonic b-decay

@ Measure efficiency in data and MC

electron
jet

SecVix Tag Efficiency for Top b—Jets

5. 0.7 - SecVix Tag Efficiency for Top b—Jets
T i &
c Tight Secvix o Tight SecVix
o d.6F Loose SecVix © : §
S F . 5 99F Loose SecVix
= 05F =
A : ‘s 0.4 F
50.4 = :
: O -
0.2F 0.2
E Top MC §co|eq to mateh datg : Top MC scaled to match data
o -| Onlylb—Jetls W'”: m|<1| | | | STE Only b—jets with E,>15 GeV
obla b b b b bl by "
20 40 60 80 100 120 140 160 180 obb b e b b b b b

jet 7
Achieve efficiency of about 40-50% at Tevatron
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Characterise the B-tagger: Mistag rate

@ Mistag Rate measurement:  'Positive”tag  “negative” tag

@ Probability of light quarks to
be misidentified
@ Use "negative” tags: L,,<0

@ Can only arise due to %
misreconstruction

@ Mistag rate for E;=50 GeV:
@ Tight: 0.5% (£=43%)

SecVix Mistag Rates

@ Loose: 2% (e=50%) ézzz jlant seeib
@ Depending on physics fgomf
analyses: 0.03}
@ Choose “tight” or “loose” 0.02

tagging algorithm 0.01F

Cnly jets with lnl<1
Ll 1 I L L.l I L L.l I L.l L I L.l Il I L.l L I Ll 1 l L L.l
20 40 60 gC 100G 120 140 160 180

jet E; (GeV)
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The Top Signal: Lepton + ts

@ Select:
@ 1 electron or muon

@ Large missing E;

@ 1 or 2 b-tagged jets

missing ET

o e I D@ Runll Preliminary
1200 : = ﬁ N :rggfz)(;;mpb 100
1000 E 3:,2'6 top 80" d bl d
W : ouble-tagge
o 60
— : events, nearly
% no background
20F

1Jet 2Jets 3Jets >4Jets 1Jet 2Jets 3Jets >dJets

Top Signal

Check

o(tty= 8.3*06  (stat) £ 1.1 (syst) pb
bé%kgrounds



The Top Signal: Dilepton

@ Select:
@ 2 leptons: ee, ey, un
@ Large missing E;
@ 2 jets (with or w/o b-taqg)

missing ET
w/o b-tag with b-tag
180} CDF Runll Pfe_".'_“i;zry (750 pb™) ] B D@ Data D@ Runll Preliminary, 370 pb”
160 [ AN Bkgd + 1o uncertainty ] :.tf
[CJtiw=83pb) =
140 /3 wwiwz i ] ZO—DZ — ee.uu
120 oy [z -
“2 - . [ fake 5 :lWW o
g 100 15-[Multijet/W+jets
W gof I
60 | -
10
40 .
20 "
5

0 jet 1 jet >2jet HT>200+0S
Jet Multiplicity after Z veto, MET > 25 GeV and L-cut

(e
1 2

, ©=6.21% 0.9 (stat) £ 0.9 (sys) pb Numbarof Jts



Top to six jets

@ The hardest channel

@ no leptons or MET in the final state
@ the main background is QCD

@ hard even when requiring two tight b-tags, paying
0.42=0.16 in branching (CDF)

@ Was also observed in Run I by D@, without
magnetic field or silicon tracker
@ was made possible by the use of Neural Networks, one

of the first analyses from major HEP experiment to
employ them

@ exploit subtle differences in event kinematics and jet
shape (top jets are quark, QCD multijets are gluon)
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Top = All jets

@ used 18 variables!

Eneray Radiation Topology
-E 0 | 210
Sue 10
] pil} 40 . ’
H']rds’ 10 il

T t o)

E I} 02 4 ] ns 1

w Aplanarity Centrality

nm

b ]

| ilo'
0%

] 03 1

EE /K, leess Sphericity

0 0.5 1 0

Neural network variables for the D@ 11 — alljetsanalysis. The first 10 variables are used in one network,

Event Structure

e

Normolized

T

1 N u 40 0

Tagging Muon p;,

4.2

-0l ] al 02 03 4

Fisher Discriminant (Jet Widths)

4 6 B

Mass Likelihood

and the output from that network is used together with the last three variables in a second network.

10

02

04 0.6
Neural Net Output

08

1.0
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Multivariate Analyses

@ Advantages and disadvantages
@ Neural Networks

@ Decision Trees

@ Matrix Element methods
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What Multivariate Analyses Are

= We start with a data sample of interesting events: U

= Each event can be described in terms of n dimensions (or n
discriminating variables) of interest.

= This sample contains more than one class of events: A, B, ...
= Lets just consider the case of two classes (simple to generalize

to more)
Note: If the intersection of Aand B is
= So:
A = U’ and BCU null, then the problem is not interesting,
ANRB # 0 and we can easily separate the two

classes of interest with a set of cuts.

Q) How can we optimally
separate classes A and B in
n dimensions?
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Cuts on Variables

(1, 0)s=(0.1, 0.3)
(W, 0)s = (1.0, 0.4)

(W, 0)s=(0.2,0.2)
(1, 0)g=(1.2,0.5)

@ Very intuitive and visual

@ Example:
@ two variables X and Y

@ both show separation between
“signal” and “background”

@ cuts on both will improve purity

@ cut optimization may be a little
complicated if variables are
correlated, but it's an easily
solvable problem:
random grid search

@ Systematic error is relatively
easy to estimate
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What Multivariate Analyses Are

= Consider the event e;:

= e =e(x)=e/(X, Xy X3, ..., X.), Which is the it" event of a dataset U.
= How do we determine the Aness or Bness of a given event e=¢,(x)?

*We need some way to assign a probability
to the hypothesis that event e, is of class A. Plei€ A) <1

*The complement is the probability that e, is

in the class B (as we are only considering Ple;e A)=P(e; € B) <1
two classes).

*Most of the time we can't tell for certain if
an event e, is of class A or class B.

Think of the familiar example of a
signal region, where we know that the
signal purity will be higher in this
region, than outside it.

Signal region

AE (GeV)

mg (GeV/c?) m.  m
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What Multivariate Analyses Are
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Linear Algorithms

@ The example above can be solved by a simple linear

algorithm, like a Fisher’s Discriminant
j=N ar

@ Finding matrix W is fairly straightforward exercise

@ need to maximize the difference between mean
values of 3. for signal and background while
minimizing their RMS’es

@ what this amounts to is finding the optimal coordinate
system in the N _.-dimensional space by linear

var

transformations



Fisher’s Discriminant

" Let's see an example

(W, 0)s=1(0.1,0.3)
(W, 0)g=(1.0,0.4)

Number of entres

(W, 0)s=(0.2,0.2)
(W, 0)3=(1.2,0.5)

Number of cntres

-~ Background

Signal
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Neural Networks

* These are non-linear algorithms:
= (alled Artificial Neural Networks: ANN or just Neural Networks NN.

= The fundamental building block of a NN is the perceptron (algorithmic
analogy of a neuron).

X1
Xy
X3
X4
O=0orl

XN

Impulse: Binary Response:

n inputs Threshold Output

Y= F+b

if y>0then O=1, else O=0

39



Neural Networks
(Multi-Layer Perceptron)

y=f(@-T+b) |

* ninputs - 1
= 1 hidden layer of n nodes _y T 1 4 eaztp
= 1 output

-
04—
-

also used:
step function
tanh, etc.

.....

A ?.‘?‘;z\%( » 0O
X et S I‘VA\\.
A -~ ‘-\
N
x >
Input Hidden Output

Decide on the activation function to use for each node/layer.

Determine the weights used to evaluate y, for each node.
Check that we have not over-trained our network

| I R
0 2 4
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Training an MLP

= This is a multi-parameter problem.

* There are many minima, and we want to converge on the
global minimum, not on a local one.

There are many nodes, hence
many many weight parameters
to determine when training an
MLP.

This is a complicated problem
akin to a multi-dimensional ML
fit with many free parameters.

Global minimum

12

= Determining the global minimum can be non-trivial.

but, there are now fairly advanced tools to do that, like TMVA
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Training an MLP

* |n order to train the MLP we need two samples of data:
= Sample A, which is a data-set containing M entries of class A events.
= Sample B, which is a data-set containing M entries of class B events.

You don't have to use equal numbers
of events for both classes, however
not doing so will affect the

convergence of your network. You are
advised to keep to using equal
number of events in samples A and B.

* How do we know when training has finished?

= Just compare the error against some anticipated threshold?

= Just compare the error gradient against some anticipated threshold?
= Compare the error obtained against a validation sample.
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Training an MLP:
How much data do we need?

= As arule of thumb, the number of events scales with
the complexity of the network as follows:

M = sample size
W = number of weight parameters
N = number of nodes

€ = error threshold

If there is a single hidden layer, to avoid failing to train a net properly you want to
make sure that the training sample size M satisfies:

=6

If your sample doesn't satisfy this then you run a high risk of misclassification of events.

If the network is more complicated then you should try to ensure that:
%4
M > O | — log(N/e)
€

Ranm & Mancclor Nonral Cama 1 181140 (1QRQ)
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Training an MLP:
How much data do we need?

= Example:

= an MLP with 1 hidden layer of 10 nodes,10 inputs and 1
output node (so... W=(10+1)x10), and the misclassification
error level you want to achieve is 0.1:

w>o(")

= You want more than 1100 training events to have a
reasonable chance of obtaining an optimal separation of
signal and background.

= This doesn't mean that you get a properly trained net —
you have to do some more checks to ensure that!
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Training an MLP: Validation

= Qvertraining occurs when you have obtained weights that are
tailored to your specific sample of A and B events, rather than
being a true representation of the optimal discrimination
between the classes.

<
o0

Is the line a reasonable boundary
to use as a cut between A and B?

IIYTI]IYYIT"H‘[TTH"'H' T

=
»

=
i

[ \
TT"TTTT]’”"

(=]
”
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Training an MLP: Validation

= Qvertraining occurs when you have obtained weights that are
tailored to your specific sample of A and B events, rather than

being a true representation of the optimal discrimination
between the classes.

M=30

TTT TTT
:I=’ . -

TYTI T T

The boundary has been tailored to the initial sample of statistics and (in this case) is

not the best choice of boundary for a separate sample.

This is an illustrates the need to have sufficient data to train. It highlights the issue of
statistical fluctuations in data. Don't tune on features of a specific data set!
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Training an MLP: Validation

= Qvertraining occurs when you have obtained weights that are
tailored to your specific sample of A and B events, rather than
being a true representation of the optimal discrimination
between the classes.

M=30

=
IITYIIITTIITYllleTITTI1T]11TT

TTT TTT
:>' . -

=
—_ rJ
|

0 0l 02 03 04 0.5 0.6 0.7 0.8 09 | 0 0.1 02 03 04 0.5 0.6 0.7 08 09 ]

A solution is to use a statistically independent sample to check the result of the
training, and to stop training only when the the training and reference samples give
the same performance (within tolerance).



Training an MLP: Validation

It is important that we have sufficient data to use in training:

= Makes sure that the result is sensible.

= Means that we can use an equal amount of data as a reference to
compare against.

= This can be a tough constraint as we often resort to MLPs when we
want to extract every last bit of information from the data, and usually
don't have events to spare!

Similarly make sure that you don't over-train your MLP. How
do you know if you are converging on a general feature of the
data, or just a specific feature of your dataset?

= Use a validation sample!

The temptation is to use all data to train.
= Don't do it as you can't guarantee the result is sensible!
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The Top Quark

DO pproa Analysis with 2 and 5 variables

W-jets
> Gat.g E e E Iﬂ_m .
5 o . () |
. . c
NN Analysis tt > e+jets channel 5 0% :
2 o’s '.'.u. -
02 T
INPUTS 0:? ol . I
LN ERR N J P S | . , o
"l 005 ¥
. Neural ous . "[ tt ; | e 250 500
Y| wecworx 1 | ’ - ™ 1130 i |
. KA1 i il H.
L E L R B (1 =IRSRK nh” \ w+4ms (L=580 ov™")
o Yo e m b aE NN vt (11160} -~. 05
S . = O 04
E'i WHjets | € nw \ Data
our © :., .-
I:::;:; H K52 ;': . . l 2 Og";
t & 82 13 a4 0 '“03’5*"‘("""-':' 0\2 e
0.'%
o1 -
. - .? -
0»0: ~ * A 4 4 l L
0 250 500

H,
itlers DO Runlc Dato (L=13.5 sb™")

Q@ If D@ had pursued the NN analysis in other channels, the
evidence and/or discovery may have come sooner!

49



0.4

0.35

0.3

0.25

0.15

0.1

0.05

Cut Optimization
Feb. 95

P. Bhat, H.Prosper, E. Amidi
DO Top Marathon, Feb. ‘95

Aplanarity & HT variables
Letpon+jets channels

Neural Network Equi-probability Contour cuts from 2-variable analysis
compared with conyentional cuts used in Jan. ’95 and in Observation paper

LquiPr ity Contours of (2,3,1) Network

\
- A Topl60 .
Jan. ’95 A VecBos Slgnal
(Aspen) cut e oCD Background
\ A% Mar. '95
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Measurement of the Top Quark Mass

JIHL
First significant physics result using multivariate methods

Discriminant variables DO Lepton-iets
02 025 100 Fit mass 260 150 True mass 200 .
0.15] 053] ; |
o 0123 4 !
0.05 | 0071 10f ]
.025 4 0.025 ] [ of* 112
°5 50 100 0 oi 02 o3 o4 L] A4 o 1
x1 x2 r e [ 1 ;
031 0.3] [ - 1<
' 0.25 0.25 ] o & i. AL ]
021 0.2 - _ L ' 4
0.15 0.15 [ .
oi;;t of)(;;j 4 » —data ’ _ _
0 0 i o fit + ]
o 05 X13 . 1.5 f o. 0.5 y 1 . ' N bkgd i : 6
The Discriminants - ;
. P + Jr ’ 31 Events |
DLB ' + . (5 tagged)
Background Signal Lk ] Z AL | 4 ¢ ]
[ A A * 0 ]
0:‘-‘& lllll AAAAIAL:‘;,_\‘..I
80 120 160 200 20 280
Fit top quark mass (GeV/c
m, = 173.3 £ 5.6(stat.) = 6.2 (syst.) GeV/c?
t

0 02 04 06 08 1 0 02 04 06 08 1 Fit performed in 2-D: (DLB/NN9 mﬁt)

LB: Low-bias maximum likelihood Statistical error for the same data sample
NN: Neural Networks reduced from 11.7 GeV to 5.6 GeV!
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Decision Trees

A comparatively new method of analysis
@ seems more visual (perception, mostly)

@ Trees can be
@Binary
@ Boosted
@ Bagged

@ Trees In a Forest
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Decision Trees

= Apply the initial rule to all data:
= Divide into two classes

(with a blnary output)
R(z,) = z >z, TRUE
= z <z, FALSE
= Each successive layer S&
divides the data further
into Signal (class A)/
Background (class B)
classifications.

* The classification for a set of cut values will have a
classification error.

m Initial rule (Root node)

= So just as with a NN one can vary the cut values x; in order
to train the tree.
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Decision Trees

* Whatis happening? m Initial rule (Root node)

= Each nodes uses the
sub-set of discriminating
variables that give the
best separation between
classes.

Signal (A)  Background (B)

= Some variables may be used by more than one node.

= Other variables may never be used.
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Decision Trees

* Whatis happening? m Initial rule (Root node)
* The bottom of a tree just
looks like a sub-sample
of events subjectedto a o
cut based analysis.

Signal (A)  Background (B)

* There are many bottom levels to the tree:

= ... so there are many signal / background regions defined
by the algorithm.
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Decision Trees

= Binary Decision Tree has the following pros/cons:

= Pros:
= Easy to understand and interpret.

= More flexibility in the algorithm when trying to separate classes
of events.

= Able to obtain better separation between classes of events than a
simple cut-based approach.

= Cons:
= |nstability with respect to statistical fluctuations in the training
sample.

" |tis possible to improve upon the binary decision tree
algorithm to try and overcome the instability or
susceptibility of overtraining.
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Boosted Decision Trees

= At each stage in training there may be some mis-

classification of events (error rate).
= Assign a greater event weight a to mis-classified events in
the next training iteration.

_l—e

o = € = error rate

€

= Re-weight whole sample so that the sum of weights

remains the same, then iterate. By re-weighting mis-
; classified events by a
the aim is to reduce the
error rate of the trained
tree, compared with an

-> un-boosted algorithm.

Iteration 1 Iteration 2
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Boosted Decision Trees

= At each stage in training there may be some mis-
classification of events (error rate).

= Assign a greater event weight a to mis-classified events in
the next training iteration.

1l —e€
o0 = € = error rate
€
= Re-weight whole sample so that the sum of weights
remains the same, then iterate. The resulting Boosted
; Decision Tree tends to be
Iteration 1 Iteration 2 more stable than a normal

Decision Tree.
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Bagged Decision Trees

= Aim: To improve the stability of a Decision Tree
algorithm.

= Solution: Sample the training data used to determine
the solution.

= Take the average solution of a number of re-sampled
solutions.

= This re-sampling removes the problem of fine tuning on
statistical fluctuations.

Like choosing the mean £
value of a cut at each level. e

Again, the results tend to 20
be more stable than just na
using a decision tree.




Forests

= A given decision tree may not be stable, so instead

we Can grow 4 forest.

= For a forest, the classification of an event e, in sample A or
B is determined as the dominant result of all of the tree
classifications for that event.

e.g. In a forest of 100 trees, if there are 80 classifications of type A, and
20 of type B, the event e, is considered to be of type A.

= Trees in a forest use a common training sample, and are
typically boosted.
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Matrix Element Analysis (ME)

Tries to address the problem of the choice of
variables

@ choice may be a problem — number of variables can
grow very large, so one needs huge training sample,
increased sensitivity to noise, etc.

@ with modern training methods it is not as big a problem as
it used to be

@ take theoretical matrix element for the signal and try
to map observed variables to the theoretical ones

@ before one gets into gory details seems that it guarantees
the best possible set of variables

@ plus, no training is required — no false minima!

was first used by D@ to measure top mass
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Top Mass Measurement: tt—(blv)(bgq)

@ 4 jets, 1 lepton and missing E; v
@ Which jet belongs to what? quark jet
@ Combinatorics!

@ B-tagging helps:
@ 2 b-tags =>2 combinations
@ 1 b-tag => 6 combinations
@ 0 b-tags =>12 combinations

@ More combinatorics from ISR/FSR

@ Two Strategies:
@ Template method:
@ Uses "best” combination
@ Chi2 fit requires m(t)=m(t)
@ Matrix Element method:
@ Uses all combinations

@ Assign probability depending on
kinematic consistency with top Page 62
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First ME application: top mass

If we could access all parton level quantities in the events (the four
momentum for all final and initial state particles), then we would simply
evaluate the differential cross section as a function of the mass of the
top quark for these partons. This way we would be using our best

knowledge of the physics involved.

Since we do not have the partonlevel information for data, we use the
differential cross section and integrate over everything we do not know.

P,(x) == [ do(y)dada, f (41 (4: W (x,)

tot

y is parton kinematic variables
X is measured kinematic variables
W(x,y) is a transfer function
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Transfer Function for e+jets

W(x,y) probability of measuring x when y was
produced (x jet variables, y parton variables):

4 4
W(x,y)=8(p! = p)| |7, (E}ED] | 67 () -Q))
j=1 i=1

where
E energy of the produced quarks
E* measured and corrected jet energy
P, produced electron momenta
P~ measured electron momenta
¥ (¥ produced and measured jet angles

—

Energy of electrons is considered well measured, an extra integral is done for events with
muons. Due to the excellent granularity of the D& calorimeter, angles are also considered as

well measured. A sum of two Gaussians is used for the jet transfer function (W), parameters
extracted from MC simulation.
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Event Probability

@ in the first analysis, 5 jet events were discarded
@ use all combinations, including two solutions for neutrino p,

1
E =G—jdpldm12 dMdm;dM; 3, | M f|( Z‘)Iﬂ(q|2)¢6w}a(x,)’)
tot comb,v 1 2

2(in) + 18(final) = 20 degrees of freedom
3(e) + 8(€21..Q24) + 3(P, =P . )+ 1(E, =E;,,,) = 15 constraints
20 — 15 = 5 integrals

Sum over 24 combinations of jets, all values of the neutrino momentum are
considered. Because it is L.O., we use only 4-jet events.

P, momentum of one of the jets m,m, top mass in the event
M,M, W mass in the event f(q ).f(q ) parton distribution functions (CTEQ4) for qq incident chann.
4,9, initial parton momenta P, six particle phase space

Wi(x,y) probability of measuring x when y was produced in the collision

@ make similar event probabilities for the background

@ discriminator is Pg./(Pgq+Pyy,)
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Transfer Function: full simulation vs.
direct calculation with W(x,y)
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Histogram: HERWIG events after full D@ reconstruction, using the standard criteria
Solid Line: Calculated by using the transfer function on partons
Dashed: Same as solid, but with a variant transfer function
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Run I data

"

2 ’ [ .10 \'::’ """" / T
( : S, u—l—a...ﬁu‘.&’?j‘é‘bﬁéﬁ;’;’ ‘.";.‘.'.' ..'Jr..L..L..A.nlI T
16 14 ! Q 8 6
Pt
Background probability Discriminator

Comparison of (16 signal + 55 background) MC and data sample
before the background probability selection.
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Run I data

—~ 552 ;
= " _lg _
—ICSSO :_....‘ } 1 ; /
548 [ .. - %
546 | * | 08 [ %
544 1 . 06 | /
542 | . - / }
540 :_ 0.4 :__ ”;' \'.‘\‘
C _ ..P \
538 0.2 *
536 [ : 4 % \
_— / .
I TN T T NN TR S TR NN SN S 0 P A /1 L 16 4 4
140 160 180 200 170 180 190
Top mass (GeV) Top mass (GeV)

M= 180.1 + 3.6 GeV = SYST - preliminary
This new technique improves the statistical error on M, from 5.6 GeV
[PRD 58 52001, (1998)] to 3.6 GeV. This is equivalent to a factor of 2.4 in
the number of events. 22 events pass our cuts, from fit: (12 s + 10 b)




Top mass In Run 11

@ ME Run I measurement:
M,=180.1 £+ 3.6 (stat) £4.0 (syst) GeV

@ In Run II - much larger statistics
@ measurements become limited by systematics
@the largest one is jet energy scale (JES)

@ Another idea from D@: instead of varying
JES in top mass likelihood to get a
systematic error on the mass, find
minimum of likelihood that is a function of

BOTH top mass and JES
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Example Results on m,,,

CDF Run Il Preliminary 3.2 fb”

— 14
E _E
n 12
lu —
a B
0.8
0.6
0.4
0.2
O — A(InL)=-0.5
02 — A(InL)=-2.0
04 — A(InL)=-45
o6~ 1 by by b b b b by |
167 168 169 170 171 172 173 174 175 176
m, (GeV/c’)
mmp = top =
173.7 + 0.8 (stat) + 1.6 (syst) GeV 172.1 £ 0.9 (stay) = 1.3 (syst) GeV

p o] +1.0% P |12 1o +0.9%
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@ Once experimentalists have data, there is

Future of M,,,

no limit to our ingenuity!!

A M(total) GeV/c?

—L
II']I

=
o
TTT]

CDF Top Mass Uncertainty

(all channels combined)

1fb' 2fb" 4fb" 8fb"
!

v CDF Results

* Run lla LJ goal (TDR 1996)

Scale A(stat) /\L, Fix A(syst)

(assumes no improvements)
_ ... Scale A(total) NL

(improvema‘ntsl required) 1

10° 10° 10

Integrated Luminosity (pb™)

nneyraicu Luiimivaiy \pw )

/1



Implications for the Higgs Boson

] —Q"7+35
Relation: My, vs m,,, vs M,, my =877 s GeV
March 2009 6_&: =12009 m =157 GeV
C ! - Theory uncertainty i :
{1 —LEP2 and Tevatron (prel.) : % Mfajd _
0.5 - LEP1 and SLD 5 . i —0.02758+0.00035 7
. 68% CL ' % i - 0.02749£0.00012
. % 4 - % tees incl low Q% data -
= O
q=— Nx
Se04{ [}z g 3 ]
=
S 2 -
80.3 1 19 i
0 Preliminary
150 1[GeV] 200 30 300
m, [GeV] m,, [GeV]
Indirect constraints:
Standard Model still works! m<163 GeV @95%CL
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Single top
@ A.k.a. electroweak production of top quark
@ A great way to test if top is actually THE top quark

s-channel (tb) t-channel (tq b)
q
w

>M/< b t
g —

b
o onLo = 0.88 & 0.11 pb(*) ® onro = 1.98 £ 0.25 pb (*)

@ Final state — W + 2 b-jets (+ sometimes q)
@ same as low mass Higgs
Q@ A field day for multivariate analyses
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Decision Trees

DT Choices

@ 1/3 of MC for training

@ Adaboost = 0.2

@ Boosting cycles = 20

@ Signal leaf if purity > 0.5

@ Minimum leaf size = 100
events

@ Same total weight to signal
and background to start

Analysis Strategy

@ Train 36 separate trees:
(s,t,s+t) x (e,u) x (2,3,4
jets) x (1,2 tags)

@ For each signal train against
the sum of backgrounds
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Decision Tree for the First
Evidence Analysis: 49 variables!

Object Kinematics
pr(jetl)
P (jet2)
pr(jet3)
P (jet4)
pr(bestl)
pT (notbest1)
pr(notbest2)
P (tagl)
pr(untagl)
pT (untag2)

Angular Correlations
AR(jetl jet2)
cos(bestl,lepton)yesttop
cos(best1,notbestl)pcsttop
cos(tagl,alljets)njets

cos(tagl,lepton)pt aggedtop
cos(jetl,alljets)alljets

cos(jetl,Iepton)btaggedtop
cos(jet2,alljets) alljets
cos(jet2,lepton)ptaggedtop

cos(lepton, Q(lepton) X z)besttop
cos(lepton, besttopframe)y, est topCMframe

cos(lepton, btaggedtopfra me)btaggedtopc Mframe
cos(notbest,alljets) 1t s

cos(notbest,lepton)pesttop
cos(untagl,alljets)alijets
cos(untagl,lepton) ¢ apsedtop

Event Kinematics
Aplanarity(alljets, W)
M(W ,bestl) (“best” top mass)
M(W , tagl) ("b-tagged" top mass)
H (alljets)
Hy(alljets—best1)
H (alljets—tagl)

Hr (alljets, W) e Adding

Hr (jetl,jet2) :

Hr (jet1,jet2, W) variables does

M(alljets)

M(alljets—best1) not degrade

M(alljets—tagl)

M(jetl jet2) performance

M(jetl,jet2, W)

M (jet1 jet2) @ Tested shorter

M+ (W) .

Missing ET lists, lose some

pr(alljets—bestl) . e .

p1(alljets—tagl) SenS|t|V|ty

pT(jetl-jet2)

\C}Uepton)xn(untagl) @ Same list used
s

Sphericity(alljets, W) for all channels



Matrix Element (Elements!)

-
<HL
ﬁ ‘f ) \
Dhnhﬁ”) g

u g

ooooooo™

u ( 1
t
b
4q 456 b
45555
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Neural Network

@ used modification of MLP similar in spirit
to bagging a forest of decision trees

@ A different sort of neural network:

o Instead of choosing one set of weights, find posterior probability
density over all possible weights

o Averaging over many networks weighted by the probability of
each network given the training data

o Less prone to overtraining

o For details see:
http://www.cs.toronto.edu/radford /fbm.software.html

o Use 24 variables (subset of DT variables)
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First Evidence

DT <0.3 DT > 0.55

S 80 DO Run Il Preliminary 0.9 fts' s DO Run il Preliminary 0.9 fts'
é - e+ channel é o+ channel
- | 1-21ags - 1-2tags
2 24 jels 2 24 jets
§ 1 DT<0.3 5 0 DT>0.55
2 0 == s+1=4.95 pb kA s+1=4.95 pb
; | °

2 3

0 100 150 150
M(W) [GeV] M(W) [GeV]
DT > 0.65
s 1o DO Run Il Preliminary 0.9 fts'
O ; e+|l channel
= 1-2 tags
L 2-4 jets
§ DT>0.65
S, s+1=4.95 pb
©
] . .
> @ Excess in high DT
output region.
1 " i
150
M(W) [GeV]
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First Evidence

DO Runll 0.9 fb™
Decision trees . —&— 4.9 +:: pb
Matrix elements . —— 4.6 +:g pb
Bayesian NNs —e 5.0 +:g pb

Z. Sullivan PRD 70, 114012 (2004), m, = 175 GeV

I | | | | l

. L D L
-5 0 5 10 15
o(pp — tb+tqb) [pb]
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more blood can be squeezed
from this stone!

Technique | Electron | Muon
DT vs ME 52% 58%
DT vs BNN 56% 48%
ME vs BNN 46% 52%

Also measured the cross section in 400 members of the SM ensemble
with all three techniques and calculated the linear correlation between
each pair:

DT ME | BNN
DT | 100% | 39% | 57%
ME 100% | 29%

BNN 100% m




Single Top: now at CDF

a Single top observed. 3.2fb™ o= 2.3*)2pb, 5.9 0 significance
s Separately measure s and t channel production.

s Measurement driven by statistics of single and double tag events

u(d) MBS SO, o A _ 5. CDFRunliPreliminary, !‘,?3'.2,".9"1%.”.
2 | e BestFit
e 4 F W 683%CL |
8§ af 1 955%CL |
3 ; 1 99.7% CL ]
0w 35 .
- : B SM(NLO)
6 3| B SM(NNNLO)
S 25 |
2 ) D [ ]
‘ S 5| _5
s-channel 3] : :
- 15 - ]
i b ;
O_t = 0-8 :I: 0-4 pb 0.5 ; —
— 0.7 e L e
Os= 1-8i_05 pb 90 05 1 15 2 25 3 35 4 45 5

s-Channel Cross Section c_ [pb]
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The Higgs Boson

@ Electroweak Symmetry breaking caused by scalar Higgs field

@ vacuum expectation value of the Higgs field <®> =246 GeV/c?
@ gives mass to the W and Z gauge bosons,
@ My x gy<d>
@ fermions gain a mass by Yukawa interactions with the Higgs field,
Q@ M x g, <d>
@ Higgs boson couplings are proportional to mass

@ Higgs boson prevents unitarity violation of WW ﬁe

@ o(pp—WW) > o(pp — anything)'
@ => illegal!
o At Vs=1.4TeV! th I
n E2 TN Terms which grow

Peter Higgs

gomm

A~ g’ > with energy cancel
M, for E >> My
w* >
A~-g° £ This cancellation
M, requires My < 800 GeV

Page 82
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Higgs Production: Tevatron and LHC

Tevatron
1025"'1 T T - 3 R
: S(pp—H+X) [pb] 102L
— - Vs =2 TeV 1 ] \
D 10 E_IIltltllllllllllllllllllllllllllllllllllllllll M(=17SGCV _: [
e; g gg—H CTEQ4M ] 10F
o 1 \ 3 i
- ] o 1F
& F
b10-1—
10-2—
103 F M. Spiraetal.

NLO QCD

4 f o By gg,qq—)]-.lbliI

o(pp —H+X)
Vs =14 TeV

m, = 175 GeV
CTEQ4M

L ! 1 L 1 L L 1 1 1 1 L 1 L
80 100 120 140 160 180 200 0 200
M, [GeV]

g g fusion

t Tfusion W, Z bremsstrahlung

dominant: gg— H, subdominant: HW, HZ, Hqq

400 600 800

M,, (GeV)

WW, ZZ fusion

1000

events for 10° pb~"

HO



Higgs Boson Decay

@ Depends on Mass
@ M,<130 GeV/c?:

@ bb dominant i
@ WW and Tt subdominant
@ vy small but useful

@ M, >130 GeV/c?:
@ WW dominant
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High Mass: H — WW® — [*vy

g
° Higgs mass reconstruction impossible due to ; .
two neutrinos in final state b
* Make use of spin correlations to suppress WW g

background:

» Higgs is scalar: spin=0 ! |
* leptons in H = WW®) — |*I-vv are collinear v
* Main background: WW production v
q "
e CDF Run Il Preliminary [L-aan’
[ OS 1 Jets

LM, = 160 GeV/c?
50 —

e ~
. / % L Wijets
7 A 7 4y
40— Mt
4 Wz
Y74
DY
Oww
o —HWW x 10
-e-Data +

Events /0.2

20

10

IIIIIIIIIIIIIII

| 10x 160 GeV Higgs

0 0.5 1 15 2 2.5 3
Ao(Il)
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Low Mass Higgs: m,<140 GeV

= Tevatron:
= WH(—bb), ZH(—bb)
= | HC:
" H(—=vy), qqH(—=tt/WW¥*)
= may be other modes with very high L




Number of Events

o

300

250

200

150

100

50

CDF Run Il Preliminary 2.7 fo”’

/<bjet

WH-Ivbb

_"H “bjet

W, Z

N

e/u

@ WH selection:

@ 1 or 2 tagged b-jets

@ electron or muon with
pr > 20 GeV

@ E.Miss > 20 GeV

Looking for 2 jets

'UlIIII|IIII|IIIIIIIII|IIII|IIIIIIIII

[ W+bb
[ W+ee
[ T

[ Single Top (s-chan)
[ Single Top (t-chan)
ww

wz
zz
[ Z+Jets
I Non-W

WH+LF (mistag)
7722 Background Error

i 7

1 1.5

2

2.5

3

3.5

4

W

Lo v b b v b v P v e e |

4.5 5 5.5
Number of Jets

Expected Numbers of Events
for 2 b-tags:

WH signal: 1.6
Background: 110+25



WH Dijet Mass distributions

@ Use discriminant to separate signal
from backgrounds:

@ Invariant mass of the two b-jets
@ Signal peaks at m(bb)=m,
@ Background has smooth distribution
@ More complex:
@ Neural network or other advanced
techniques
@ Backgrounds still much larger than
the signal:
@ Further experimental improvements
and luminosity required
@ E.g. b-tagging efficiency (40->60%),
NN/ME selection, higher lepton
acceptance

@ Similar analyses for ZH

Events

Events

90
go— D@ Preliminary ® Data
70
o
e
a0
30;—
20

10—
10°E
10°E B muttijet

10%E

10

F L=27fb" W + 2jets / 2b-tag
W +jets
[ multijet
[ I
Ewob
.other
OwHx 10

% 50 100 150 200 250 300 350 400
DiJet Mass (GeV)

- L=27fb" W + 2jets / 2b-tag

- D@ Preliminary ® Data
i W +jets

[ [
Ewob
.other
CwHx 10

ME discriminant

02 0 02 04 06 08 1 1.2
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Tevatron Combined Status

Tevatron Run Il Preliminary, L=2.0-5.4 fb™

ll'l'lll-'ll II‘Illl"'l'llllll"lllllll

PO _ LEP Exclusion . Tevatron
Lo + Exclusion
Xxpecte

Observed 20 /

: +1c Expected
. 120 Expected

95% CL Limit/SM
=)

+ ,‘ . November 6,2009 :
100 110 120 130 140 150 160 170 180 190 200
mH(GeV/c )

@ Combine CDF and D@ analyses from all channels at
low and high mass
@ Exclude m,=163-166 GeV/c? at 95% C.L.
@ m,=120 GeV/c?: limit/SM=2.8



Future of the Tevatron

Running confirmed till 2011

@ chance to exclude large fraction of Higgs masses if
Higgs is not there

@ very slim chance of evidence
Running until 2014 is being considered

My personal view

@ LHC schedule is not important — probably only
Tevatron can measure h—>bb if higgs mass is low

@ There is also value in beam asymmetry — makes
measurements like top charge asymmetry (which is
currently ~2c anomalous) possible

@ Unfortunately physics is not the only consideration...
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