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M∗ = 1TeV

Large Extra 
Dimensions

Gravity gets strong at TeV
missing Energy signatures

Arkani-Hamed, Dimopoulos, Dvali   hep-ph/9803315
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Perturbative Estimate
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Non-Perturbative Estimate
L2 = f2

π
4 TrDµΣ†DµΣ

L4 = L10TrΣ†FLµνΣFµν
R + . . .

measure L10 in π → γeν

Snon−pert. ≈ 2× Spert.

for one doublet and N = 2

S ∼ 1
3π to 2

3π = 0.1 to 0.2

Non-Perturbative 

Holdom, JT Phys. Lett. B  247 (1990) 88
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Custodial Symmetry
compare

SU(2)L × U(1)Y →U(1)em

SU(2)L × SU(2)R →SU(2)D

custodial symmetry can forbid T

what symmetry can forbid S?

Custodial Symmetry



Little Higgs
5D gauge boson has an extra polarization

in 4D it is a scalar
5D gauge invariance keeps it massless

can we use this for the Higgs?
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Discrete Extra Dim.
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Two Sites
SU(2)  SU(2) 

Light

Heavy

s c

-c

s

MHeavy ~ f
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m2
H
∝ g2

1g2
2

Little Higgs
The “little hierarchy” problem is why is the Higgs 
light compared to a 10 TeV cutoff

If the Higgs is a Pseudo-Goldstone boson it 
should have a suppressed mass

If symmetry is restored when either of two
interactions vanish

No quadratic divergence at one loop



Arkani-Hamed, Cohen, Katz, Nelson hep-ph/0206021

SU(2)1 × SU(2)2 → SU(2)L

U(1)1 × U(1)2 → U(1)Y

SU(2)1 SU(2)2

Σ(x) = e2iΠ/f
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Littlest Higgs
SU(5)→ SO(5)

(52 − 1)− 1
2
5 · 4 = 14 GB�s



Littlest Higgs Mass
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Collider phenomenology for generic little Higgs

models:
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Reach ∼ 2 TeV at LHC (300 fb−1).
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Reach ∼ 2 TeV at LHC (300 fb−1).

Top Partner

Azuelos et. al. hep-ph/0402037

background

signal

reach of 2 TeV



∆m2
H
∼ −3λ2

t

2π2
f2

Low Energy Effects
H H

WL WH

f

f

WH

f

f

f

f

% level fine tuning

Csaki, Hubisz, Kribs, Mead JT hep-ph/0211124



T-parity (HC & Low, ’03, ’04)

The couplings which contribute to EW observ-

ables at tree level are not necessary for cancel-

ing the 1-loop quadratic divergence. They can

be eliminated by a symmetry, T-parity:

SM → +SM

WH , ZH , AH, φ → −(WH , ZH , AH, φ)

It is analogous to the R-parity in supersym-

metric theories.

It can be imposed in many little Higgs mod-

els, in a similar way that Parity is conserved in

QCD.

T-Parity

Cheng, Low hep-ph/0308199

bonus: dark matter candidate



a) SU(5) SU(2)3 U(1)3

Q1 ¯ 1 +2/3
Q2 1 +2/3
q3 1 −1/6
q4 1 −7/6
q5 1 −7/6

UR1 1 1 −2/3
UR2 1 1 −2/3
uR 1 1 −2/3
dR 1 1 +1/3

b) SU(5) SU(2)3 U(1)3

Q′
1

¯ 1 −2/3
Q′

2 1 −2/3
q′3, q

′′
3 1 +1/6

q′4 1 +7/6
q′5 1 +7/6

U ′
R1 1 1 +2/3

U ′
R2 1 1 +2/3

c) SU(5) SU(2)3 U(1)3

L1 ¯ 1 0
L2 1 0
!3 1 +1/2
!4 1 −1/2
!5 1 −1/2

ER1 1 1 0
ER2 1 1 0
eR 1 1 +1
(νR 1 1 0 )

Table 3: The complete fermion sector (single generation) and the gauge charge assignments
for the anomaly-free version of the model.

SU(5) SU(3)c SU(2)3 U(1)3

q′′3 1 +1/6
uR 1 ¯ 1 −2/3
dR 1 ¯ 1 +1/3
!5 1 1 −1/2
eR 1 1 1 +1

Table 4: The chiral matter content for one generation of the anomaly-free version of the
model.

13

UV Completion

Csaki, Heinonen, Perelstein, 
Spethmann hep-ph/0804.0622

one generation:

then add SUSY or 
Warped Extra Dimensions



Warped Throats



Randall-Sundrum
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Goldberger, Wise hep-ph/9907218

Stabilization

Planck
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Maldacena Conjecture
3-dimensional 

branes

Five Dimensional
weakly coupled

Supergravity on AdS5 × S5

same 
universality 
class

Four Dimensional
strongly coupled

SU(N) gauge theory

Low Energy
Large N, g2 N
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Anti-de Sitter x Sphere
S5: R2 = x2

1 + x2
2 + x2
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−R2 = −u v − x2
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2 + x2
3 + x2

4AdS5:



(∂2
z −

1
z
∂z + q2)ψ(z) = 0

ψk(z) = z (akJ1(qkz) + bkY1(qkz))

Gauge KK Modes
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Gauge KK Modes
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d5x
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n

gn(z)χn(x) ψ =
�

n

fn(z)ψn(x)

f �
n + mn gn −

c + 2
z

fn = 0,

g�
n −mn gn +

c− 2
z
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f0 = C0

� z

R

�c+2
,

g0 = A0

� z
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Fermion KK modes

zero modes:



χ†σ̄µ∂µχ

� R�

R
dz z−2c ∼ R�1−2c −R1−2c

c > 1/2 c < 1/2
R� →∞ R→ 0

Fermion KK modes

converges:
localized on 
Planck brane

localized on 
TeV brane

coefficient of zero mode kinetic term



Davoudiasl, Hewett, Rizzo hep-ph/0006041

Randall-Sundrum

Drell-Yan graviton production



∆m2
H

=
3λ2

t

8π2
(10 TeV)2

∼ 3.8TeV2

m2
H

∼ 0.01TeV2

S:

Randall-Sundrum

make gauge resonances heavy, but then
doesn’t solve the “little hierarchy” problem

0.3% fine tuning
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should produce vacuum polarization corrections
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Gauge-Higgs 
Unification

 Agashe, Contino, Pomarol hep-ph/0412089

SU(2)L × U(1)Y

TeVPlanck

gauge bosons SO(4)× U(1)

SO(5)× U(1)



Minimal
Composite Higgs

 Agashe, Contino, Pomarol hep-ph/0412089

SU(2)L × U(1)Y

SO(5)× U(1)

TeVPlanck

SO(4)× U(1)A5

Aµ

∂z(A5/z) = 0 ∼ 4 of SO(4), zero mode 
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New Custodial Symmetry
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Figure 1: Pair production of T5/3 and B to same-sign dilepton final states.

(section 4). Sections 5 and 6 present our main analysis: first, we show the optimal cuts and
characterize the best observables for discovering the heavy T5/3 and B without making any
sophisticated reconstruction; then, we reconstruct the W and t candidates and pair them to
reconstruct the T5/3 invariant mass. We conclude with a critical discussion of our results.

2 A simple model for the top partners

Although the main results of our analysis will be largely independent of the specific real-
ization of the new sector, we will adopt as a working example the “two-site” description of
Ref. [23], which reproduces the low-energy regime of the 5D models of [13, 14] (see also [24]
for an alternative 4D construction). Its two building blocks are the weakly-coupled sec-
tor of the elementary fields qL = (tL, bL) and tR, and a composite sector comprising two
heavy multiplets (2, 2)2/3, (1, 1)2/3 plus the Higgs (the case with partners of the tR in a
[(1, 3) ⊕ (3, 1)]2/3 can be similarly worked out):

Q = (2, 2)2/3 =

[

T T5/3

B T2/3

]

, T̃ = (1, 1)2/3 , H = (2, 2)0 =

[

φ†
0 φ+

−φ− φ0

]

. (1)

The two sectors are linearly coupled through mass mixing terms, resulting in SM and heavy
mass eigenstates that are admixtures of elementary and composite modes. The Higgs dou-
blet couples only to the composite fermions, and its Yukawa interactions to the SM and
heavy eigenstates arise only via their composite component. The Lagrangian in the elemen-
tary/composite basis is (we omit the Higgs potential and kinetic terms and we assume, for
simplicity, the same Yukawa coupling for both left and right composite chiralities):

L =q̄L $∂ qL + t̄R $∂ tR

+ Tr
{

Q̄ ( $∂ − MQ)Q
}

+ ¯̃T ( $∂ − MT̃ ) T̃ + Y∗ Tr{Q̄H} T̃ + h.c

+ ∆L q̄L (T, B) + ∆R t̄RT̃ + h.c.

(2)

3

Custodial t Partner

Contino, Servant hep-ph/0801.1679

!"" #"" $"" %"" &&""
"

&"

'"

!"

("

#"

)
*+
,*
-
.
-
/
01
23
'
#
*4
-
5
6

78/.39:;<-10*#*=-016**>4-5?

7*@*#""*4-5*****A*@*&"*,B!& C#2!*D*E*D*BFG

E*D*BFG

B:FGH;+I/<

C#2!*D*E*D*BFG*

J809*BK0:HH8/HL

E*D*BFG*



q̄ q′

g

g

T̄5/3

q′

q̄

g

W−

W+ b

b̄

t̄

l+ ν
l+ ν

t
T5/3

W−

W+

l+ q′

g

g

B̄

ν

q̄

g

W−

W+ b

b̄

t̄

q̄ q′ l+ ν

t

B

W+

W−

Figure 1: Pair production of T5/3 and B to same-sign dilepton final states.

(section 4). Sections 5 and 6 present our main analysis: first, we show the optimal cuts and
characterize the best observables for discovering the heavy T5/3 and B without making any
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reconstruct the T5/3 invariant mass. We conclude with a critical discussion of our results.
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[(1, 3) ⊕ (3, 1)]2/3 can be similarly worked out):
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The two sectors are linearly coupled through mass mixing terms, resulting in SM and heavy
mass eigenstates that are admixtures of elementary and composite modes. The Higgs dou-
blet couples only to the composite fermions, and its Yukawa interactions to the SM and
heavy eigenstates arise only via their composite component. The Lagrangian in the elemen-
tary/composite basis is (we omit the Higgs potential and kinetic terms and we assume, for
simplicity, the same Yukawa coupling for both left and right composite chiralities):
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Fine Tuning for EWSB
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Decoupling the Higgs
Decoupling the Higgs

for v = 1 TeV
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SU(2)D × U(1)B−LSU(2)L × U(1)Y

SU(2)L × SU(2)R × U(1)B−L

Going Higgsless

WL

TeVPlanck

WR

hep-ph/0305237, hep-ph/0308038
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WW Scattering
amplitude grows like E4
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Precision Electroweak

TeVPlanck

elementary
composite

fermion localization



Precision Electroweak

hep-ph/0308036, hep-ph/0203034

TeVPlanck

S too big
S too negative

fermion localization



Precision Electroweak

Cacciapaglia, Csaki, Grojean JT hep-ph/0409126

TeVPlanck

S just right

http://www-library.desy.de/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Cacciapaglia%2C%20Giacomo%22
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LHC Signal

Birkedal, Matchev, Perelstein hep-ph/0412278



Drell-Yan

Sanz, Martin hep-ph/0907.3931

Dilepton Z �−like resonances have been studied extensively in a number of different sce-

narios [76–81], however they have been overlooked as a discovery possibility in mass-matched

models
¶
. In Ref. [82], mass-matching was assumed to suppress the Drell-Yan signal to the

point that vector-boson-fusion and associated production of KK gauge bosons were the pre-

ferred discovery modes. In 4D discrete models of mass-matching, so-called ‘ideally delocalized’

models [50,52,83], the SM-fermion - neutral KK gauge boson coupling is more strongly sup-

pressed than in the 5D models, so the Drell-Yan production of neutral resonances is essentially

zero. Drell-Yan neutral resonance production in Higgsless-style models has been investigated

in [84–86], however the mass-matched scenario has several distinct features which we point

out here.

For the same signal point as above, we generate the signal for pp→ ZKK,i → �−�+
, where

the i indicates we sum over all kinematically allowed neutral KK states. As usual, � = e, µ.

After applying minimum cut of 500 GeV on the invariant mass of two same-flavor, opposite-

sign leptons, the only significant Standard Model background is pp → Z0/γ∗ → �+�−. The

large invariant mass cut, along with pT cuts for the two leptons, pT > 200 GeV, |η| < 2.5

suppress the background to the point that the signal is easily visible. The invariant mass of

the lepton pair for the signal and background are shown below in Fig. 14.

dilepton invariant mass

500 600 700 800 900 1000 1100 1200 1300

N
u

m
b

e
r 

o
f 

E
v
e
n

ts
/1

0
 G

e
V

0

5

10

15

20

25

30

35

40

45

*
!CHL + Z/

 alone*
!Z/

-1, L = 10 fb-
l

+
l

M

dilepton invariant mass

550 600 650 700 750 800 850

N
u

m
b

e
r 

o
f 

E
v
e
n

ts
/1

0
 G

e
V

10

15

20

25

30

35

40
*
!CHL + Z/

 alone*
!Z/

-1, L = 10 fb-
l

+
l

M

dilepton invariant mass

900 950 10001050 1100115012001250 13001350

N
u

m
b

e
r 

o
f 

E
v
e
n

ts
/2

0
 G

e
V

5

10

20

*
!CHL + Z/

 alone*
!Z/

-1, L = 50 fb-
l

+
l

M

Figure 14: Neutral resonance reconstruction in the dilepton channel. The solid curve is the signal and

background, generated together to maintain any interference between them, while the shaded region

is the background alone. A breakdown of the analysis is given in Appendix (B). Left: overview in

the 500-1300 GeV range. Center: close-up to the two lightest ZKK . Right: close-up into the heaviest

resonance. Notice the vertical scale in the rightmost plot is logarithmic and the luminosity is five

times higher than in the other two plots.

There are several features of Fig. 14 which are different from other Z �
searches. First,

although the signal is clearly visible at low luminosity, the coupling gffZKK is substantially

¶Some preliminary work on this channel was presented in a talk given by Giacomo Cacciapaglia and Guido

Marandella at the Budapest meeting.
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More Realistic Models?

Higgs profile in bulk, finite VEV

AdS/CFT: a localized Higgs → O with d[O] =∞

d[O] finite → Higgs profile in bulk, finite VEV

Higgs profile in Bulk, finite VEV
Higgs has suppressed couplings

Gauge-Phobic Higgs

Cacciapaglia, Csaki, Marandella, JT hep-ph/0611358
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G-Phobic Phenomenology

66

T
t Z 76%
W b 24%

t, b

t, b

Z ′

Z ′

Cacciapaglia, Marandella

WW: rescale Higgs studies, ～5σ significance after 10 fb-1

Leptons: fewer events but clean

σ (pp -> Z1 or A1 -> W+W-) = 420 fb
σ (pp -> Z1 or A1 -> e+e-) = 6 fb

Production: tt (bb) associated production and Drell-Yan
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Gaugephobic Signal

Galloway, McElrath, McRaven, JT hep-ph/0908.0532
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Conclusions
all the proposed solutions to the 
hierarchy problem are fine tuned

probably are other ways to 
address the hierarchy problem

luckily Nature is smarter
than us, and will soon tell 

us the answer

if we ask the right questions





SUSY QCD for F ≥ N
SU(N) SU(F ) SU(F ) U(1) U(1)R

Φ, Q 1 1 F−N
F

Φ, Q 1 -1 F−N
F

Duality
conformal theory global symmetries unbroken

‘t Hooft anomaly matching should apply to low-energy degrees of freedom

anomalies of the M , B, and B do not match to quarks and gaugino

Seiberg found a nontrivial solution to the anomaly matching using a

“dual” SU(F −N) gauge theory with a “dual” gaugino, “dual” quarks

and a gauge singlet “dual mesino”:

SU(F −N) SU(F ) SU(F ) U(1) U(1)R

q 1 N
F−N

N
F

q 1 − N
F−N

N
F

mesino 1 0 2
F−N

F

Dual Banks–Zaks
F = 3 �N − � �N = 3

2

�
1 + �

6

�
N

perturbative fixed point at

�g2
∗ = 8π2

3
�N

�N2−1

�
1 + F

�N
�

�

λ2
∗ = 16π2

3�N �

where D(�Mφφ) = 3 (marginal) since W has R-charge 2
If λ = 0, then �M is free with dimension 1
If �g near pure Banks-Zaks and λ ≈ 0 then we can calculate the

dimension of φφ from the Rsc charge for F > 3N/2:

D(φφ) = 3(F−�N)
F = 3N

F < 2 .

�Mφφ is a relevant operator, λ = 0 unstable fixed point, flows toward λ∗
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special cases:
F=N+1 → confinement without χSB
F=N     → confinement with χSB
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Duality for SUSY QCD



S-color

SU(2)SC SU(2)L SU(2)R U(1) U(1)R

TL 1 1 0

TR 1 −1 0

H 1 0 1

SL 1 1 1 −2 2

SR 1 1 1 2 2

W = λLSLTLTL + λRSRTRTR + λHHTLTR + 1
2µHH

U(1)Y ⊂ SU(2)R, Y ∝ τ3R

Toy-Model of EWSB

Two colors with Two flavors



Confinement

SU(2)L SU(2)R U(1) U(1)R

Π ∼ (TLTR) 0 0

BL ∼ (TLTL) 1 1 2 0

BR ∼ (TRTR) 1 −2 0

H 0 1

SL 1 1 −2 2

SR 1 1 2 2

ConfinementS-color
In order to be realistic, this theory must incorporate soft SUSY break-

ing.

Since the strong dynamics is responsible for breaking electroweak

symmetry, the required soft SUSY breaking terms are not much smaller

than the dynamical scale of the S color dynamics. However, we will see

that naive dimenesional analysis (NDA) indicates that it is sensible to

treat soft SUSY breaking as a perturbation,

Denote the scale where the S-color dynamics becomes strong by Λ.

In a normalization where the composite fields have kinetic terms of order

1, the quantum constraint can be written [?]

det(Π)−BLBR =
1
2f

2

and the effective superpotential is

Weff = f [λLSLBL + λRSRBR + λHHΠ] +
1
2µHH

where f = Λ/(4π). We have used our freedom to normalize the fields

to set various coefficients to 1; in this normalization, all of the unknown
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To solve the quantum constraint, we write
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where τA (A = 1, 2, 3) are the Pauli matrices. This gives
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�
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etc. Solving () for Π0 gives

Π0 =
�
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2 + 2BLBR − ΠAΠA

�1/2

We therefore parameterize the moduli space by BL, BR, and ΠA; this
parameterization is non-singular for all vacua where �Π0� �= 0. In this
way we obtain the unconstrained effective superpotential

Weff = f {λLSLBL + λRSRBR + λH [H0Π0 + HAΠA]}
+ 1

2µ(H2
0 + HAHA),

where Π0 is eliminated using (). Similarly, Π0 should also be eliminated
in the effective Kähler potential ().
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S-color
We now discuss the vacua in the SUSY limit. The H0, HA, and ΠA

equations of motion give respectively

H0 = −λHf

µ
Π0

fλHΠA = −µHA

H0ΠA = HAΠ0

so we find three flat directions.
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3 linear combinations of     and 
are undetermined: Goldstone Bosons 

S-color
We now discuss the vacua in the SUSY limit. The H0, HA, and ΠA

equations of motion give respectively

H0 = −λHf

µ

�
f

2 − 2BLBR −ΠAΠA

�1/2

fλHΠA = −µHA

H0ΠA = HA

�
f

2 − 2BLBR −ΠAΠA

�1/2

Substituting (??) into (??) reproduces (??), so we find three flat di-
rections. The moduli space of vacua includes points where SU(2)L ×
SU(2)R → SU(2). In these vacua, electroweak symmetry is broken in
the correct pattern in the SUSY limit, and the three flat directions are
associated with the Nambu-Goldstone bosons of the symmetry breaking.

To obtain a realistic model we must include soft SUSY breaking with
msoft ∼ Λ/(4π).

We now turn to the fermion masses. An important diagnostic is the
determinant of the second derivative of the effective superpotential:
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2
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λ
2
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f
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�Π0�5
�
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2 − 2�BL��BR�
�
(µ�H0�+ λHf�Π0�)3 .
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Fat Higgs

we do not generate quark and lepton masses. If µ is small we have light
fermions (see (??)). This is similar to the usual ‘µ problem.’ Fortunately,
a simple modification of the model solves this problem.

1 An Improved Model

We can eliminate this problem simply by replacing the µ term with a
cubic interaction:

W = λLSLTLTL + λRSRTRTR + λHHTLTR + 1
2y(SL + SR)HH

The symmetry between the SL and SR couplings is not essential; it
merely simplifies the form of the VEV’s in the model. We can also
include further cubic interactions for the singlets SL and SR, but these
do not lead to qualitatively different results. Note that all global U(1)
symmetries are broken.

In the SUSY limit, the VEV’s are determined by

Solving the remaining equations for the special case �HA� = 0, we

obtain

�H0� =

�
2λLλR

9y2

�1/4
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�SL� = �SR� = ±λH

�
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9y2λLλR

�1/4
f

�BL� = −
�

λR
18y2λL

�1/2
f

�BR� = −
�

λL
18y2λR

�1/2
f

We see that there are points on the moduli space where electroweak

symmetry is broken in the correct pattern. In addition, the nonzero

VEV for the singlets gives an effective µ term for the Higgs doublets.

The inclusion of soft SUSY breaking proceeds as for the simpler model

above; see the Appendix. We conclude that we expect to find a vacuum

with the desired properties for reasonable choices of soft masses.

We also computed the determinant of the fermion mass matrix, and

found that there are no light fermions. Again, the discussion is similar

to that for the simpler model, but the expressions are more complicated.
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