Beyond the

 Standard Model

 Standard Model
 (Except for SUSY)

John Terning

UC Davis

Outline for 3 Days

承 Extra Dimensions
\& Hidden Valleys/Quirks/Unparticles
\& Monopoles and EWSB

Extra Dimensions

Outline

\& Motivation: the Hierarchy Problem
\& ${ }^{6}$ ADD, Little Higgs

* RS, MCH, Higgless, Gaugephobic Higgs
\& Conclusions

What's the problem?

Weisskopf Phys. Rev. 56 (1939) 72

What's the problem?

Weisskopf Phys. Rev. 56 (1939) 72

Electroweak Symmetry

Electroweak Symmetry

SUSY

Technicolor

Electroweak

etry

 $m^{2}=\cdots \cdots$
Hierarchy Problem Now

susy

Technicolor

Hierarchy Problem Now

 SUSY
 Extra
 Dimensions

Hierarchy Problem Now

Hierarchy Problem Now

Large Extra Dimensions

gravitons escape into the bulk

$$
M_{*}=1 \mathrm{TeV}
$$

Gravity gets strong at TeV missing Energy signatures

Arkani-Hamed, Dimopoulos, Dvali hep-ph/9803315

n Large Extra Dimensions

Arkani-Hamed, Dimopoulos, Dvali hep-ph/9803315

n Large Extra Dimensions

$$
\begin{gathered}
M_{*}=1 \mathrm{TeV} \\
n=1 \Rightarrow L \sim 10^{13} \mathrm{~m} \\
n=2 \Rightarrow L \sim 1 \mathrm{~mm} \\
n=3 \Rightarrow L \sim 10^{-8} \mathrm{~m}
\end{gathered}
$$

n Large Extra Dimensions

$$
\begin{gathered}
M_{*}=1 \mathrm{TeV} \\
n=1 \Rightarrow L \sim 10^{13} \mathrm{~m} \\
n=2 \Rightarrow L \sim 1 \mathrm{~mm} \\
n=3 \Rightarrow L \sim 10^{-8} \mathrm{~m}
\end{gathered}
$$

Little Hierarchy

\[

\]

Barbieri, Strumia hep-ph/0007265

Precision Tests

new physics changes vacuum polarizations

Precision Tests

$$
\begin{gathered}
-\frac{g g^{\prime}}{16 \pi} S F_{\mu \nu}^{3} F_{B}^{\mu \nu} \\
-\frac{v^{2}}{4} T Z^{\mu} Z_{\mu}
\end{gathered}
$$

$$
\begin{gathered}
S=16 \pi \frac{d}{d q^{2}}\left(\Pi_{33}\left(q^{2}\right)-\Pi_{33}\left(q^{2}\right)\right) \\
T=\frac{\Delta \rho}{\alpha}=\frac{e^{2}}{\frac{s_{w}^{2}}{s_{W}^{2}}\left(\Pi_{11}(0)-\Pi_{33}(0)\right)}
\end{gathered}
$$

Perturbative Estimate

degenerate fermions

$$
\operatorname{Tr} T_{L}^{3} Y_{L}=Y_{L} \operatorname{Tr} T_{L}^{3}=0
$$

$$
\operatorname{Tr} T_{L}^{3} Y_{R}=\frac{1}{2}\left(Y_{R}^{u}-Y_{R}^{d}\right)=\frac{1}{2}
$$

$$
S_{d e g .}=\frac{N}{6 \pi}
$$

Perturbative Estimate

non-degenerate fermions

$$
\begin{gathered}
S=\frac{N}{6 \pi}\left(Y_{L} \ln \left(\frac{m_{u}^{2}}{m_{d}^{2}}\right)+1\right) \\
T=\frac{N}{16 \pi s_{W}^{2} M_{W}^{2}}\left(m_{u}^{2}+m_{d}^{2}-2 \frac{m_{u}^{2} m_{d}^{2}}{m_{u}^{2}-m_{d}^{2}} \ln \left(\frac{m_{u}^{2}}{m_{d}^{2}}\right)\right)
\end{gathered}
$$

for $m_{u} \gg m_{d}$

$$
T \approx \frac{N}{16 \pi s_{W}^{2}} \frac{m_{u}^{2}}{M_{W}^{2}}
$$

Non-Perturbative

$$
\begin{aligned}
\mathcal{L}_{2} & =\frac{f_{\pi}^{2}}{4} \operatorname{Tr} D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma \\
\mathcal{L}_{4} & =L_{10} \operatorname{Tr} \Sigma^{\dagger} F_{L \mu \nu} \Sigma F_{R}^{\mu \nu}+\ldots
\end{aligned}
$$

measure L_{10} in $\pi \rightarrow \gamma e \nu$

$$
S_{\text {non-pert. }} \approx 2 \times S_{\text {pert. }}
$$

for one doublet and $N=2$

$$
S \sim \frac{1}{3 \pi} \text { to } \frac{2}{3 \pi}=0.1 \text { to } 0.2
$$

Holdom, JT Phys. Lett. B 247 (1990) 88

Custodial Symmetry

$$
\begin{aligned}
S U(2)_{L} \times U(1)_{Y} & \rightarrow U(1)_{e m} \\
S U(2)_{L} \times S U(2)_{R} & \rightarrow S U(2)_{D}
\end{aligned}
$$

custodial symmetry can forbid T
what symmetry can forbid S ?

Little Higgs

5D gauge boson has an extra polarization in 4D it is a scalar 5D gauge invariance keeps it massless
can we use this for the Higgs?

Kaluza-Klein Modes

Discrete Extra Dim.

Two Sites

Light

Heavy

$M_{\text {Heavy }} \sim f$

Little Higgs

The "little hierarchy" problem is why is the Higgs light compared to a 10 TeV cutoff

If the Higgs is a Pseudo-Goldstone boson it should have a suppressed mass

If symmetry is restored when either of two interactions vanish

$$
m_{H}^{2} \propto g_{1}^{2} g_{2}^{2}
$$

No quadratic divergence at one loop

$$
\begin{gathered}
\text { Littlest figas } \\
S U(5) \rightarrow S O(5) \\
\left(5^{2}-1\right)-\frac{1}{2} 5 \cdot 4=14 \mathrm{~GB}^{\prime} \mathrm{s} \\
\Sigma(x)=e^{2 i \Pi / f}\left(\begin{array}{ccc}
& & 1 \\
1 & & \\
1 & & \\
S U(2)_{1} & S U(2)_{2} \\
S U(2)_{1} \times S U(2)_{2} \rightarrow S U(2)_{L} \\
U(1)_{1} \times U(1)_{2} \rightarrow U(1)_{Y}
\end{array}\right.
\end{gathered}
$$

Arkani-Hamed, Cohen, Katz, Nelson hep-ph/0206021

Littlest Higgs Mass

$$
H\left(s^{2}-\stackrel{2}{C}^{2}\right)
$$

$$
\underbrace{W_{L}}_{n} r^{W_{H}}
$$

Top Partner

background
reach of 2 TeV
Azuelos et. al. hep-ph/0402037

Low Energy Effects

$$
\Delta m_{H}^{2} \sim-\frac{3 \lambda_{t}^{2}}{2 \pi^{2}} f^{2}
$$

\% level fine tuning
Csaki, Hubisz, Kribs, Mead JT hep-ph/0211124

T-Parity

$$
\begin{aligned}
S M & \rightarrow+S M \\
W_{H}, Z_{H}, A_{H}, \phi & \rightarrow-\left(W_{H}, Z_{H}, A_{H}, \phi\right)
\end{aligned}
$$

bonus: dark matter candidate

Cheng, Low hep-ph/0308199

UV Completion

one generation:

a)	$S U(5)$	$S U(2)_{3}$	$U(1)_{3}$	$\mathrm{~b})$	$S U(5)$	$S U(2)_{3}$	$U(1)_{3}$	$\mathrm{c})$	$S U(5)$	$S U(2)_{3}$	$U(1)_{3}$
Q_{1}	\square	1	$+2 / 3$	Q_{1}^{\prime}	\square	1	$-2 / 3$	L_{1}	\square	1	0
Q_{2}	\square	1	$+2 / 3$	Q_{2}^{\prime}	\square	1	$-2 / 3$	L_{2}	\square	1	0
q_{3}	1	\square	$-1 / 6$	$q_{3}^{\prime}, q_{3}^{\prime \prime}$	1	\square	$+1 / 6$	ℓ_{3}	1	\square	$+1 / 2$
q_{4}	1	\square	$-7 / 6$	q_{4}^{\prime}	1	\square	$+7 / 6$	ℓ_{4}	1	\square	$-1 / 2$
q_{5}	1	\square	$-7 / 6$	q_{5}^{\prime}	1	\square	$+7 / 6$	ℓ_{5}	1	\square	$-1 / 2$
$U_{R 1}$	1	1	$-2 / 3$	$U_{R 1}^{\prime}$	1	1	$+2 / 3$	$E_{R 1}$	1	1	0
$U_{R 2}$	1	1	$-2 / 3$	$U_{R 2}^{\prime}$	1	1	$+2 / 3$	$E_{R 2}$	1	1	0
u_{R}	1	1	$-2 / 3$					e_{R}	1	1	+1
d_{R}	1	1	$+1 / 3$					$\left(\nu_{R}\right.$	1	1	$0)$

then add SUSY or
Warped Extra Dimensions
Csaki, Heinonen, Perelstein, Spethmann hep-ph/0804.0622

Warped Throats

Randall-Sundrum

Randall-Sundrum

$$
d s^{2}=\left(\frac{R}{z}\right)^{2}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right)
$$

fermions

Planck
TeV
hep-ph/9905221

Randall-Sundrum

$$
d s^{2}=\left(\frac{R}{z}\right)^{2}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right)
$$

fermions
gauge bosons

Planck
TeV

Stabilization

Planck

Goldberger, Wise hep-ph/9907218

Stabilization

Planck

Goldberger, Wise hep-ph/9907218

Stabilization

Planck TeV

Goldberger, Wise hep-ph/9907218

Maldacena Conjecture

Maldacena Conjecture 3-dimensional

Four Dimensional strongly coupled SU(N) gauge theory
Low Energy
Large N, g ${ }^{2}$ N

Maldacena Conjecture 3-dimensional

Maldacena Conjecture 3-dimensional

Anti-de Sitter \times Sphere
S5: $^{5} \quad R^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}+x_{6}^{2}$

Anti-de Sitter \times Sphere

 S5: $^{5} \quad R^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}+x_{6}^{2}$
$\mathrm{AdS}_{5}:-R^{2}=-u v-x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}$

Gauge KK Modes

$$
\left(\partial_{z}^{2}-\frac{1}{z} \partial_{z}+q^{2}\right) \psi(z)=0
$$

Planck
TeV

Gauge KK Modes

Planck
TeV

Bulk fermions

$$
\begin{aligned}
& S_{b u l k, f}= \int d^{5} x\left(\frac{R}{z}\right)^{4}\left(-i \bar{\chi} \bar{\sigma}^{\mu} \partial_{\mu} \chi-i \psi \sigma^{\mu} \partial_{\mu} \bar{\psi}\right. \\
&\left.+\frac{1}{2}\left(\psi \overleftrightarrow{\partial_{z}} \chi-\bar{\chi} \overleftrightarrow{\partial_{z}} \bar{\psi}\right)+\frac{c}{z}(\psi \chi+\bar{\chi} \bar{\psi})\right) \\
& \chi=g(p z) \chi_{4} \\
& \bar{\psi}=f(p z) \bar{\psi}_{4} \\
& g(p z)= z^{\frac{5}{2}}\left(A(p) J_{c+\frac{1}{2}}(p z)+B(p) J_{-c-\frac{1}{2}}(p z)\right) \\
& f(p z)= z^{\frac{5}{2}}\left(A(p) J_{c-\frac{1}{2}}(p z)+B(p) J_{-c+\frac{1}{2}}(p z)\right)
\end{aligned}
$$

Fermion KK modes

$$
\begin{aligned}
\chi= & \sum_{n} g_{n}(z) \chi_{n}(x) \quad \psi=\sum_{n} f_{n}(z) \psi_{n}(x) \\
& f_{n}^{\prime}+m_{n} g_{n}-\frac{c+2}{z} f_{n}=0 \\
& g_{n}^{\prime}-m_{n} g_{n}+\frac{c-2}{z} g_{n}=0
\end{aligned}
$$

zero modes:

$$
\begin{aligned}
& f_{0}=C_{0}\left(\frac{z}{R}\right)^{c+2} \\
& g_{0}=A_{0}\left(\frac{z}{R}\right)^{2-c}
\end{aligned}
$$

Fermion KK modes

coefficient of zero mode kinetic term

$$
\begin{gathered}
\chi^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \chi \\
\int_{R}^{R^{\prime}} d z z^{-2 c} \sim R^{\prime 1-2 c}-R^{1-2 c} \\
R^{\prime} \rightarrow \infty \quad R \rightarrow 0 \\
\text { converges: } \begin{array}{c}
c>1 / 2
\end{array} \quad c<1 / 2 \\
\text { localized on } \quad \text { localized on } \\
\text { Planck brane } \quad \text { TeV brane }
\end{gathered}
$$

Randall-Sundrum

Drell-Yan graviton production
Davoudiasl, Hewett, Rizzo hep-ph/0006041

Randall-Sundrum

make gauge resonances heavy, but then doesn't solve the "little hierarchy" problem

$$
\begin{aligned}
& \Delta m_{H}^{2}=\frac{3 \lambda_{t}^{2}}{8 \pi^{2}}(10 \mathrm{TeV})^{2} \\
& \sim 3.8 \mathrm{TeV}^{2} \\
& m_{H}^{2} \sim 0.01 \mathrm{TeV}^{2} \\
& 0.3 \% \text { fine tuning }
\end{aligned}
$$

Gauge-Higgs Unification

Planck
TeV

Agashe, Contino, Pomarol hep-ph/0412089

Minimal

Composite Higgs

Planck
TeV

$$
\partial_{z}\left(A_{5} / z\right)=0 \text {, zero mode } \sim 4 \text { of } S O(4)
$$

Agashe, Contino, Pomarol hep-ph/0412089

New Custodial Symmetry

to protect $Z b \bar{b}$

$$
\begin{gathered}
O(4) \sim S U(2)_{L} \times S U(2)_{R} \times P_{L R} \\
T_{L}=T_{R}, \quad T_{R}^{3}=T_{L}^{3} \\
Q_{L+R} \text { charge is protected } \\
\delta Q_{L}+\delta Q_{R}=0, \quad \delta Q_{L}=\delta Q_{R}
\end{gathered}
$$

$$
\delta Q_{L}=0
$$

Agashe, Contino, Da Rold, Pomarol hep-ph/0605341 Carena, Ponton, Santiago, Wagner hep-ph/0701055

New Custodial Symmetry

$$
\begin{gathered}
S U(2)_{L} \times S U(2)_{R} \times U(1)_{X} \\
Y=T_{R}^{3}+X, Q=T_{L}^{3}+Y \\
\Psi_{L} \\
\Psi_{R} \\
\sim(\mathbf{2}, \mathbf{2})_{2 / 3} \\
t_{R}
\end{gathered} \begin{gathered}
\sim(\mathbb{1}, \mathbf{3})_{2 / 3} \\
\Psi_{L}=\left(\begin{array}{cc}
t & T \\
b & \tilde{t}
\end{array}\right)_{L}, \quad \Psi_{R}=\left(\begin{array}{c}
T \\
\tilde{t} \\
b
\end{array}\right)_{R}, t_{R}
\end{gathered}
$$

T has charge $5 / 3$

Custodial † Partner

Contino, Servant hep-ph/0801.1679

Custodial † Partner

Contino, Servant hep-ph/0801.1679

Fine Tuning for EWSB

Csaki, Falkowski, Weiler hep-ph/0801.1679

Decoupling the Higgs
 $$
\partial_{z} \psi(z)=-\frac{g_{5}^{2} v^{2}}{2} \psi(z)
$$

Decoupling the Higgs
 $$
\partial_{z} \psi(z)=-\frac{g_{5}^{2} v^{2}}{2} \psi(z)
$$

Higgs decouples from scattering as $v \rightarrow \infty$

Going Higgsless

$$
S U(2)_{L} \times S U(2)_{R} \times U(1)_{B-L}
$$

Planck
TeV
hep-ph/0305237, hep-ph/0308038

Model Landscape

WW Scattering amplitude grows like E^{4}

contact interaction

s channel exchange

WW Scattering

5D gauge invariance:

$$
\begin{aligned}
g_{n n n n}^{2} & =\sum_{k} g_{n n k}^{2} \\
4 g_{n n n n}^{2} M_{n}^{2} & =3 \sum_{k} g_{n n k}^{2} M_{k}^{2}
\end{aligned}
$$

cancels E^{4} and E^{2} terms

Precision Electroweak

Planck
TeV

Precision Electroweak

Planck
TeV
hep-ph/0308036, hep-ph/0203034

Precision Electroweak

Planck
TeV

Cacciapaglia, Csaki, Grojean JT hep-ph/0409126

Fine Tuning for Small S

fermion localization parameter

Why Build the LHC?

WW Scattering Amplitude

Why Build the LHC?

WW Scattering Amplitude

Why Build the LHC?

WW Scattering Amplitude
too heavy, too late

LHC Signal

Birkedal, Matchev, Perelstein hep-ph/0412278

Drell-Yan

Gauge-Phobic Higgs

AdS/CFT: a localized Higgs $\rightarrow \mathcal{O}$ with $d[\mathcal{O}]=\infty$ $d[\mathcal{O}]$ finite \rightarrow Higgs profile in bulk, finite VEV

Higgs profile in Bulk, finite VEV Higgs has suppressed couplings

Cacciapaglia, Csaki, Marandella, JT hep-ph/0611358

Missing the Higgs

G-Phobic Phenomenology

Production: $\dagger \dagger$ (bb) associated production and Drell-Yan

WW: rescale Higgs studies, $\sim 5 \sigma$ significance after $10 \mathrm{fb}^{-1}$
Leptons: fewer events but clean

Cacciapaglia, Marandella

Gaugephobic Higgs

dashed lines: gaugephobic Higgs extremely difficult at LHC

Cacciapaglia, Csaki, Marandella, JT hep-ph/0611358

Gaugephobic Signal

Galloway, McElrath, McRaven, JT hep-ph/0908.0532

Conclusions

all the proposed solutions to the hierarchy problem are fine tuned

probably are other ways to address the hierarchy problem

luckily Nature is smarter than us, and will soon tell us the answer

if we ask the right questions

Duality for SUSY QCD

Toy-Model of EWSB

	$S U(2)_{\mathrm{SC}}$	$S U(2)_{L}$	$S U(2)_{R}$	$U(1)$	$U(1)_{R}$
T_{L}	\square	\square	$\mathbf{1}$	1	0
T_{R}	\square	$\mathbf{1}$	\square	-1	0
H	$\mathbf{1}$	\square	\square	0	1
S_{L}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	-2	2
S_{R}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	2	2

$$
W=\lambda_{L} S_{L} T_{L} T_{L}+\lambda_{R} S_{R} T_{R} T_{R}+\lambda_{H} H T_{L} T_{R}+\frac{1}{2} \mu H H
$$

$$
U(1)_{Y} \subset S U(2)_{R}, Y \propto \tau_{3 R}
$$

Two colors with Two flavors

Confinement

	$S U(2)_{L}$	$S U(2)_{R}$	$U(1)$	$U(1)_{R}$
$\Pi \sim\left(T_{L} T_{R}\right)$	\square	\square	0	0
$B_{L} \sim\left(T_{L} T_{L}\right)$	$\mathbf{1}$	$\mathbf{1}$	2	0
$B_{R} \sim\left(T_{R} T_{R}\right)$	$\mathbf{1}$	\square	-2	0
H	\square	\square	0	1
S_{L}	$\mathbf{1}$	$\mathbf{1}$	-2	2
S_{R}	$\mathbf{1}$	$\mathbf{1}$	2	2

$$
W_{\mathrm{eff}}=f\left[\lambda_{L} S_{L} B_{L}+\lambda_{R} S_{R} B_{R}+\lambda_{H} H \Pi\right]+\frac{1}{2} \mu H H
$$

Confinement with XSB

$$
\begin{gathered}
\operatorname{det}(\Pi)-B_{L} B_{R}=\frac{1}{2} f^{2} \\
f=\frac{\Lambda}{4 \pi} \\
W_{\text {eff }}=f\left[\lambda_{L} S_{L} B_{L}+\lambda_{R} S_{R} B_{R}+\lambda_{H} H \Pi\right]+\frac{1}{2} \mu H H \\
\Pi^{j}{ }_{k}=\frac{1}{\sqrt{2}}\left(\Pi_{0} \mathbf{1}_{2}+i \Pi_{A} \tau_{A}\right)^{j}{ }_{k} \\
\operatorname{det}(\Pi)=\frac{1}{2}\left(\Pi_{0}^{2}+\Pi_{A} \Pi_{A}\right) \\
\Pi_{0}=\left(f^{2}+2 B_{L} B_{R}-\Pi_{A} \Pi_{A}\right)^{1 / 2}
\end{gathered}
$$

Confinement with XSB

equations of motion:

$$
\begin{aligned}
H_{0} & =-\frac{\lambda_{H} f}{\mu} \Pi_{0} \\
f \lambda_{H} \Pi_{A} & =-\mu H_{A} \\
H_{0} \Pi_{A} & =H_{A} \Pi_{0}
\end{aligned}
$$

3 linear combinations of Π_{A} and H_{A}
are undetermined: Goldstone Bosons

Fat Higgs

$$
\begin{aligned}
& W=\lambda_{L} S_{L} T_{L} T_{L}+\lambda_{R} S_{R} T_{R} T_{R}+\lambda_{H} H T_{L} T_{R}+\frac{1}{2} y\left(S_{L}+S_{R}\right) H H \\
&\left\langle H_{0}\right\rangle=\left(\frac{2 \lambda_{L} \lambda_{R}}{9 y^{2}}\right)^{1 / 4} f \\
&\left\langle S_{L}\right\rangle=\left\langle S_{R}\right\rangle= \pm \lambda_{H}\left(\frac{2}{9 y^{2} \lambda_{L} \lambda_{R}}\right)^{1 / 4} f \\
&\left\langle B_{L}\right\rangle=-\left(\frac{\lambda_{R}}{18 y^{2} \lambda_{L}}\right)^{1 / 2} f \\
&\left\langle B_{R}\right\rangle=-\left(\frac{\lambda_{L}}{18 y^{2} \lambda_{R}}\right)^{1 / 2} f
\end{aligned}
$$

Luty, JT, Grant hep-ph/0006224

 Murayama, Harnik, Kribs, Larsen hep-ph/0311349