Beyond the Standard Model (Except for SUSY)

John Terning UC Davis

Outline for 3 Days

Extra Dimensions Outline

Motivation: the Hierarchy Problem

What's the problem?

Weisskopf Phys. Rev. 56 (1939) 72

What's the problem?

Weisskopf Phys. Rev. 56 (1939) 72

Hierarchy Problem Now

Technicolor

Arkani-Hamed, Dimopoulos, Dvali hep-ph/9803315

n Large Extra Dimensions

Arkani-Hamed, Dimopoulos, Dvali hep-ph/9803315

n Large Extra Dimensions

 $M_* = 1 \,\mathrm{TeV}$

 $n = 1 \Rightarrow L \sim 10^{13} \,\mathrm{m}$ $n = 2 \Rightarrow L \sim 1 \,\mathrm{mm}$ $n = 3 \Rightarrow L \sim 10^{-8} \,\mathrm{m}$

n Large Extra Dimensions

 $M_* = 1 \,\mathrm{TeV}$

Little Hierarchy $\mathcal{L}_{ ext{eff}} = \sum_i rac{c_i}{\Lambda_i^2} \mathcal{O}_i$ c=+1 C = -1 $H^{\dagger}\sigma^{a}HW^{a}_{\mu\nu}B^{\mu\nu}$ 9.0 13 $|H^{\dagger}D_{\mu}H|^2$ 4.2 7.0 $(\overline{L}\gamma^{\mu}\sigma^{a}L)^{2}$ 4.4 4.1

 $i\overline{L}\gamma^{\mu}LH^{\dagger}D_{\mu}H$

8.0 14

Barbieri, Strumia hep-ph/0007265

Precision Tests

new physics changes vacuum polarizations

Precision Tests

$$-\frac{gg'}{16\pi} S F^3_{\mu\nu} F^{\mu\nu}_B$$

$$-\frac{v^2}{4}TZ^{\mu}Z_{\mu}$$

$$S = 16\pi \frac{d}{dq^2} \left(\Pi_{33}(q^2) - \Pi_{33}(q^2) \right)$$
$$T = \frac{\Delta \rho}{\alpha} = \frac{e^2}{s_w^2 M_W^2} \left(\Pi_{11}(0) - \Pi_{33}(0) \right)$$

Perturbative Estimate

degenerate fermions

 $S_{deg.} = \frac{N}{6\pi}$

Perturbative Estimate

non-degenerate fermions

$$S = \frac{N}{6\pi} \left(Y_L \ln\left(\frac{m_u^2}{m_d^2}\right) + 1 \right)$$
$$T = \frac{N}{16\pi s_W^2 M_W^2} \left(m_u^2 + m_d^2 - 2\frac{m_u^2 m_d^2}{m_u^2 - m_d^2} \ln\left(\frac{m_u^2}{m_d^2}\right) \right)$$

for $m_u \gg m_d$

$$T \approx \frac{N}{16\pi s_W^2} \frac{m_u^2}{M_W^2}$$

Non-Perturbative

$$\mathcal{L}_{2} = \frac{f_{\pi}^{2}}{4} \operatorname{Tr} D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma$$
$$\mathcal{L}_{4} = L_{10} \operatorname{Tr} \Sigma^{\dagger} F_{L\mu\nu} \Sigma F_{R}^{\mu\nu} + \dots$$

measure L_{10} in $\pi \to \gamma e \nu$

 $S_{\text{non-pert.}} \approx 2 \times S_{\text{pert.}}$

for one doublet and N = 2

$$S \sim \frac{1}{3\pi} \operatorname{to} \frac{2}{3\pi} = 0.1 \operatorname{to} 0.2$$

Holdom, JT Phys. Lett. B 247 (1990) 88

Custodial Symmetry

 $SU(2)_L \times U(1)_Y \to U(1)_{em}$ $SU(2)_L \times SU(2)_R \to SU(2)_D$

custodial symmetry can forbid ${\cal T}$

what symmetry can forbid S?

Little Higgs

5D gauge boson has an extra polarization in 4D it is a scalar 5D gauge invariance keeps it massless

can we use this for the Higgs?

Kaluza-Klein Modes

The "little hierarchy" problem is why is the Higgs light compared to a 10 TeV cutoff

If the Higgs is a Pseudo-Goldstone boson it should have a suppressed mass

If symmetry is restored when either of two interactions vanish

$$m_H^2 \propto g_1^2 g_2^2$$

No quadratic divergence at one loop

 $SU(2)_1 \times SU(2)_2 \rightarrow SU(2)_L$ $U(1)_1 \times U(1)_2 \rightarrow U(1)_Y$

Arkani-Hamed, Cohen, Katz, Nelson hep-ph/0206021

Littlest Higgs Mass

Low Energy Effects

% level fine tuning

Csaki, Hubisz, Kribs, Mead JT hep-ph/0211124

$SM \rightarrow +SM$ $W_H, Z_H, A_H, \phi \rightarrow -(W_H, Z_H, A_H, \phi)$

bonus: dark matter candidate

Cheng, Low hep-ph/0308199

UV Completion

one generation:

a)	SU(5)	$SU(2)_3$	$U(1)_{3}$	b)	SU(5)	$SU(2)_3$	$U(1)_{3}$	c)	SU(5)	$SU(2)_3$	$U(1)_{3}$
Q_1		1	+2/3	Q'_1		1	-2/3	L_1		1	0
Q_2		1	+2/3	Q'_2		1	-2/3	L_2		1	0
q_3	1		-1/6	q'_3, q''_3	1		+1/6	ℓ_3	1		+1/2
q_4	1		-7/6	q'_4	1		+7/6	ℓ_4	1		-1/2
q_5	1		-7/6	q_5'	1		+7/6	ℓ_5	1		-1/2
U_{R1}	1	1	-2/3	U'_{R1}	1	1	+2/3	E_{R1}	1	1	0
U_{R2}	1	1	-2/3	U'_{R2}	1	1	+2/3	E_{R2}	1	1	0
u_R	1	1	-2/3					e_R	1	1	+1
d_R	1	1	+1/3					$(\nu_R$	1	1	0)

then add SUSY or Warped Extra Dimensions

Csaki, Heinonen, Perelstein, Spethmann hep-ph/0804.0622

$$ds^{2} = \left(\frac{R}{z}\right)^{2} \left(\eta_{\mu\nu}dx^{\mu}dx^{\nu} - dz^{2}\right)$$

fermions gauge bosons Higgs

Planck

hep-ph/9905221

$$ds^{2} = \left(\frac{R}{z}\right)^{2} \left(\eta_{\mu\nu}dx^{\mu}dx^{\nu} - dz^{2}\right)$$

Stabilization

Planck

Goldberger, Wise hep-ph/9907218

Goldberger, Wise hep-ph/9907218

Goldberger, Wise hep-ph/9907218

Maldacena Conjecture

Maldacena Conjecture 3-dimensional

Four Dimensional strongly coupled SU(N) gauge theory

Low Energy Large N, g² N

Anti-de Sitter x Sphere **5**: $R^2 = x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 + x_6^2$

Gauge KK Modes

Planck

TeV

Fermion KK modes

$$\begin{split} \chi &= \sum_{n} g_{n}(z) \chi_{n}(x) \quad \psi = \sum_{n} f_{n}(z) \psi_{n}(x) \\ f_{n}' + m_{n} g_{n} - \frac{c+2}{z} f_{n} = 0, \\ g_{n}' - m_{n} g_{n} + \frac{c-2}{z} g_{n} = 0. \\ \textbf{zero modes:} \\ f_{0} &= C_{0} \left(\frac{z}{R}\right)^{c+2}, \\ g_{0} &= A_{0} \left(\frac{z}{R}\right)^{2-c}, \end{split}$$

Fermion KK modes

coefficient of zero mode kinetic term $\chi^\dagger \bar{\sigma}^\mu \partial_\mu \chi$

Davoudiasl, Hewett, Rizzo hep-ph/0006041

Randall-Sundrum S: $W^3 \longrightarrow B$

make gauge resonances heavy, but then doesn't solve the "little hierarchy" problem

$$\Delta m_H^2 = rac{3\lambda_t^2}{8\pi^2}(10\,{
m TeV})^2$$

 $\sim 3.8\,{
m TeV}^2$
 $m_H^2 \sim 0.01\,{
m TeV}^2$
0.3% fine tuning

Gauge-Higgs Unification		
$SU(2)_L \times U(1)_Y$	$SO(5) \times U(1)$ gauge bosons	$SO(4) \times U(1)$
Pla	nck Te	2V

Agashe, Contino, Pomarol hep-ph/0412089

 $\partial_z(A_5/z) = 0$, zero mode ~ 4 of SO(4)

Agashe, Contino, Pomarol hep-ph/0412089

New Custodial Symmetry

to protect $Zb\overline{b}$

 $O(4) \sim SU(2)_L \times SU(2)_R \times P_{LR}$ $T_L = T_R, \quad T_R^3 = T_L^3$ $Q_{L+R} \text{ charge is protected}$ $\delta Q_L + \delta Q_R = 0, \quad \delta Q_L = \delta Q_R$

$$\delta Q_L = 0$$

Agashe, Contino, Da Rold, Pomarol hep-ph/0605341 Carena, Ponton, Santiago, Wagner hep-ph/0701055

New Custodial Symmetry

 $SU(2)_L \times SU(2)_R \times U(1)_X$ $Y = T_R^3 + X , Q = T_L^3 + Y$ $\Psi_L \sim (\mathbf{2},\mathbf{2})_{2/3}$ $\Psi_R \sim (\mathbf{1},\mathbf{3})_{2/3}$ $t_R \sim (1,1)_{2/3}$ $\Psi_L = \begin{pmatrix} t & T \\ b & \tilde{t} \end{pmatrix}_L, \quad \Psi_R = \begin{pmatrix} T \\ \tilde{t} \\ b \end{pmatrix}, \quad t_R$

T has charge 5/3

Custodial t Partner

Contino, Servant hep-ph/0801.1679

Custodial t Partner

Contino, Servant hep-ph/0801.1679

Fine Tuning for EWSB

Csaki, Falkowski, Weiler hep-ph/0801.1679

hep-ph/0305237, hep-ph/0308038

(k)

(n)

p

(n)

 q^{-}

d

d

WW Scattering

5D gauge invariance:

$$4g_{nnnn}^2 M_n^2 = 3\sum_k g_{nnk}^2 M_k^2$$

cancels E^4 and E^2 terms

Precision Electroweak

Planck

TeV

Precision Electroweak

Planck

hep-ph/0308036, hep-ph/0203034

Precision Electroweak

Planck

TeV

Cacciapaglia, Csaki, Grojean JT hep-ph/0409126

Fine Tuning for Small S

fermion localization parameter
Why Build the LHC?

WW Scattering Amplitude

Why Build the LHC?

WW Scattering Amplitude

Why Build the LHC?

LHC Signal

Birkedal, Matchev, Perelstein hep-ph/0412278

Drell-Yan

Sanz, Martin hep-ph/0907.3931

Gauge-Phobic Higgs

AdS/CFT: a localized Higgs $\rightarrow \mathcal{O}$ with $d[\mathcal{O}] = \infty$

 $d[\mathcal{O}]$ finite \rightarrow Higgs profile in bulk, finite VEV

Higgs profile in Bulk, finite VEV Higgs has suppressed couplings

Cacciapaglia, Csaki, Marandella, JT hep-ph/0611358

G-Phobic Phenomenology

Production: tt (bb) associated production and Drell-Yan $\begin{array}{c} & & \\ & &$

 σ (pp -> Z₁ or A₁ -> W⁺W⁻) = 420 fb σ (pp -> Z₁ or A₁ -> e⁺e⁻) = 6 fb

t.b

 \circ WW: rescale Higgs studies, \sim 5 σ significance after 10 fb⁻¹ \circ Leptons: fewer events but clean

Cacciapaglia, Marandella

Gaugephobic Higgs

Cacciapaglia, Csaki, Marandella, JT hep-ph/0611358

Galloway, McElrath, McRaven, JT hep-ph/0908.0532

Conclusions

all the proposed solutions to the hierarchy problem are fine tuned

probably are other ways to address the hierarchy problem

luckily Nature is smarter than us, and will soon tell us the answer

if we ask the right questions

Duality for SUSY QCD

Toy-Model of EWSB

	$SU(2)_{\rm SC}$	$SU(2)_L$	$SU(2)_R$	U(1)	$U(1)_R$
T_L			1	1	0
T_R		1		-1	0
H	1			0	1
S_L	1	1	1	-2	2
S_R	1	1	1	2	2

$$\begin{split} W &= \lambda_L S_L T_L T_L + \lambda_R S_R T_R T_R + \lambda_H H T_L T_R + \frac{1}{2} \mu H H \\ U(1)_Y &\subset SU(2)_R, \ Y \propto \tau_{3R} \\ \end{split}$$
Two colors with Two flavors

Confinement

 $W_{\text{eff}} = f \left[\lambda_L S_L B_L + \lambda_R S_R B_R + \lambda_H H \Pi \right] + \frac{1}{2} \mu H H$

Confinement with XSB

 $\det(\Pi) - B_L B_R = \frac{1}{2} f^2$ $f = \frac{\Lambda}{4\pi}$ $W_{\text{eff}} = f \left[\lambda_L S_L B_L + \lambda_R S_R B_R + \lambda_H H \Pi\right] + \frac{1}{2} \mu H H$ $\Pi^j{}_k = \frac{1}{\sqrt{2}} (\Pi_0 \mathbf{1}_2 + i \Pi_A \tau_A)^j{}_k$ $\det(\Pi) = \frac{1}{2} \left(\Pi_0^2 + \Pi_A \Pi_A\right)$ $\Pi_0 = \left(f^2 + 2B_L B_R - \Pi_A \Pi_A\right)^{1/2}$

Confinement with XSB

equations of motion: $H_{0} = -\frac{\lambda_{H}f}{\mu}\Pi_{0}$ $f\lambda_{H}\Pi_{A} = -\mu H_{A}$ $H_{0}\Pi_{A} = H_{A}\Pi_{0}$

3 linear combinations of Π_A and H_A are undetermined: Goldstone Bosons

Fat Higgs

 $W = \lambda_L S_L T_L T_L + \lambda_R S_R T_R T_R + \lambda_H H T_L T_R + \frac{1}{2}y(S_L + S_R)HH$

$$\langle H_0 \rangle = \left(\frac{2\lambda_L \lambda_R}{9y^2} \right)^{1/4} f$$

$$\langle S_L \rangle = \langle S_R \rangle = \pm \lambda_H \left(\frac{2}{9y^2 \lambda_L \lambda_R} \right)^{1/4} f$$

$$\langle B_L \rangle = -\left(\frac{\lambda_R}{18y^2 \lambda_L} \right)^{1/2} f$$

$$\langle B_R \rangle = -\left(\frac{\lambda_L}{18y^2 \lambda_R} \right)^{1/2} f$$

Luty, JT, Grant hep-ph/0006224 Murayama, Harnik, Kribs, Larsen hep-ph/0311349