Baryons and Mesons in Holographic QCD Cargèse 2010

Oriol Domènech Cots

Universitat Autònoma de Barcelona, IFAE

July 22, 2010

- ロト (日) (日) (日) (日) (日) (日)

Some features of QCD

- Quantum Chromodynamics is the theory that nature have chosen to describe stong interactions.
- Due to its non-abelian nature, QCD behaves as a free theory at very high energies, Asymptotic freedom.

Some features of QCD

- Quantum Chromodynamics is the theory that nature have chosen to describe stong interactions.
- Due to its non-abelian nature, QCD behaves as a free theory at very high energies, Asymptotic freedom.

(D) (A) (2) (2)

Some features of QCD

- At low energies the coupling constant becomes large.
 Perturbation Theory breakes down.
- In this regime we do not know how to compute hadron physics from QCD.
- It's even difficult to describe hadron physics frome effective theories due to mass scales.

Gravity/Gauge duality

In this situation we can make use of the Gravity/Gauge duality.

- The Gravity/Gauge duality is a tool that allows us to do computations even when the Perturbation Theory does not work.
- It states that any strongly coupled CFT can be related to a higher dimensional theory of gravity that is weakly coupled.

Holographic QCD

 We can make use of this duality in order to describe QCD at low energies (Holographic QCD).

• The dual theory is a 5D AdS space with the following metric. $ds^2 = a^2(z)(dx_\mu dx_\nu \eta^{\mu\nu} - dz^2)$ Where $a(z) = \frac{1}{z}$ is the warp factor.

The 5D Model

- We consider a slice of 5D AdS space with a U(2)_L × U(2)_R gauge symmetry broken down to U(2)_V by the boundary conditions.
- ► The model has two gauge fields, ∠ and ∠, associated to the Left-Right symmetry and a Scalar field, Φ. It has 5 free parameters; M₅, M_{bulk}, M_q, ξ, L.
- AdS/QCD tells us that:
 - $\mathcal{L}, \mathcal{R} \leftrightarrow \langle j_L^{\mu} \rangle, \langle j_R^{\mu} \rangle$ $\Phi \leftrightarrow \langle \mathcal{O} \rangle$
- We have to match the model with QCD via the AdS/QCD relations.

Results

► Meson sector		Experiment	AdS_5	Deviation
	m_{π}	135MeV	134MeV	0.6%
	$m_{ ho}$	775MeV	783MeV	1.0%
	f_{π}	92MeV	89MeV	3.6%
	$f_{ ho}$	153MeV	149MeV	2.7%

		Exp	AdS ₅	Deviation
	M _N	940 MeV	1130MeV	20%
Baryons	$\sqrt{< r_{E,S}^2 >}$	0.79fm	0.88fm	11%
	$\sqrt{\langle r_{M,S}^2 \rangle}$	0.82fm	0.92fm	12%

The total Root Mean Square Error (RMSE) is about 25%

E DQC