Tilman Plehn

Spectrum

Production

Jets

Leptons

Higgs

Tops

QCD and SUSY

Masses

Spins

GUT?

Supersymmetry at the LHC

Tilman Plehn

Universität Heidelberg

Cargese, 7/2010

Tilman Plehn

Spectrum

Production

Jets

Leptons

Higgs

Tops

QCD and

Masses

Spins

GUT?

Weak-scale masses

- SUSY-QED Lagrangian (Weyl spinors)
- SUSY-QCD Feynman rules (Majorana gluinos)
- mass matrices
- approximate RGE solutions

public RGE programs: SoftSUSY, SuSpect,...

Tilman Plehn

Spectrum

Production

Jets

Leptons

Higgs

Tops

.

...

Spins

GUT?

mSUGRA toy model

Tilman Plehn

Spectrum

Production

Jets

- Leptons
- Higgs
- Tops
- QCD and SUS
- Masses
- Spins
- GUT?

SUSY cross sections

- hadron collider processes
- double counting at NLO
- parton densities

Tilman Plehn

Spectrum

Production

Jets

Leptons

Higgs

Tops

QCD and SUS'

Masses

Spins

GUT?

SUSY cross sections

SUSY at the LHC SUSY cross sections

Spectrum

Production

Jets

Lepton

Higg

Tops

QCD and SUSY

Masses

Spins

GUT?

SM cross sections

Tilman Plehn

Spectrum

Production

Jets

Lepton

Higg

Tops

QCD and SUSY

Masses

Spins

GUT?

compared to $\mathcal{O}(100)$ pb for SUSY

Tilman Plehn

- Spectrum
- Production

Jets

- Leptons
- Higgs
- Tops
- QCD and SUSY
- Masses
- Spins
- GUT?

Searches 1: jets plus missing energy

- production/decay at hadron colliders
- effects of R parity
- typical short/long cascades

Tilman Plehn

Spectrum

Production

Jets

Leptons

Higg

Tops

QCD and SUS

Masses

Spins

GUT?

Fake missing energy

Tilman Plehn

Spectrum

Production

Jets

Leptons

Higgs

Tops

QCD and SUS

Masses

Spins

GUT?

Reducing missing energy from jets

Tilman Plehn

Spectrum

Productio

Jets

Leptons

Higgs

Tops

QCD and SUSY

Masses

Spins

GUT?

1000

0.4 0.6 0.8 EM Fraction of P_T of 2nd Jet

Lepton veto against W+jets

1000

0.4 0.6 0.8 EM Fraction of P_T of 1st Jet

Tilman Plehn

- Spectrum
- Productio

Jets

- Leptons
- Higgs
- Tops
- QCD and SUS'
- Masses
- Spins
- GUT?

CKKW/MLM merging for Z+jets

- matrix element vs parton shower (ISR)
- Sudakov factors
- CKKW@LO
- MLM@LO
- MC@NLO and future

Tilman Plehn

Spectrum

Productio

Jets

Leptons

Higgs

Tops

OCD and SU

Masses

Spins

GUT?

Subtraction of Z+jets

Tilman Plehn

- Spectrum
- Productio

Jets

- Leptons
- Higgs
- Tops
- QCD and SUSY
- Masses
- Spins
- GUT?

Inclusive observables

- invariant/transverse mass
- scalar momentum sums

Tilman Plehn

- Spectrum
- Production
- Jets
- Leptons
- Higgs
- Tops
- QCD and SUSY
- Masses
- Spins
- GUT?

Searches 2: same-sign dileptons

- Majorana gluino in t channel and decay chain
- Majorana neutralino
- virtue of benchmark points: 'say more about author than about physics'

Tilman Plehn

Spectrum

Production

Jets

Leptons

Higgs

Tops

QCD an

Masses

Spins

GUT?

Opposite-sign dileptons

- cascade decays
- top pair background

Tilman Plehn

Spectrum

Production

Jets

Leptons

Higgs

Tops

QCD and SUS

Masses

Spins

GUT?

Searches 3: hemisphere search for Higgs

- hemisphere algorithms
- relevance for Higgs search

Tilman Plehn

- Spectrum
- Production
- Jets
- Leptons

Higgs

- Tops
- QCD and SUSY
- Masses
- Spins
- GUT?

Higgs invariant mass

- SM vs SUSY backgrounds
- Higgs searches at the LHC
- Yukawa couplings of neutralinos/charginos

Tilman Plehn

Spectrum

Production

Jets

Leptons

Higgs

Tops

QCD and SUSY

Masses

Spins

GUT?

Higgs Tagger

- slightly boosted heavy states
- C/A algorithm and mass drop
- Higgs tagging vs W and top tagging

Tilman Plehn

- Spectrum
- Production
- Jets
- Leptons
- Higgs
- Tops
- QCD and SUS
- Masses
- Spins
- GUT?

Searches 4: Tops from a neural net

- relevance of top partner
- stop pair production
- top pair background: semileptonic vs hadronic

impossible to interpret — what is the sample/signature... and then an additioal lepton appears miraculously...?

Tilman Plehn

- Spectrum
- Production
- Jets
- Leptons
- Linne
- **T** . . .
- lops

QCD and SUSY

- Masses
- Spins
- GUT?

QCD jets with squark/gluinos pairs

- collinear radiation
- maximum momentum scale

	$\sigma_{\rm tot}[{\rm pb}]$	ĝĝ	ũ∟ĝ	$\tilde{u}_L \tilde{u}_L^*$	$\tilde{u}_L \tilde{u}_L$	ΤŦ
$p_{T_i} > 100 \text{ GeV}$	σ_{0i}	4.83	5.65	0.286	0.502	1.30
	σ_{1i}	2.89	2.74	0.136	0.145	0.73
	σ_{2j}	1.09	0.85	0.049	0.039	0.26
$p_{Ti} > 50 \text{ GeV}$	σ_{0i}	4.83	5.65	0.286	0.502	1.30
,	σ_{1i}	5.90	5.37	0.283	0.285	1.50
	σ_{2j}	4.17	3.18	0.179	0.117	1.21

Tilman Plehn

Spectrum

Producti

Jets

Lepton

Higg

QCD and SUSY

.

Snins

GUT?

semi-leptonic stop pairs	σ [pb]	$\sigma \cdot \epsilon_{naive}$ [fb]	$\sigma \cdot \epsilon_{\text{improved}}$ [fb]	original
$\tilde{t}_1 \tilde{t}_1^*$	3.2	4.8	38	56
tī	550	47.3	237	20
W + 4j	56.5	2.0	21.5	~ 2.7
W + bbjj	0.63	0.2	1.7	~ 1.5
SM total		49.5	260.2	~ 24.2
S/B		0.096	0.15	2.3
$S/\sqrt{B}_{10 \text{ fb}}^{-1}$		2.2	7.5	36

statistical/systematic errors

Changing the hard scale

backgrounds from data, control regions

Tilman Plehn

Spectrum

Productio

Jets

Leptons

Higg

Tops

QCD and SUSY

Masses

Spins

GUT?

		$\tilde{t}_1 \tilde{t}_1^*$		tī	QCD	W+jets	Z+jets	S/B
m _ĩ [GeV]	340	440	540					
$p_{T,j} > 200 \text{GeV}$	728	292	124	87850	$2.4 \cdot 10^{7}$	1.6 · 10 ⁵	n/a	$3.0 \cdot 10^{-5}$
$E_T^{\rm miss} > 150 { m GeV}$	283	184	93	2245	2.4 · 10 ⁵	1710	2240	$1.2 \cdot 10^{-3}$
first top tag	100	75	42	743	7590	90	114	$1.2 \cdot 10^{-2}$
second top tag	15	11	6.3	32	129	5.7	1.4	8.3 · 10 ⁻²
b tag	8.7	6.3	3.8	19	2.6	$\lesssim 0.2$	$\lesssim 0.05$	0.40
$m_{T2} > 250 { m GeV}$	4.3	4.9	3.2	4.2	\lesssim 0.6	$\lesssim 0.1$	\lesssim 0.03	0.88

weakness of inclusive searches

pseudo-solution: OSET

Top tagging in SUSY

Tilman Plehn

Spectrum

Production

Jets

Leptons

Higg

Tops

QCD and SUSY

Masses

Spins

GUT?

Masses from kinematic end points

- problems with mass reconstruction
- thresholds and edges
- lepton-lepton edge and mass-squared differences

Tilman Plehn

Spectrum

Production

Jets

Leptons

Higgs

Tops

QCD and SUSY

Masses

Spins

GUT?

SPS1a measurements

- systematic errors
- theory errors and higher orders

Г		type of	nominal	stat.	LES	JES	theo.
L		measurement	value	error			
ſ	m _h		108.99	0.01	0.25		2.0
	m _t		171.40	0.01		1.0	
	$m_{\tilde{l}_l} - m_{\chi_1^0}$		102.45	2.3	0.1		2.2
	$m_{\tilde{g}}^2 - m_{\chi_1^0}^2$		511.57	2.3		6.0	18.3
	$m_{\tilde{q}_R} - m_{\chi_1^0}$		446.62	10.0		4.3	16.3
	$m_{\tilde{g}} - m_{\tilde{b}_1}$		88.94	1.5		1.0	24.0
	$m_{\tilde{g}} - m_{\tilde{b}_2}$		62.96	2.5		0.7	24.5
	$m_{\parallel}^{\text{max}}$:	three-particle edge $(\chi_2^0, \tilde{l}_R, \chi_1^0)$	80.94	0.042	0.08		2.4
	m ^{max} :	three-particle edge($\tilde{q}_L, \chi_2^0, \chi_1^0$)	449.32	1.4		4.3	15.2
	mlow:	three-particle edge($\tilde{q}_L, \chi^0_2, \tilde{l}_R$)	326.72	1.3		3.0	13.2
	$m_{\parallel}^{\text{max}}(\chi_4^0)$:	three-particle edge $(\chi_4^0, \tilde{l}_R, \chi_1^0)$	254.29	3.3	0.3		4.1
	$m_{\tau \tau}^{\max}$:	three-particle edge $(\chi_2^0, \tilde{\tau}_1, \chi_1^0)$	83.27	5.0		0.8	2.1
	m ^{high} :	four-particle edge($\tilde{q}_L, \chi_2^0, \tilde{l}_R, \chi_1^0$)	390.28	1.4		3.8	13.9
	m ^{thres} :	threshold($\tilde{q}_L, \chi^0_2, \tilde{l}_R, \chi^0_1$)	216.22	2.3		2.0	8.7
	m ^{thres} :	threshold($\tilde{b}_1, \chi_2^0, \tilde{l}_R, \chi_1^0$)	198.63	5.1		1.8	8.0

Tilman Plehn

Tops

Masses

Spins

						-			
	mSPS1a	LHC	ILC	LHC+ILC		mSPS1a	LHC	ILC	LHC+ILC
h	108.99	0.25	0.05	0.05	Н	393.69		1.5	1.5
Α	393.26		1.5	1.5	H+	401.88		1.5	1.5
χ_1^0	97.21	4.8	0.05	0.05	χ_2^0	180.50	4.7	1.2	0.08
χ_3^0	356.01		4.0	4.0	χ_4^0	375.59	5.1	4.0	2.3
x_1^{\pm}	179.85		0.55	0.55	χ_2^{\pm}	375.72		3.0	3.0
ĝ	607.81	8.0		6.5					
Ĩ1	399.10		2.0	2.0					
Б́1	518.87	7.5		5.7	\tilde{b}_2	544.85	7.9		6.2
ΫL	562.98	8.7		4.9	<i>q̃</i> _₿	543.82	9.5		8.0
ε _ι	199.66	5.0	0.2	0.2	ё _В	142.65	4.8	0.05	0.05
μ	199.66	5.0	0.5	0.5	μ̈́R	142.65	4.8	0.2	0.2
$\tilde{\tau}_1$	133.35	6.5	0.3	0.3	$\tilde{\tau}_2$	203.69		1.1	1.1
ν̈́e	183.79		1.2	1.2	_				

Mass determination

Tilman Plehn

- Spectrum
- Production
- Jets
- Leptons
- Higgs
- Tops
- QCD and SUSY
- Masses
- Spins
- GUT?

Mass relations

- weakness of endpoint measurements
- mass relation methods
- backgrounds and mismeasurements

Tilman Plehn

Spectrum

Production

Jets

Leptons

Higgs

Tops

QCD and SUSY

Masses

Spins

GUT?

Squarks or KK quarks?

Tilman Plehn

Spectrum

Production

Jets

Leptons

Higgs

Tops

QCD and S

Masses

Spins

GUT?

Squarks or KK quarks?

- general approach impossible
- hypothesis test: SUSY (dashed) vs UED (solid)
- hierarchical spectrum: SPS1a

Tilman Plehn

Spectrum

Productio

Jets

Leptons

Higgs

Tops

OCD and SUS

Masses

Spins

GUT?

Observable asymmetry

SUSY at the LHC Measu

Tilman Plehn

Spectrum

Production

Jets

Leptons

Higgs

Tops

10.0

Managa

Spins

GUT?

Measuring unification

tools for parameter extraction: SFitter/Suspect, Fittino/Spheno

Tilman Plehn

Spectrum

Production

Jets

Leptons

Higgs

Tops

QCD and SUSY

Masses

Spins

GUT?

Literature

Everything I know and don't know available

- ► basic: Ian Aitchison's SUSY introduction (hep-ph/0505105)
- ▶ more advanced: Steve Martin's SUSY primer (hep-ph/9709356)
- review with David Morrissey and Tim Tait New Physics at the LHC (arXiv:0912.3259) [new version on my website]
- lecture notes on QCD and Higgs physics An LHC Lecture (arXiv:0910.4182) [new version on my website]
- many great TASI lectures...
- you'd be surprized how much of this talk happened in the last five years!

Tilman Plehn

Spectrum

Production

Jets

Leptons

Higgs

Tops

QCD and SUSY

Masses

Spins

GUT?