
Flavor Physics at the LHC Era∗

Yosef Nir1, †

1Department of Particle Physics and Astrophysics

Weizmann Institute of Science, Rehovot 76100, Israel

Abstract

This is a written version of a series of lectures aimed at graduate students in particle theory/string

theory/particle experiment familiar with the basics of the Standard Model. We explain the many

reasons for the interest in flavor physics. We describe flavor physics and the related CP violation

within the Standard Model, and explain how the B-factories proved that the Kobayashi-Maskawa

mechanism dominates the CP violation that is observed in meson decays. We explain the impli-

cations of flavor physics for new physics, with emphasis on the “new physics flavor puzzle”, and

present the idea of minimal flavor violation as a possible solution. We give an example of the

possible impact of a signal for new physics (rather than a bound) by considering a dimuon CP

asymmetry in Bs decays of order a percent. We explain how the ATLAS and CMS experiments

can solve the new physics flavor puzzle and perhaps shed light on the standard model flavor puzzle.
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I. WHAT IS FLAVOR?

The term “flavors” is used, in the jargon of particle physics, to describe several copies

of the same gauge representation, namely several fields that are assigned the same quantum

charges. Within the Standard Model, when thinking of its unbroken SU(3)C×U(1)EM gauge

group, there are four different types of particles, each coming in three flavors:

• Up-type quarks in the (3)+2/3 representation: u, c, t;

• Down-type quarks in the (3)−1/3 representation: d, s, b;

• Charged leptons in the (1)−1 representation: e, µ, τ ;

• Neutrinos in the (1)0 representation: ν1, ν2, ν3.

The term “flavor physics” refers to interactions that distinguish between flavors. By

definition, gauge interactions, namely interactions that are related to unbroken symmetries

and mediated therefore by massless gauge bosons, do not distinguish among the flavors and

do not constitute part of flavor physics. Within the Standard Model, flavor-physics refers

to the weak and Yukawa interactions.

The term “flavor parameters” refers to parameters that carry flavor indices. Within

the Standard Model, these are the nine masses of the charged fermions and the four “mixing

parameters” (three angles and one phase) that describe the interactions of the charged weak-

force carriers (W±) with quark-antiquark pairs. If one augments the Standard Model with

Majorana mass terms for the neutrinos, one should add to the list three neutrino masses
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and six mixing parameters (three angles and three phases) for the W± interactions with

lepton-antilepton pairs.

The term “flavor universal” refers to interactions with couplings (or to flavor param-

eters) that are proportional to the unit matrix in flavor space. Thus, the strong and elec-

tromagnetic interactions are flavor-universal.1 An alternative term for “flavor-universal” is

“flavor-blind”.

The term “flavor diagonal” refers to interactions with couplings (or to flavor param-

eters) that are diagonal, but not necessarily universal, in the flavor space. Within the

Standard Model, the Yukawa interactions of the Higgs particle are flavor diagonal in the

mass basis.

The term “flavor changing” refers to processes where the initial and final flavor-numbers

(that is, the number of particles of a certain flavor minus the number of anti-particles of

the same flavor) are different. In “flavor changing charged current” processes, both up-

type and down-type flavors, and/or both charged lepton and neutrino flavors are involved.

Examples are (i) muon decay via µ → eν̄iνj, and (ii) K− → µ−ν̄j (which corresponds, at

the quark level, to sū → µ−ν̄j). Within the Standard Model, these processes are mediated

by the W -bosons and occur at tree level. In “flavor changing neutral current” (FCNC)

processes, either up-type or down-type flavors but not both, and/or either charged lepton or

neutrino flavors but not both, are involved. Example are (i) muon decay via µ→ eγ and (ii)

KL → µ+µ− (which corresponds, at the quark level, to sd̄ → µ+µ−). Within the Standard

Model, these processes do not occur at tree level, and are often highly suppressed.

Another useful term is “flavor violation”. We will explain it later in these lectures.

II. WHY IS FLAVOR PHYSICS INTERESTING?

• Flavor physics can discover new physics or probe it before it is directly observed in

experiments. Here are some examples from the past:

– The smallness of Γ(KL→µ+µ−)
Γ(K+→µ+ν)

led to predicting a fourth (the charm) quark;

– The size of ∆mK led to a successful prediction of the charm mass;

1 In the interaction basis, the weak interactions are also flavor-universal, and one can identify the source of

all flavor physics in the Yukawa interactions among the gauge-interaction eigenstates.
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– The size of ∆mB led to a successful prediction of the top mass;

– The measurement of εK led to predicting the third generation.

– The measurement of neutrino flavor transitions led to the discovery of neutrino

masses.

• CP violation is closely related to flavor physics. Within the Standard Model, there is

a single CP violating parameter, the Kobayashi-Maskawa phase δKM [1]. Baryogenesis

tells us, however, that there must exist new sources of CP violation. Measurements of

CP violation in flavor changing processes might provide evidence for such sources.

• The fine-tuning problem of the Higgs mass, and the puzzle of the dark matter imply

that there exists new physics at, or below, the TeV scale. If such new physics had a

generic flavor structure, it would contribute to flavor changing neutral current (FCNC)

processes orders of magnitude above the observed rates. The question of why this does

not happen constitutes the new physics flavor puzzle.

• Most of the charged fermion flavor parameters are small and hierarchical. The Stan-

dard Model does not provide any explanation of these features. This is the Standard

Model flavor puzzle. The puzzle became even deeper after neutrino masses and mix-

ings were measured because, so far, neither smallness nor hierarchy in these parameters

have been established.

III. FLAVOR IN THE STANDARD MODEL

A model of elementary particles and their interactions is defined by the following ingre-

dients: (i) The symmetries of the Lagrangian and the pattern of spontaneous symmetry

breaking; (ii) The representations of fermions and scalars. The Standard Model (SM) is

defined as follows:

(i) The gauge symmetry is

GSM = SU(3)C × SU(2)L × U(1)Y. (1)

It is spontaneously broken by the VEV of a single Higgs scalar, φ(1, 2)1/2 (〈φ0〉 = v/
√

2):

GSM → SU(3)C × U(1)EM. (2)
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(ii) There are three fermion generations, each consisting of five representations of GSM:

QLi(3, 2)+1/6, URi(3, 1)+2/3, DRi(3, 1)−1/3, LLi(1, 2)−1/2, ERi(1, 1)−1. (3)

A. The interactions basis

The Standard Model Lagrangian, LSM, is the most general renormalizable Lagrangian

that is consistent with the gauge symmetry (1), the particle content (3) and the pattern of

spontaneous symmetry breaking (2). It can be divided to three parts:

LSM = Lkinetic + LHiggs + LYukawa. (4)

As concerns the kinetic terms, to maintain gauge invariance, one has to replace the

derivative with a covariant derivative:

Dµ = ∂µ + igsG
µ
aLa + igW µ

b Tb + ig′BµY. (5)

Here Gµ
a are the eight gluon fields, W µ

b the three weak interaction bosons and Bµ the single

hypercharge boson. The La’s are SU(3)C generators (the 3 × 3 Gell-Mann matrices 1
2
λa

for triplets, 0 for singlets), the Tb’s are SU(2)L generators (the 2 × 2 Pauli matrices 1
2
τb for

doublets, 0 for singlets), and the Y ’s are the U(1)Y charges. For example, for the quark

doublets QL, we have

Lkinetic(QL) = iQLiγµ

(
∂µ +

i

2
gsG

µ
aλa +

i

2
gW µ

b τb +
i

6
g′Bµ

)
δijQLj, (6)

while for the lepton doublets LIL, we have

Lkinetic(LL) = iLLiγµ

(
∂µ +

i

2
gW µ

b τb −
i

2
g′Bµ

)
δijLLj . (7)

The unit matrix in flavor space, δij , signifies that these parts of the interaction Lagrangian

are flavor-universal. In addition, they conserve CP.

The Higgs potential, which describes the scalar self interactions, is given by:

LHiggs = µ2φ†φ− λ(φ†φ)2. (8)

For the Standard Model scalar sector, where there is a single doublet, this part of the

Lagrangian is also CP conserving.
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The quark Yukawa interactions are given by

−LqY = Y d
ijQLiφDRj + Y u

ijQLiφ̃URj + h.c., (9)

(where φ̃ = iτ2φ
†) while the lepton Yukawa interactions are given by

−LℓY = Y e
ijLLiφERj + h.c.. (10)

This part of the Lagrangian is, in general, flavor-dependent (that is, Y f 6∝ 1) and CP

violating.

B. Global symmetries

In the absence of the Yukawa matrices Y d, Y u and Y e, the SM has a large U(3)5 global

symmetry:

Gglobal(Y
u,d,e = 0) = SU(3)3

q × SU(3)2
ℓ × U(1)5, (11)

where

SU(3)3
q = SU(3)Q × SU(3)U × SU(3)D,

SU(3)2
ℓ = SU(3)L × SU(3)E ,

U(1)5 = U(1)B × U(1)L × U(1)Y × U(1)PQ × U(1)E . (12)

Out of the five U(1) charges, three can be identified with baryon number (B), lepton number

(L) and hypercharge (Y ), which are respected by the Yukawa interactions. The two remain-

ing U(1) groups can be identified with the PQ symmetry whereby the Higgs and DR, ER

fields have opposite charges, and with a global rotation of ER only.

The point that is important for our purposes is that Lkinetic + LHiggs respect the non-

Abelian flavor symmetry S(3)3
q × SU(3)2

ℓ , under which

QL → VQQL, UR → VUUR, DR → VDDR, LL → VLLL, ER → VEER, (13)

where the Vi are unitary matrices. The Yukawa interactions (9) and (10) break the global

symmetry,

Gglobal(Y
u,d,e 6= 0) = U(1)B × U(1)e × U(1)µ × U(1)τ . (14)

(Of course, the gauged U(1)Y also remains a good symmetry.) Thus, the transformations of

Eq. (13) are not a symmetry of LSM. Instead, they correspond to a change of the interaction
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basis. These observations also offer an alternative way of defining flavor physics: it refers to

interactions that break the SU(3)5 symmetry (13). Thus, the term “flavor violation” is

often used to describe processes or parameters that break the symmetry.

One can think of the quark Yukawa couplings as spurions that break the global SU(3)3
q

symmetry (but are neutral under U(1)B),

Y u ∼ (3, 3̄, 1)SU(3)3q , Y d ∼ (3, 1, 3̄)SU(3)3q , (15)

and of the lepton Yukawa couplings as spurions that break the global SU(3)2
ℓ symmetry (but

are neutral under U(1)e × U(1)µ × U(1)τ ),

Y e ∼ (3, 3̄)SU(3)2
ℓ
. (16)

The spurion formalism is convenient for several purposes: parameter counting (see below),

identification of flavor suppression factors (see Section V), and the idea of minimal flavor

violation (see Section VIII).

C. Counting parameters

How many independent parameters are there in LqY? The two Yukawa matrices, Y u and

Y d, are 3 × 3 and complex. Consequently, there are 18 real and 18 imaginary parameters

in these matrices. Not all of them are, however, physical. The pattern of Gglobal breaking

means that there is freedom to remove 9 real and 17 imaginary parameters (the number of

parameters in three 3×3 unitary matrices minus the phase related to U(1)B). For example,

we can use the unitay transformations QL → VQQL, UR → VUUR and DR → VDDR, to lead

to the following interaction basis:

Y d = λd, Y u = V †λu, (17)

where λd,u are diagonal,

λd = diag(yd, ys, yb), λu = diag(yu, yc, yt), (18)

while V is a unitary matrix that depends on three real angles and one complex phase. We

conclude that there are 10 quark flavor parameters: 9 real ones and a single phase. In the

mass basis, we will identify the nine real parameters as six quark masses and three mixing

angles, while the single phase is δKM.
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How many independent parameters are there in LℓY? The Yukawa matrix Y e is 3 × 3

and complex. Consequently, there are 9 real and 9 imaginary parameters in this matrix.

There is, however, freedom to remove 6 real and 9 imaginary parameters (the number of

parameters in two 3 × 3 unitary matrices minus the phases related to U(1)3). For example,

we can use the unitay transformations LL → VLLL and ER → VEER, to lead to the following

interaction basis:

Y e = λe = diag(ye, yµ, yτ). (19)

We conclude that there are 3 real lepton flavor parameters. In the mass basis, we will

identify these parameters as the three charged lepton masses. We must, however, modify

the model when we take into account the evidence for neutrino masses.

D. The mass basis

Upon the replacement Re(φ0) → v+H0
√

2
, the Yukawa interactions (9) give rise to the mass

matricess

Mq =
v√
2
Y q. (20)

The mass basis corresponds, by definition, to diagonal mass matrices. We can always find

unitary matrices VqL and VqR such that

VqLMqV
†
qR = Mdiag

q ≡ v√
2
λq. (21)

The four matrices VdL, VdR, VuL and VuR are then the ones required to transform to the mass

basis. For example, if we start from the special basis (17), we have VdL = VdR = VuR = 1

and VuL = V . The combination VuLV
†
dL is independent of the interaction basis from which

we start this procedure.

We denote the left-handed quark mass eigenstates as UL and DL. The charged current

interactions for quarks [that is the interactions of the charged SU(2)L gauge bosons W±
µ =

1√
2
(W 1

µ∓ iW 2
µ )], which in the interaction basis are described by (6), have a complicated form

in the mass basis:

−LqW± =
g√
2
ULiγ

µVijDLjW
+
µ + h.c.. (22)

where V is the 3 × 3 unitary matrix (V V † = V †V = 1) that appeared in Eq. (17). For a

general interaction basis,

V = VuLV
†
dL. (23)
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V is the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix for quarks [1, 2]. As a result

of the fact that V is not diagonal, the W± gauge bosons couple to quark mass eigenstates of

different generations. Within the Standard Model, this is the only source of flavor changing

quark interactions.

Exercise 1: Prove that, in the absence of neutrino masses, there is no mixing in the

lepton sector.

Exercise 2: Prove that there is no mixing in the Z couplings. (In the physics jargon,

there are no flavor changing neutral currents at tree level.)

The detailed structure of the CKM matrix, its parametrization, and the constraints on

its elements are described in Appendix A.

IV. TESTING CKM

Measurements of rates, mixing, and CP asymmetries in B decays in the two B factories,

BaBar abd Belle, and in the two Tevatron detectors, CDF and D0, signified a new era in our

understanding of CP violation. The progress is both qualitative and quantitative. Various

basic questions concerning CP and flavor violation have received, for the first time, answers

based on experimental information. These questions include, for example,

• Is the Kobayashi-Maskawa mechanism at work (namely, is δKM 6= 0)?

• Does the KM phase dominate the observed CP violation?

As a first step, one may assume the SM and test the overall consistency of the various

measurements. However, the richness of data from the B factories allow us to go a step

further and answer these questions model independently, namely allowing new physics to

contribute to the relevant processes. We here explain the way in which this analysis proceeds.

A. SψKS

The CP asymmetry in B → ψKS decays plays a major role in testing the KM mechanism.

Before we explain the test itself, we should understand why the theoretical interpretation of

the asymmetry is exceptionally clean, and what are the theoretical parameters on which it

depends, within and beyond the Standard Model.
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The CP asymmetry in neutral meson decays into final CP eigenstates fCP is defined as

follows:

AfCP
(t) ≡ dΓ/dt[B0

phys(t) → fCP ] − dΓ/dt[B0
phys(t) → fCP ]

dΓ/dt[B0
phys(t) → fCP ] + dΓ/dt[B0

phys(t) → fCP ]
. (24)

A detailed evaluation of this asymmetry is given in Appendix B. It leads to the following

form:

AfCP
(t) = SfCP

sin(∆mt) − CfCP
cos(∆mt),

SfCP
≡ 2 Im(λfCP

)

1 + |λfCP
|2 , CfCP

≡ 1 − |λfCP
|2

1 + |λfCP
|2 , (25)

where

λfCP
= e−iφB(AfCP

/AfCP
) . (26)

Here φB refers to the phase of M12 [see Eq. (B23)]. Within the Standard Model, the corre-

sponding phase factor is given by

e−iφB = (V ∗
tbVtd)/(VtbV

∗
td) . (27)

The decay amplitudes Af and Af are defined in Eq. (B1).

FIG. 1: Feynman diagrams for (a) tree and (b) penguin amplitudes contributing to B0 → f or

Bs → f via a b̄→ q̄qq̄′ quark-level process.

d or s

b q

q′

q

V
∗
qb

Vqq′

B
0

or

Bs
f

(a) tf

d or s

b q′

q

q

V
∗
q

u
b Vq

u
q′

q
u

B
0

or

Bs
f

(b) pf
qu

The B0 → J/ψK0 decay [3, 4] proceeds via the quark transition b̄ → c̄cs̄. There are

contributions from both tree (t) and penguin (pqu, where qu = u, c, t is the quark in the

loop) diagrams (see Fig. 1) which carry different weak phases:

Af = (V ∗
cbVcs) tf +

∑

qu=u,c,t

(
V ∗
qubVqus

)
pquf . (28)
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(The distinction between tree and penguin contributions is a heuristic one, the separation

by the operator that enters is more precise. For a detailed discussion of the more complete

operator product approach, which also includes higher order QCD corrections, see, for ex-

ample, ref. [5].) Using CKM unitarity, these decay amplitudes can always be written in

terms of just two CKM combinations:

AψK = (V ∗
cbVcs)TψK + (V ∗

ubVus)P
u
ψK , (29)

where TψK = tψK + pcψK − ptψK and P u
ψK = puψK − ptψK . A subtlety arises in this decay that

is related to the fact that B0 → J/ψK0 and B
0 → J/ψK0. A common final state, e.g.

J/ψKS, can be reached via K0 −K0 mixing. Consequently, the phase factor corresponding

to neutral K mixing, e−iφK = (V ∗
cdVcs)/(VcdV

∗
cs), plays a role:

AψKS

AψKS

= −(VcbV
∗
cs)TψK + (VubV

∗
us)P

u
ψK

(V ∗
cbVcs)TψK + (V ∗

ubVus)P
u
ψK

× V ∗
cdVcs
VcdV

∗
cs

. (30)

The crucial point is that, for B → J/ψKS and other b̄ → c̄cs̄ processes, we can neglect

the P u contribution to AψK , in the SM, to an approximation that is better than one percent:

|P u
ψK/TψK | × |Vub/Vcb| × |Vus/Vcs| ∼ (loop factor) × 0.1 × 0.23 ∼< 0.005. (31)

Thus, to an accuracy of better than one percent,

λψKS
=

(
V ∗
tbVtd
VtbV

∗
td

)(
VcbV

∗
cd

V ∗
cbVcd

)
= −e−2iβ , (32)

where β is defined in Eq. (A9), and consequently

SψKS
= sin 2β, CψKS

= 0 . (33)

(Below the percent level, several effects modify this equation [6–9].)

Exercise 3: Show that, if the B → ππ decays were dominated by tree diagrams, then

Sππ = sin 2α.

Exercise 4: Estimate the accuracy of the predictions SφKS
= sin 2β and CφKS

= 0.

When we consider extensions of the SM, we still do not expect any significant new con-

tribution to the tree level decay, b → cc̄s, beyond the SM W -mediated diagram. Thus,

the expression ĀψKS
/AψKS

= (VcbV
∗
cd)/(V

∗
cbVcd) remains valid, though the approximation of

neglecting sub-dominant phases can be somewhat less accurate than Eq. (31). On the other
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hand, M12, the B0 − B
0

mixing amplitude, can in principle get large and even dominant

contributions from new physics. We can parametrize the modification to the SM in terms

of two parameters, r2
d signifying the change in magnitude, and 2θd signifying the change in

phase:

M12 = r2
d e

2iθd MSM
12 (ρ, η). (34)

This leads to the following generalization of Eq. (33):

SψKS
= sin(2β + 2θd), CψKS

= 0 . (35)

The experimental measurements give the following ranges [10]:

SψKS
= +0.671 ± 0.024, CψKS

= +0.005 ± 0.019 . (36)

B. Self-consistency of the CKM assumption

The three generation standard model has room for CP violation, through the KM phase

in the quark mixing matrix. Yet, one would like to make sure that indeed CP is violated

by the SM interactions, namely that sin δKM 6= 0. If we establish that this is the case, we

would further like to know whether the SM contributions to CP violating observables are

dominant. More quantitatively, we would like to put an upper bound on the ratio between

the new physics and the SM contriubtions.

As a first step, one can assume that flavor changing processes are fully described by the

SM, and check the consistency of the various measurements with this assumption. There

are four relevant mixing parameters, which can be taken to be the Wolfenstein parameters

λ, A, ρ and η defined in Eq. (A4). The values of λ and A are known rather accurately [11]

from, respectively, K → πℓν and b→ cℓν decays:

λ = 0.2257 ± 0.0010, A = 0.814 ± 0.022. (37)

Then, one can express all the relevant observables as a function of the two remaining pa-

rameters, ρ and η, and check whether there is a range in the ρ− η plane that is consistent

with all measurements. The list of observables includes the following:

• The rates of inclusive and exclusive charmless semileptonic B decays depend on

|Vub|2 ∝ ρ2 + η2;
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γ

γ

α

α

dm∆
Kε

Kε
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SLubV

ν τubV
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Moriond 09
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FIG. 2: Allowed region in the ρ, η plane. Superimposed are the individual constraints from charm-

less semileptonic B decays (|Vub/Vcb|), mass differences in the B0 (∆md) and Bs (∆ms) neutral

meson systems, and CP violation in K → ππ (εK), B → ψK (sin 2β), B → ππ, ρπ, ρρ (α), and

B → DK (γ). Taken from [12].

• The CP asymmetry in B → ψKS, SψKS
= sin 2β = 2η(1−ρ)

(1−ρ)2+η2
;

• The rates of various B → DK decays depend on the phase γ, where eiγ = ρ+iη√
ρ2+η2

;

• The rates of various B → ππ, ρπ, ρρ decays depend on the phase α = π − β − γ;

• The ratio between the mass splittings in the neutral B and Bs systems is sensitive to

|Vtd/Vts|2 = λ2[(1 − ρ)2 + η2];

• The CP violation in K → ππ decays, ǫK , depends in a complicated way on ρ and η.

The resulting constraints are shown in Fig. 2.

The consistency of the various constraints is impressive. In particular, the following
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ranges for ρ and η can account for all the measurements [11]:

ρ = +0.135+0.031
−0.016, η = +0.349 ± 0.017. (38)

One can make then the following statement [13]:

Very likely, CP violation in flavor changing processes is dominated by the

Kobayashi-Maskawa phase.

In the next two subsections, we explain how we can remove the phrase “very likely” from

this statement, and how we can quantify the KM-dominance.

C. Is the KM mechanism at work?

In proving that the KM mechanism is at work, we assume that charged-current tree-level

processes are dominated by the W -mediated SM diagrams (see, for example, [14]). This is

a very plausible assumption. I am not aware of any viable well-motivated model where this

assumption is not valid. Thus we can use all tree level processes and fit them to ρ and η, as

we did before. The list of such processes includes the following:

1. Charmless semileptonic B-decays, b→ uℓν, measure Ru [see Eq. (A8)].

2. B → DK decays, which go through the quark transitions b → cūs and b → uc̄s,

measure the angle γ [see Eq. (A9)].

3. B → ρρ decays (and, similarly, B → ππ and B → ρπ decays) go through the quark

transition b → uūd. With an isospin analysis, one can determine the relative phase

between the tree decay amplitude and the mixing amplitude. By incorporating the

measurement of SψKS
, one can subtract the phase from the mixing amplitude, finally

providing a measurement of the angle γ [see Eq. (A9)].

In addition, we can use loop processes, but then we must allow for new physics con-

tributions, in addition to the (ρ, η)-dependent SM contributions. Of course, if each such

measurement adds a separate mode-dependent parameter, then we do not gain anything by

using this information. However, there is a number of observables where the only relevant

loop process is B0 − B0 mixing. The list includes SψKS
, ∆mB and the CP asymmetry in
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semileptonic B decays:

SψKS
= sin(2β + 2θd),

∆mB = r2
d(∆mB)SM,

ASL = −Re
(

Γ12

M12

)SM sin 2θd
r2
d

+ Im
(

Γ12

M12

)SM cos 2θd
r2
d

. (39)

As explained above, such processes involve two new parameters [see Eq. (34)]. Since there

are three relevant observables, we can further tighten the constraints in the (ρ, η)-plane.

Similarly, one can use measurements related to Bs − Bs mixing. One gains three new

observables at the cost of two new parameters (see, for example, [15]).

The results of such fit, projected on the ρ− η plane, can be seen in Fig. 3. It gives [12]

η = 0.44+0.05
−0.23 (3σ). (40)

[A similar analysis in Ref. [16] obtains the 3σ range (0.31 − 0.46).] It is clear that η 6= 0 is

well established:

The Kobayashi-Maskawa mechanism of CP violation is at work.

Another way to establish that CP is violated by the CKM matrix is to find, within the

same procedure, the allowed range for sin 2β [16]:

sin 2βtree = 0.80 ± 0.03. (41)

Thus, β 6= 0 is well established.

The consistency of the experimental results (36) with the SM predictions (33,41) means

that the KM mechanism of CP violation dominates the observed CP violation. In the next

subsection, we make this statement more quantitative.

D. How much can new physics contribute to B0 −B0 mixing?

All that we need to do in order to establish whether the SM dominates the observed CP

violation, and to put an upper bound on the new physics contribution to B0 − B0 mixing,

is to project the results of the fit performed in the previous subsection on the r2
d − 2θd

plane. If we find that θd ≪ β, then the SM dominance in the observed CP violation will be

established. The constraints are shown in Fig. 4(a). Indeed, θd ≪ β.
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FIG. 3: The allowed region in the ρ− η plane, assuming that tree diagrams are dominated by the

Standard Model [12].

An alternative way to present the data is to use the hd, σd parametrization,

r2
de

2iθd = 1 + hde
2iσd . (42)

While the rd, θd parameters give the relation between the full mixing amplide and the SM

one, and are convenient to apply to the measurements, the hd, σd parameters give the re-

lation between the new physics and SM contributions, and are more convenient in testing

theoretical models:

hde
2iσd =

MNP
12

MSM
12

. (43)

The constraints in the hd−σd plane are shown in Fig. 4(b). We can make the following two

statements:

1. A new physics contribution to B0 −B
0

mixing amplitude that carries a phase that is

significantly different from the KM phase is constrained to lie below the 20-30% level.

2. A new physics contribution to the B0 − B
0

mixing amplitude which is aligned with

the KM phase is constrained to be at most comparable to the CKM contribution.
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FIG. 4: Constraints in the (a) r2d−2θd plane, and (b) hd−σd plane, assuming that NP contributions

to tree level processes are negligible [12].
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One can reformulate these statements as follows:

1. The KM mechanism dominates CP violation in B0 − B
0

mixing.

2. The CKM mechanism is a major player in B0 − B
0

mixing.

V. THE NEW PHYSICS FLAVOR PUZZLE

A. A model independent discussion

It is clear that the Standard Model is not a complete theory of Nature:

1. It does not include gravity, and therefore it cannot be valid at energy scales above

mPlanck ∼ 1019 GeV:

2. It does not allow for neutrino masses, and therefore it cannot be valid at energy scales

above mseesaw ∼ 1015 GeV;

3. The fine-tuning problem of the Higgs mass and the puzzle of the dark matter suggest

that the scale where the SM is replaced with a more fundamental theory is actually

much lower, ΛNP ∼< 1 TeV.
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Given that the SM is only an effective low energy theory, non-renormalizable terms must

be added to LSM of Eq. (4). These are terms of dimension higher than four in the fields

which, therefore, have couplings that are inversely proportional to the scale of new physics

ΛNP. For example, the lowest dimension non-renormalizable terms are dimension five:

−Ldim−5
Yukawa =

Zν
ij

ΛNP
LILiL

I
Ljφφ+ h.c.. (44)

These are the seesaw terms, leading to neutrino masses.

Exercise 5: How does the global symmetry breaking pattern (14) change when (44) is

taken into account?

Exercise 6: What is the number of physical lepton flavor parameters in this case? Iden-

tify these parameters in the mass basis.

As concerns quark flavor physics, consider, for example, the following dimension-six,

four-fermion, flavor changing operators:

L∆F=2 =
zsd
Λ2

NP

(dLγµsL)
2 +

zcu
Λ2

NP

(cLγµuL)
2 +

zbd
Λ2

NP

(dLγµbL)2 +
zbs
Λ2

NP

(sLγµbL)2. (45)

Each of these terms contributes to the mass splitting between the corresponding two neutral

mesons. For example, the term L∆B=2 ∝ (dLγµbL)
2 contributes to ∆mB, the mass difference

between the two neutral B-mesons. We use MB
12 = 1

2mB
〈B0|L∆F=2|B0〉 and

〈B0|(dLaγµbLa)(dLbγµbLb)|B0〉 = −1

3
m2
Bf

2
BBB. (46)

Analogous expressions hold for the other neutral mesons.2 This leads to ∆mB/mB =

2|MB
12|/mB ∼ (|zbd|/3)(fB/ΛNP)2. Experiments give, for CP conserving observables (the

experimental evidence for ∆mD is at the 3σ level):

∆mK/mK ∼ 7.0 × 10−15,

∆mD/mD ∼ 8.7 × 10−15,

∆mB/mB ∼ 6.3 × 10−14,

∆mBs
/mBs

∼ 2.1 × 10−12, (47)

2 The PDG [11] quotes the following values, extracted from leptonic charged meson decays: fK ≈ 0.16 GeV ,

fD ≈ 0.23 GeV , fB ≈ 0.18 GeV . We further use fBs
≈ 0.20 GeV .
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and for CP violating ones

ǫK ∼ 2.3 × 10−3,

AΓ/yCP ∼< 0.2,

SψKS
= 0.67 ± 0.02,

Sψφ ∼< 1. (48)

These measurements give then the following constraints:

ΛNP ∼>





√
zsd 1 × 103 TeV ∆mK

√
zcu 1 × 103 TeV ∆mD

√
zbd 4 × 102 TeV ∆mB

√
zbs 7 × 101 TeV ∆mBs

(49)

and, for maximal phases,

ΛNP ∼>





√
zsd 2 × 104 TeV ǫK

√
zcu 3 × 103 TeV AΓ

√
zbd 8 × 102 TeV SψK

√
zbs 7 × 101 TeV Sψφ

(50)

If the new physics has a generic flavor structure, that is zij = O(1), then its scale must

be above 103 − 104 TeV (or, if the leading contributions involve electroweak loops, above

102 − 103 TeV).3

If indeed ΛNP ≫ TeV , it means that we have misinterpreted the hints from the fine-

tuning problem and the dark matter puzzle. There is, however, another way to look at these

constraints:

zsd ∼< 8 × 10−7 (ΛNP/TeV )2,

zcu ∼< 5 × 10−7 (ΛNP/TeV )2,

zbd ∼< 5 × 10−6 (ΛNP/TeV )2,

zbs ∼< 2 × 10−4 (ΛNP/TeV )2, (51)

zIsd ∼< 6 × 10−9 (ΛNP/TeV )2,

3 The bounds from the corresponding four-fermi terms with LR structure, instead of the LL structure of

Eq. (45), are even stronger.
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zIcu ∼< 1 × 10−7 (ΛNP/TeV )2,

zIbd ∼< 1 × 10−6 (ΛNP/TeV )2,

zIbs ∼< 2 × 10−4 (ΛNP/TeV )2. (52)

It could be that the scale of new physics is of order TeV, but its flavor structure is far from

generic.

One can use that language of effective operators also for the SM, integrating out all

particles significantly heavier than the neutral mesons (that is, the top, the Higgs and the

weak gauge bosons). Thus, the scale is ΛSM ∼ mW . Since the leading contributions to neutral

meson mixings come from box diagrams, the zij coefficients are suppressed by α2
2. To identify

the relevant flavor suppression factor, one can employ the spurion formalism. For example,

the flavor transition that is relevant to B0 − B0 mixing involves dLbL which transforms as

(8, 1, 1)SU(3)3q
. The leading contribution must then be proportional to (Y uY u†)13 ∝ y2

t VtbV
∗
td.

Indeed, an explicit calculation (using VIA for the matrix element and neglecting QCD

corrections) gives4

2MB
12

mB

≈ −α
2
2

12

f 2
B

m2
W

S0(xt)(VtbV
∗
td)

2, (53)

where xi = m2
i /m

2
W and

S0(x) =
x

(1 − x)2

[
1 − 11x

4
+
x2

4
− 3x2 ln x

2(1 − x)

]
. (54)

Similar spurion analyses, or explicit calculations, allow us to extract the weak and flavor

suppression factors that apply in the SM:

Im(zSM
sd ) ∼ α2

2y
2
t |VtdVts|2 ∼ 1 × 10−10,

zSM
sd ∼ α2

2y
2
c |VcdVcs|2 ∼ 5 × 10−9,

zSM
bd ∼ α2

2y
2
t |VtdVtb|2 ∼ 7 × 10−8,

zSM
bs ∼ α2

2y
2
t |VtsVtb|2 ∼ 2 × 10−6. (55)

(We did not include zSM
cu in the list because it requires a more detailed consideration. The

naively leading short distance contribution is ∝ α2
2(y

4
s/y

2
c )|VcsVus|2 ∼ 5 × 10−13. However,

higher dimension terms can replace a y2
s factor with (Λ/mD)2 [18]. Moreover, long distance

contributions are expected to dominate. In particular, peculiar phase space effects [19, 20]

4 A detailed derivation can be found in Appendix B of [17].
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have been identified which are expected to enhance ∆mD to within an order of magnitude

of the its measured value.)

It is clear then that contributions from new physics at ΛNP ∼ 1 TeV should be suppressed

by factors that are comparable or smaller than the SM ones. Why does that happen? This

is the new physics flavor puzzle.

The fact that the flavor structure of new physics at the TeV scale must be non-generic

means that flavor measurements are a good probe of the new physics. Perhaps the best-

studied example is that of supersymmetry. Here, the spectrum of the superpartners and

the structure of their couplings to the SM fermions will allow us to probe the mechanism of

dynamical supersymmetry breaking.

B. Lessons from CP violation in Bs −Bs mixing

An interesting experimental result concerning CP violation in Bs−Bs mixing have been

recently presented by the D0 experiment [21]:

(abSL)D0 = (−9.6 ± 2.5 ± 1.5) × 10−3, (56)

to be compared with the Standard Model (SM) prediction [22]:

(abSL)SM = (−0.23+0.05
−0.06) × 10−3. (57)

The measured asymmetry is a combination of the asymmetries in B0
d and B0

s decays [21]:

abSL = (0.51 ± 0.04)adSL + (0.49 ± 0.04)asSL. (58)

To explain the difference between the experimental result (56) and the SM prediction (57),

a new physics contribution to Bs−Bs and/or Bd−Bd mixing is required that is comparable

in size to the SM contribution and carries a new phase of order one.

The like-sign dimuon charge asymmetry in semileptonic b decys is experimentally defined

as

abSL ≡ N++
b −N−−

b

N++
b +N−−

b

, (59)

where N++
b is the number of bb̄ → µ+µ+X events, and similarly for N−−

b . Another way to

write the asymmetry is (we take the asymmetry in Bs decays as an example)

asSL =
dΓ/dt[Bs(t) → µ+X] − dΓ/dt[Bs(t) → µ−X]

dΓ/dt[Bs(t) → µ+X] + dΓ/dt[Bs(t) → µ−X]
, (60)
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where Bs(t) is defined in Eq. (B14). It is straightforward to show that

asSL =
1 − |q/p|4
1 + |q/p|4 . (61)

Thus, asSL 6= 0 signals that the Bs mass eigenstates are not CP eigenstates.

In the approximation that |Γ12/M12| ≪ 1, which is valid for both Bd and Bs, the CP

asymmetry in semileptonic decays is given by

asSL = Im(Γs12/M
s
12). (62)

Exercise 7: Using Eqs. (B16,B17), and taking into account that |Aℓ+X | = |Aℓ−X | and

Aℓ−X = Aℓ+X = 0, prove Eq. (61).

Exercise 8: Using Eq. (B8), prove Eq. (62).

The SM prediction for asSL is tiny, because it involves three flavor suppression factors:

1. While (Ms
12)

SM is given by box diagrams with intermediate top quarks, (Γs12)
SM is

given by box diagrams (with a cut) with intermediate up and/or charm quarks. Thus,

(Γs12/M
s
12)

SM ∼ 4πm2
b/m

2
t = O(10−2).

2. Neglecting the difference in masses between the up and charm quarks, (Γs12)
SM ∝

(VubV
∗
us + VcbV

∗
cs)

2 = (VtbV
∗
ts)

2, and thus carries the same phase as Ms
12. Consequently,

a phase difference appears only at the cost of an m2
c/m

2
b ∼ 0.1 factor.

3. The phase difference is given by Im [(VcbV
∗
cs)/(VtbV

∗
ts)] = − sin βs ∼ 0.02.

The end result is (see e.g. [23])

(asSL)SM = −4π
m2
c

m2
W

K1 +K2

ηBS0(m2
t/m

2
W )

Im
(
VcbV

∗
cs

VtbV ∗
ts

)
= O(10−5), (63)

where K1,2 are Wilson coefficients, ηB is a QCD coorrection factor, and S0 is the Inami-Lim

function for the box diagram.

Since Γs12 is dominated by tree level b → cc̄s decays, it is unlikely to be significantly

affected by new physics. It is much more plausible that the new physics effect comes via a

contribution to Ms
12, which can be parametrized similarly to Eqs. (34) and (43):

Ms
12 = r2

se
2iθs(Ms

12)
SM,

(Ms
12)

NP = hse
2iσs(Ms

12)
SM. (64)
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This leads to the following modifications of the SM predictions:

∆ms = r2
s∆m

SM
s ,

∆Γs = ∆ΓSM
s cos 2θs,

asSL = Im
[
Γs12/

(
Ms,SM

12 r2
se

2iθs

)]
≈ − (∆Γs/∆ms) tan 2θs,

Sψφ = sin (2βs − 2θs) . (65)

Ref. [24] performed a fit to all relevant data, and obtained the following results:

(hs, σs) ∼ (0.6 ± 0.3, 2.2 ± 0.2) or (1.8 ± 0.2, 1.9 ± 0.1). (66)

The effects of new physics at a high energy scale (Λ ≫ mW ) on Bq − Bq mixing can be

studied in an effective operator language. A complete set of four quark operators relevant

to Bs − Bs transitions is given by

Qsb
1 = b̄αLγµs

α
Lb̄

β
Lγµs

β
L, Q̃sb

1 = b̄αRγµs
α
Rb̄

β
Rγµs

β
R,

Qsb
2 = b̄αRs

α
Lb̄

β
Rs

β
L, Q̃sb

2 = b̄αLs
α
Rb̄

β
Ls

β
R,

Qsb
3 = b̄αRs

β
Lb̄

β
Rs

α
L, Q̃sb

3 = b̄αLs
β
Rb̄

β
Ls

α
R,

Qsb
4 = b̄αRs

α
Lb̄

β
Ls

β
R, Qsb

5 = b̄αRs
β
Lb̄

β
Ls

α
R. (67)

Here dL(dR) represent SU(2)-doublets (singlets), and α, β are color-indices. The effective

Hamiltonian is given by

H∆B=∆S=2
eff =

1

Λ2

(
5∑

i=1

ziQi +
3∑

i=1

z̃iQ̃i

)
. (68)

For the new physics to give a contribution to the mixing amplitude that is > 0.3 of the SM

one, we need that at least one of the following conditions will be satisfied (see e.g. [25]):

|zbs1 | ∼> 1.6 × 10−5
(

Λ

TeV

)2

,

|zbs2 | ∼> 7.5 × 10−6
(

Λ

TeV

)2

,

|zbs3 | ∼> 2.7 × 10−5
(

Λ

TeV

)2

,

|zbs4 | ∼> 2.7 × 10−6
(

Λ

TeV

)2

,

|zbs5 | ∼> 7.2 × 10−6
(

Λ

TeV

)2

, (69)
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(or a value of |z̃bsi | similar to the one given for the corresponding |zbsi |.) We thus learn that

(56) gives an upper bound on the scale of the relevant new physics:

Λ ∼< 600 TeV. (70)

VI. LESSONS FOR SUPERSYMMETRY FROM NEUTRAL MESON MIXING

We consider, as an example, the contributions from the box diagrams involving the squark

doublets of the second and third generations, Q̃L2,3, to the Bs −Bs mixing amplitude. The

contributions are proportional to Kd∗
3iK

d
2iK

d∗
3jK

d
2j , where Kd is the mixing matrix of the

gluino couplings to a left-handed down quark and their supersymmetric squark partners

(∝ [(δdLL)23]
2 in the mass insertion approximation, described in Appendix C1). We work in

the mass basis for both quarks and squarks. A detailed derivation [26] is given in Appendix

C2. It gives:

Ms
12 =

α2
smBs

f 2
Bs
BBs

ηQCD

108m2
d̃

[11f̃6(x) + 4xf6(x)]
(∆m̃2

d̃
)2

m̃4
d

(Kd∗
32K

d
22)

2. (71)

Here md̃ is the average mass of the two squark generations, ∆m2
d̃

is the mass-squared differ-

ence, and x = m2
g̃/m

2
d̃
.

Eq. (71) can be translated into our generic language:

ΛNP = mq̃, (72)

zbs1 =
11f̃6(x) + 4xf6(x)

18
α2
s

(
∆m̃2

d̃

m2
d̃

)2

(Kd∗
32K

d
22)

2 ≈ 10−4(δLL23 )2,

where, for the last approximation, we took the example of x = 1 [11f̃6(1) + 4f6(1) = 1/6],

and defined

δLL23 =

(
∆m̃2

d̃

m2
d̃

)
(Kd∗

32K
d
22). (73)

Similar ezpressions can be derived for the dependence of K0 −K0 on (δdMN)12, B
0 − B0 on

(δdMN)13, and D0 −D0 on (δuMN)12. Then we can use the constraints of Eqs. (51,52) to put

upper bounds on (δqMN)ij . Some examples are given in Table I (see Ref. [27] for details and

list of references).

We learn that, in most cases, we need δqij/mq̃ ≪ 1/TeV. One can immediately identify

three generic ways in which supersymmetric contributions to neutral meson mixing can be

suppressed:
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TABLE I: The phenomenological upper bounds on (δqLL)ij and 〈δqij〉 =
√

(δqLL)ij(δ
q
RR)ij . Here

q = u, d and M = L,R. The constraints are given for mq̃ = 1 TeV and x = m2
g̃/m

2
q̃ = 1. We

assume that the phases could suppress the imaginary part by a factor of ∼ 0.3. Taken from Ref.

[27].

q ij (δqLL)ij 〈δqij〉

d 12 0.03 0.002

d 13 0.2 0.07

d 23 0.6 0.2

u 12 0.1 0.008

1. Heaviness: mq̃ ≫ 1 TeV ;

2. Degeneracy: ∆m2
q̃ ≪ m2

q̃;

3. Alignment: Kq
ij ≪ 1.

When heaviness is the only suppression mechanism, as in split supersymmetry [28], the

squarks are very heavy and supersymmetry no longer solves the fine tuning problem.5 If we

want to maintain supersymmetry as a solution to the fine tuning problem, either degeneracy

or alignment or a combination of both is needed. This means that the flavor structure of

supersymmetry is not generic, as argued in the previous section.

Take, for example, (δdLL)12 ≤ 0.03. Naively, one might expect the alignment to be of order

(VcdV
∗
cs) ∼ 0.2, which is far from sufficient by itself. Barring a very fine-tuned alignment

and accidental cancellations, we are led tp conclude that the first two squark generations

must be quasi-degenerate. Actually, by combining the constraints from K0−K0 mixing and

D0 −D0 mixing, one can show that this is the case independently of assumptions about the

alignment [34, 35]. Analogous conclusions can be drawn for many TeV-scale new physics

scenarios: a strong level of degeneracy is required (for definitions and detailed analysis, see

[31]).

5 When the first two squark generations are mildly heavy and the third generation is light, as in effective

supersymmetry [29], the fine tuning problem is still solved, but additional suppression mechanisms are

needed.
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Exercise 9: Does Kd
31 ∼ |Vub| suffice to satisfy the ∆mB constraint with neither degen-

eracy nor heaviness? (Use the two generation approximation and ignore the second genera-

tion.)

Is there a natural way to make the squarks degenerate? Degeneracy requires that the

3 × 3 matrix of soft supersymmetry breaking mass-squared terms m̃2
QL

≃ m̃2
q̃1. We have

mentioned already that flavor universality is a generic feature of gauge interactions. Thus,

the requirement of degeneracy is perhaps a hint that supersymmetry breaking is gauge

mediated to the MSSM fields.

Let us now return to the interpretation of the D0 measurement of abSL in the supersym-

metric framework. From Eqs. (69) and (72) we learn that, to explain asSL ∼ 0.01 from the

contribution of left-handed squarks, we need

δLL23 ≥ 0.4 (md̃/1 TeV). (74)

While this is allowed by present constraints, it is still puzzling that |δLL23 | ≫ |VtbVts|. Indeed,

it is very difficult to obtain such a large value in models where the supersymmetric flavor

structure has a natural explanation. Moreover, |δLR23 | is strongly constrained by the rates

of b → sγ and b → sℓ+ℓ− and cannot account for a large asSL. We conclude that, if

supersymmetry is realized in Nature, and if indeed asSL ∼ 0.01, then most likely source of

the large CP violating contribution is δRR23 . This requires, however, that supersymmetry is

not minimally flavor violating (see below).

VII. MINIMAL FLAVOR VIOLATION (MFV)

If supersymmetry breaking is gauge mediated, the squark mass matrices for SU(2)L-

doublet and SU(2)L-singlet squarks have the following form at the scale of mediation mM :

M̃2
UL

(mM ) =
(
m2
Q̃L

+DUL

)
1 +MuM

†
u,

M̃2
DL

(mM ) =
(
m2
Q̃L

+DDL

)
1 +MdM

†
d ,

M̃2
UR

(mM ) =
(
m2
ŨR

+DUR

)
1 +M †

uMu,

M̃2
DR

(mM ) =
(
m2
D̃R

+DDR

)
1 +M †

dMd, (75)

where DqA = (T3)qA − (QEM)qAs
2
Wm

2
Z cos 2β are the D-term contributions. Here, the only

source of the SU(3)3
q breaking are the SM Yukawa matrices.
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This statement holds also when the renormalization group evolution is applied to find

the form of these matrices at the weak scale. Taking the scale of the soft breaking terms

mq̃A to be somewhat higher than the electroweak breaking scale mZ allows us to neglect the

DqA and Mq terms in (75). Then we obtain

M̃2
QL

(mZ) ∼ m2
Q̃L

(
r31 + cuYuY

†
u + cdYdY

†
d

)
,

M̃2
UR

(mZ) ∼ m2
ŨR

(
r31 + cuRY

†
uYu

)
,

M̃2
DR

(mZ) ∼ m2
D̃R

(
r31 + cdRY

†
d Yd

)
. (76)

Here r3 represents the universal RGE contribution that is proportional to the gluino mass

(r3 = O(6)× (M3(mM )/mq̃(mM))) and the c-coefficients depend logarithmically on mM/mZ

and can be of O(1) when mM is not far below the GUT scale.

Models of gauge mediated supersymmetry breaking (GMSB) provide a concrete exam-

ple of a large class of models that obey a simple principle called minimal flavor violation

(MFV) [36]. This principle guarantees that low energy flavor changing processes deviate

only very little from the SM predictions. The basic idea can be described as follows. The

gauge interactions of the SM are universal in flavor space. The only breaking of this flavor

universality comes from the three Yukawa matrices, YU , YD and YE. If this remains true in

the presence of the new physics, namely YU , YD and YE are the only flavor non-universal

parameters, then the model belongs to the MFV class.

Let us now formulate this principle in a more formal way, using the language of spurions

that we presented in section IIIB. The Standard Model with vanishing Yukawa couplings

has a large global symmetry (11,12). In this section we concentrate only on the quarks. The

non-Abelian part of the flavor symmetry for the quarks is SU(3)3
q of Eq. (12) with the three

generations of quark fields transforming as follows:

QL(3, 1, 1), UR(1, 3, 1), DR(1, 1, 3). (77)

The Yukawa interactions,

LY = QLYDDRH +QLYUURHc, (78)

(Hc = iτ2H
∗) break this symmetry. The Yukawa couplings can thus be thought of as spurions

with the following transformation properties under SU(3)3
q [see Eq. (15)]:

YU ∼ (3, 3̄, 1), YD ∼ (3, 1, 3̄). (79)
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When we say “spurions”, we mean that we pretend that the Yukawa matrices are fields

which transform under the flavor symmetry, and then require that all the Lagrangian terms,

constructed from the SM fields, YD and YU , must be (formally) invariant under the flavor

group SU(3)3
q . Of course, in reality, LY breaks SU(3)3

q precisely because YD,U are not fields

and do not transform under the symmetry.

The idea of minimal flavor violation is relevant to extensions of the SM, and can be

applied in two ways:

1. If we consider the SM as a low energy effective theory, then all higher-dimension

operators, constructed from SM-fields and Y -spurions, are formally invariant under

Gglobal.

2. If we consider a full high-energy theory that extends the SM, then all operators,

constructed from SM and the new fields, and from Y -spurions, are formally invariant

under Gglobal.

Exercise 10: Use the spurion formalism to argue that, in MFV models, the KL → π0νν̄

decay amplitude is proportional to y2
t VtdV

∗
ts.

Exercise 11: Find the flavor suppression factors in the zbsi coefficients, if MFV is im-

posed, and compare to the bounds in Eq. (69).

Examples of MFV models include models of supersymmetry with gauge-mediation or

with anomaly-mediation of its breaking.

VIII. FLAVOR AT THE LHC

The LHC will study the physics of electroweak symmetry breaking. There are high hopes

that it will discover not only the Higgs, but also shed light on the fine-tuning problem that

is related to the Higgs mass. Here, we focus on the issue of how, through the study of new

physics, the LHC can shed light on the new physics flavor puzzle.

A. Testing MFV and MLFV

If the LHC discovers new particles that couple to the SM fermions, then it will be able

to test solutions to the new physics flavor puzzle such as MFV [37]. Much of its power to
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test such frameworks is based on identifying top and bottom quarks.

To understand this statement, we notice that the spurions YU and YD can always be

written in terms of the two diagonal Yukawa matrices λu and λd and the CKM matrix V ,

see Eqs. (17,18). Thus, the only source of quark flavor changing transitions in MFV models

is the CKM matrix. Next, note that to an accuracy that is better than O(0.05), we can

write the CKM matrix as follows:

V =




1 0.23 0

−0.23 1 0

0 0 1


 . (80)

Exercise 12: The approximation (80) should be intuitively obvious to top-physicists, but

definitely counter-intuitive to bottom-physicists. (Some of them have dedicated a large part

of their careers to experimental or theoretical efforts to determine Vcb and Vub.) What does

the approximation imply for the bottom quark? When we take into account that it is only

good to O(0.05), what would the implications be?

We learn that the third generation of quarks is decoupled, to a good approximation, from

the first two. This, in turn, means that any new particle that couples to an odd number of

the SM quarks (think, for example, of heavy quarks in vector-like representations of GSM),

decay into either third generation quark, or to non-third generation quark, but not to both.

For example, in Ref. [37], MFV models with additional charge −1/3, SU(2)L-singlet quarks

– B′ – were considered. A concrete test of MFV was proposed, based on the fact that the

largest mixing effect involving the third generation is of order |Vcb|2 ∼ 0.002: Is the following

prediction, concerning events of B′ pair production, fulfilled:

Γ(B′B′ → Xq1,2q3)

Γ(B′B′ → Xq1,2q1,2) + Γ(B′B′ → Xq3q3)
∼< 10−3. (81)

If not, then MFV is excluded.

One could similarly test various versions of minimal lepton flavor violation (MLFV)

[38–42]. For example, if the only spurion that breaks that SU(3)L × SU(3)L lepton flavor

symmetry is the charged lepton Yukawa matrix Y e(3, 3̄), then there should be no lepton flavor

changing processes at all. For example, in Ref. [43], such MLFV models with additional

vector-like SU(2)L-doublet leptons were considered. Concrete tests, based on measuring

Ne+e−/Nµ+µ− and Neµ/(Nee + Nµµ), were proposed. The simple version of MLFV will be

excluded if Neµ 6= 0 or Nee 6= Nµµ. In that case, one would be led to consider models
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with either a low seesaw scale, such that neutrino-related spurions play a role, or non-

MLFV models. If, on the other hand, the measurements are consistent with Neµ = 0 and

Nee = Nµµ, it will support the existence of an approximate U(1)e × U(1)µ symmetry.

B. Supersymmetric flavor at the LHC

One can think of analogous tests in the supersymmetric framework [44–50]. Here, there

is also a generic prediction that, in each of the three sectors (QL, UR, DR), squarks of the

first two generations are quasi-degenerate, and do not decay into third generation quarks.

Squarks of the third generation can be separated in mass (though, for small tan β, the

degeneracy in the D̃R sector is threefold), and decay only to third generation quarks.

It is not necessary, however, that the mediation of supersymmetry breaking is MFV.

Examples of natural and viable solutions to the supersymmetric flavor problem that are not

MFV include the following:

1. The leading contribution to the soft supersymmetry breaking terms is gauge mediated,

and therefore MFV, but there are subleading contributions that are gravity mediated

and provide new sources of flavor and CP violation [44, 49]. The gravity mediated

contributions could either have some structure (dictated, for example, by a Froggatt-

Nielsen symmetry [44] or by localization in extra dimensions [51]) or be anarchical

[50].

2. The first two sfermion generations are heavy, and their mixing with the third gen-

eration is suppressed (for a recent analysis, see [52]). These features can come, for

example, from conformal dynamics [53].

Such framework have different predictions concerning the mass splitting between sfermion

generations and the flavor decomposition of the sfermion mass eigenstates. Note that mea-

surements of flavor changing neutral current processes are only sensitive to the products of

the form

δij =
∆m̃2

ij

m̃2
KijK

∗
jj, (82)

where ∆m̃2
ij is the mass-squared splitting between the sfermion generations i and j, m̃2

is their average mass-squared, and K is the mixing matrix of gaugino couplings to these

sfermions. On the other hand, the LHC experiments – ATLAS and CMS – can, at least
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in principle, measure the mass splitting and the mixing separately [46]. In Appendix D we

describe in more details two methods to determine small mass splittings between sleptons

at the LHC.

For example, Refs. [44–47] have considered a model of hybrid gauge- and gravity-

mediation of syupersymmetry breaking, with mass hierarchy

mG̃ ≪ mℓ̃1,2,3
≪ mχ0

1
≪ mℓ̃4,5,6

≪ mχ0
2
. (83)

With the identification of the light, metastable slepton ℓ̃1, electrons and muons, five of the

six slepton masses and two supersymmetric lepton mixing parameters can be measured at

ATLAS. With this information, one could probe the following issues:

• Measuring ∆m2
ℓ̃2 ℓ̃1

and Ke
e2:

Are the mass splitting and alignment consistent with the µ → eγ constraint? That

would lead to solving the SUSY flavor problem.

• Measuring ∆m2
ℓ̃2 ℓ̃1

,∆m2
ℓ̃5 ℓ̃4

, . . .:

What is the messenger scale of gauge mediation Mm? That can probe physics at

Mm ∼ 1015 GeV.

• Determine |Ke2/Kµ2|:
Is the Froggatt-Nielsen mechanism at work? That would allow progress in understand-

ing the SM flavor puzzle.

The present situation is depicted schematically in Fig. 5(a). Flavor factories have pro-

vided only upper bounds on deviations of FCNC processes, such as µ→ eγ or D0−D0
mix-

ing, from the standard model predictions. In the supersymmetric framework, such bounds

translate into an upper bound on a δij parameter of Eq. (82), corresponding to the blue

region in the figure. The supersymmetric flavor puzzle can be stated as the question of why

the region in the upper right corner – where the flavor parameters are of order one – is

excluded. MFV often puts us in the lower left corner of the plot, far from the experimental

constraints. (This is particularly true for δ12 parameters.)

The optimal future situation is depicted schematically in Fig. 5(b). Imagine that a flavor

factory does provide evidence for new physics, such as observation of Γ(µ → eγ) 6= 0 or CP

violation in D0 − D
0

mixing. This will constrain the corresponding δ parameter, which is
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shown as the blue region in the Figure. If ATLAS/CMS measure the corresponding sfermion

mass splitting and/or mixing, we will get a small allowed region in this flavor plane.

FIG. 5: Schematic description of the constraints in the plane of sfermion mass-squared splitting,

∆m̃2
ij/m̃

2, and mixing, KijK
∗
jj : (a) Upper bounds from not observing any deviation from the SM

predictions in present experiments; (b) Hypothetical future situation, where deviations have been

observed in flavor factories (such as LHCb, a super-B factory, a µ → eγ measurement, etc.) and

the mass splitting and flavor decomposition have been measured by ATLAS/CMS.
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1

1
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If we have at our disposal such three consistent measurements (rate of FCNC process,

spectrum and splitting), then we will understand the mechanism by which supersymmetry

has its flavor violation suppressed. This will provide strong hints about the mechanism of

supersymmetry breaking mediation.

If the sfermions are quasi-degenerate, then the mixing is determined by the small correc-

tions to the unit mass-squared matrix. As mentioned above, the structure of such corrections

may be dictated by the same symmetry or dynamics that gives the structure of the Yukawa

couplings. If that is the case, then the measurement of the flavor decomposition might shed

light on the Standard Model flavor puzzle.

We conclude that measurements at the LHC related to new particles that couple to the

SM fermions are likely to teach us much more about flavor physics.
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IX. CONCLUSIONS

(i) Measurements of CP violating B-meson decays have established that the Kobayashi-

Maskawa mechanism is the dominant source of the observed CP violation.

(ii) Measurements of flavor changing B-meson decays have established the the Cabibbo-

Kobayashi-Maskawa mechanism is a major player in flavor violation.

(iii) The consistency of all these measurements with the CKM predictions sharpens the

new physics flavor puzzle: If there is new physics at, or below, the TeV scale, then its flavor

structure must be highly non-generic.

(iv) If the recent evidence at D0 for a dimuon CP asymmetry in Bd,s decays is confirmed,

new physics will be called for.

(v) Measurements of neutrino flavor parameters have not only not clarified the standard

model flavor puzzle, but actually deepened it. Whether they imply an anarchical structure,

or a tribimaximal mixing, it seems that the neutrino flavor structure is very different from

that of quarks.

(vi) If the LHC experiments, ATLAS and CMS, discover new particles that couple to

the Standard Model fermions, then, in principle, they will be able to measure new flavor

parameters. Consequently, the new physics flavor puzzle is likely to be understood.

(vii) If the flavor structure of such new particles is affected by the same physics that sets

the flavor structure of the Yukawa couplings, then the LHC experiments (and future flavor

factories) may be able to shed light also on the standard model flavor puzzle.

The huge progress in flavor physics in recent years has provided answers to many ques-

tions. At the same time, new questions arise. We look forward to the LHC era for more

answers and more questions.
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APPENDIX A: THE CKM MATRIX

The CKM matrix V is a 3 × 3 unitary matrix. Its form, however, is not unique:

(i) There is freedom in defining V in that we can permute between the various generations.

This freedom is fixed by ordering the up quarks and the down quarks by their masses, i.e.

(u1, u2, u3) → (u, c, t) and (d1, d2, d3) → (d, s, b). The elements of V are written as follows:

V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 . (A1)

(ii) There is further freedom in the phase structure of V . This means that the number

of physical parameters in V is smaller than the number of parameters in a general unitary

3 × 3 matrix which is nine (three real angles and six phases). Let us define Pq (q = u, d) to

be diagonal unitary (phase) matrices. Then, if instead of using VqL and VqR for the rotation

(21) to the mass basis we use ṼqL and ṼqR, defined by ṼqL = PqVqL and ṼqR = PqVqR, we still

maintain a legitimate mass basis since Mdiag
q remains unchanged by such transformations.

However, V does change:

V → PuV P
∗
d . (A2)

This freedom is fixed by demanding that V has the minimal number of phases. In the three

generation case V has a single phase. (There are five phase differences between the elements

of Pu and Pd and, therefore, five of the six phases in the CKM matrix can be removed.)

This is the Kobayashi-Maskawa phase δKM which is the single source of CP violation in the

quark sector of the Standard Model [1].

The fact that V is unitary and depends on only four independent physical parameters

can be made manifest by choosing a specific parametrization. The standard choice is [54]

V =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


 , (A3)

where cij ≡ cos θij and sij ≡ sin θij . The θij ’s are the three real mixing parameters while

δ is the Kobayashi-Maskawa phase. It is known experimentally that s13 ≪ s23 ≪ s12 ≪ 1.

It is convenient to choose an approximate expression where this hierarchy is manifest. This

is the Wolfenstein parametrization, where the four mixing parameters are (λ,A, ρ, η) with
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VtdVtb*

VcdVcb*

α=ϕ2 β=ϕ1

γ=ϕ3

VudVub*

FIG. 6: Graphical representation of the unitarity constraint VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 as a

triangle in the complex plane.

λ = |Vus| = 0.23 playing the role of an expansion parameter and η representing the CP

violating phase [55, 56]:

V =




1 − 1
2
λ2 − 1

8
λ4 λ Aλ3(ρ− iη)

−λ + 1
2
A2λ5[1 − 2(ρ+ iη)] 1 − 1

2
λ2 − 1

8
λ4(1 + 4A2) Aλ2

Aλ3[1 − (1 − 1
2
λ2)(ρ+ iη)] −Aλ2 + 1

2
Aλ4[1 − 2(ρ+ iη)] 1 − 1

2
A2λ4


 . (A4)

A very useful concept is that of the unitarity triangles. The unitarity of the CKM matrix

leads to various relations among the matrix elements, e.g.

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0, (A5)

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0, (A6)

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (A7)

Each of these three relations requires the sum of three complex quantities to vanish and

so can be geometrically represented in the complex plane as a triangle. These are “the

unitarity triangles”, though the term “unitarity triangle” is usually reserved for the relation

(A7) only. The unitarity triangle related to Eq. (A7) is depicted in Fig. 6.

The rescaled unitarity triangle is derived from (A7) by (a) choosing a phase convention

such that (VcdV
∗
cb) is real, and (b) dividing the lengths of all sides by |VcdV ∗

cb|. Step (a) aligns

one side of the triangle with the real axis, and step (b) makes the length of this side 1.

The form of the triangle is unchanged. Two vertices of the rescaled unitarity triangle are

thus fixed at (0,0) and (1,0). The coordinates of the remaining vertex correspond to the

Wolfenstein parameters (ρ, η). The area of the rescaled unitarity triangle is |η|/2.
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Depicting the rescaled unitarity triangle in the (ρ, η) plane, the lengths of the two complex

sides are

Ru ≡
∣∣∣∣
VudVub
VcdVcb

∣∣∣∣ =
√
ρ2 + η2, Rt ≡

∣∣∣∣
VtdVtb
VcdVcb

∣∣∣∣ =
√

(1 − ρ)2 + η2. (A8)

The three angles of the unitarity triangle are defined as follows [57, 58]:

α ≡ arg

[
− VtdV

∗
tb

VudV ∗
ub

]
, β ≡ arg

[
−VcdV

∗
cb

VtdV ∗
tb

]
, γ ≡ arg

[
−VudV

∗
ub

VcdV ∗
cb

]
. (A9)

They are physical quantities and can be independently measured by CP asymmetries in B

decays. It is also useful to define the two small angles of the unitarity triangles (A6,A5):

βs ≡ arg

[
−VtsV

∗
tb

VcsV ∗
cb

]
, βK ≡ arg

[
− VcsV

∗
cd

VusV ∗
ud

]
. (A10)

The λ and A parameters are very well determined at present, see Eq. (37). The main

effort in CKM measurements is thus aimed at improving our knowledge of ρ and η:

ρ = 0.14+0.03
−0.02, η = 0.35 ± 0.02. (A11)

The present status of our knowledge is best seen in a plot of the various constraints and the

final allowed region in the ρ− η plane. This is shown in Fig. 2.

APPENDIX B: CPV IN B DECAYS TO FINAL CP EIGENSTATES

We define decay amplitudes ofB (which could be charged or neutral) and its CP conjugate

B to a multi-particle final state f and its CP conjugate f as

Af = 〈f |H|B〉 , Af = 〈f |H|B〉 , Af = 〈f |H|B〉 , Af = 〈f |H|B〉 , (B1)

where H is the Hamiltonian governing weak interactions. The action of CP on these states

introduces phases ξB and ξf according to

CP |B〉 = e+iξB |B〉 , CP |f〉 = e+iξf |f〉 ,

CP |B〉 = e−iξB |B〉 , CP |f〉 = e−iξf |f〉 , (B2)

so that (CP )2 = 1. The phases ξB and ξf are arbitrary and unphysical because of the flavor

symmetry of the strong interaction. If CP is conserved by the dynamics, [CP ,H] = 0, then

Af and Af have the same magnitude and an arbitrary unphysical relative phase

Af = ei(ξf−ξB)Af . (B3)
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A state that is initially a superposition of B0 and B0, say

|ψ(0)〉 = a(0)|B0〉 + b(0)|B0〉 , (B4)

will evolve in time acquiring components that describe all possible decay final states

{f1, f2, . . .}, that is,

|ψ(t)〉 = a(t)|B0〉 + b(t)|B0〉 + c1(t)|f1〉 + c2(t)|f2〉 + · · · . (B5)

If we are interested in computing only the values of a(t) and b(t) (and not the values of

all ci(t)), and if the times t in which we are interested are much larger than the typical

strong interaction scale, then we can use a much simplified formalism [59]. The simplified

time evolution is determined by a 2×2 effective Hamiltonian H that is not Hermitian, since

otherwise the mesons would only oscillate and not decay. Any complex matrix, such as H,

can be written in terms of Hermitian matrices M and Γ as

H = M − i

2
Γ . (B6)

M and Γ are associated with (B0, B0) ↔ (B0, B0) transitions via off-shell (dispersive) and

on-shell (absorptive) intermediate states, respectively. Diagonal elements of M and Γ are

associated with the flavor-conserving transitions B0 → B0 and B0 → B0 while off-diagonal

elements are associated with flavor-changing transitions B0 ↔ B0.

The eigenvectors of H have well defined masses and decay widths. We introduce complex

parameters pL,H and qL,H to specify the components of the strong interaction eigenstates,

B0 and B0, in the light (BL) and heavy (BH) mass eigenstates:

|BL,H〉 = pL,H |B0〉 ± qL,H |B0〉 (B7)

with the normalization |pL,H|2 + |qL,H|2 = 1. If either CP or CPT is a symmetry of H
(independently of whether T is conserved or violated) then M11 = M22 and Γ11 = Γ22, and

solving the eigenvalue problem for H yields pL = pH ≡ p and qL = qH ≡ q with
(
q

p

)2

=
M∗

12 − (i/2)Γ∗
12

M12 − (i/2)Γ12

. (B8)

From now on we assume that CPT is conserved. If either CP or T is a symmetry of H
(independently of whether CPT is conserved or violated), then M12 and Γ12 are relatively

real, leading to (
q

p

)2

= e2iξB ⇒
∣∣∣∣∣
q

p

∣∣∣∣∣ = 1 , (B9)
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where ξB is the arbitrary unphysical phase introduced in Eq. (B2).

The real and imaginary parts of the eigenvalues of H corresponding to |BL,H〉 repre-

sent their masses and decay-widths, respectively. The mass difference ∆mB and the width

difference ∆ΓB are defined as follows:

∆mB ≡MH −ML, ∆ΓB ≡ ΓH − ΓL. (B10)

Note that here ∆mB is positive by definition, while the sign of ∆ΓB is to be experimentally

determined. The average mass and width are given by

mB ≡ MH +ML

2
, ΓB ≡ ΓH + ΓL

2
. (B11)

It is useful to define dimensionless ratios x and y:

x ≡ ∆mB

ΓB
, y ≡ ∆ΓB

2ΓB
. (B12)

Solving the eigenvalue equation gives

(∆mB)2 − 1

4
(∆ΓB)2 = (4|M12|2 − |Γ12|2), ∆mB∆ΓB = 4Re(M12Γ

∗
12). (B13)

All CP-violating observables in B and B decays to final states f and f can be expressed in

terms of phase-convention-independent combinations of Af , Af , Af and Af , together with,

for neutral-meson decays only, q/p. CP violation in charged-meson decays depends only

on the combination |Af/Af |, while CP violation in neutral-meson decays is complicated by

B0 ↔ B0 oscillations and depends, additionally, on |q/p| and on λf ≡ (q/p)(Af/Af).

For neutral D, B, and Bs mesons, ∆Γ/Γ ≪ 1 and so both mass eigenstates must be

considered in their evolution. We denote the state of an initially pure |B0〉 or |B0〉 af-

ter an elapsed proper time t as |B0
phys(t)〉 or |B0

phys(t)〉, respectively. Using the effective

Hamiltonian approximation, we obtain

|B0
phys(t)〉 = g+(t) |B0〉 − q

p
g−(t)|B0〉,

|B0
phys(t)〉 = g+(t) |B0〉 − p

q
g−(t)|B0〉 , (B14)

where

g±(t) ≡ 1

2

(
e−imH t− 1

2
ΓH t ± e−imLt− 1

2
ΓLt
)
. (B15)
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One obtains the following time-dependent decay rates:

dΓ[B0
phys(t) → f ]/dt

e−ΓtNf
=
(
|Af |2 + |(q/p)Af |2

)
cosh(yΓt) +

(
|Af |2 − |(q/p)Af |2

)
cos(xΓt)

+ 2Re((q/p)A∗
fAf) sinh(yΓt) − 2 Im((q/p)A∗

fAf) sin(xΓt) , (B16)

dΓ[B0
phys(t) → f ]/dt

e−ΓtNf

=
(
|(p/q)Af |2 + |Af |2

)
cosh(yΓt) −

(
|(p/q)Af |2 − |Af |2

)
cos(xΓt)

+ 2Re((p/q)AfA∗
f) sinh(yΓt) − 2 Im((p/q)AfA

∗
f) sin(xΓt) , (B17)

where Nf is a common normalization factor. Decay rates to the CP-conjugate final state f

are obtained analogously, with Nf = Nf and the substitutions Af → Af and Af → Af in

Eqs. (B16,B17). Terms proportional to |Af |2 or |Af |2 are associated with decays that occur

without any net B ↔ B oscillation, while terms proportional to |(q/p)Af |2 or |(p/q)Af |2

are associated with decays following a net oscillation. The sinh(yΓt) and sin(xΓt) terms of

Eqs. (B16,B17) are associated with the interference between these two cases. Note that, in

multi-body decays, amplitudes are functions of phase-space variables. Interference may be

present in some regions but not others, and is strongly influenced by resonant substructure.

One possible manifestation of CP-violating effects in meson decays [60] is in the interfer-

ence between a decay without mixing, B0 → f , and a decay with mixing, B0 → B0 → f

(such an effect occurs only in decays to final states that are common to B0 and B0, including

all CP eigenstates). It is defined by

Im(λf ) 6= 0 , (B18)

with

λf ≡
q

p

Af
Af

. (B19)

This form of CP violation can be observed, for example, using the asymmetry of neutral

meson decays into final CP eigenstates fCP

AfCP
(t) ≡ dΓ/dt[B0

phys(t) → fCP ] − dΓ/dt[B0
phys(t) → fCP ]

dΓ/dt[B0
phys(t) → fCP ] + dΓ/dt[B0

phys(t) → fCP ]
. (B20)

For ∆Γ = 0 and |q/p| = 1 (which is a good approximation for B mesons), AfCP
has a

particularly simple form [61–63]:

Af(t) = Sf sin(∆mt) − Cf cos(∆mt),

Sf ≡ 2 Im(λf )

1 + |λf |2
, Cf ≡

1 − |λf |2
1 + |λf |2

, (B21)
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Consider the B → f decay amplitude Af , and the CP conjugate process, B → f ,

with decay amplitude Af . There are two types of phases that may appear in these decay

amplitudes. Complex parameters in any Lagrangian term that contributes to the amplitude

will appear in complex conjugate form in the CP-conjugate amplitude. Thus their phases

appear in Af and Af with opposite signs. In the Standard Model, these phases occur only

in the couplings of the W± bosons and hence are often called “weak phases”. The weak

phase of any single term is convention dependent. However, the difference between the weak

phases in two different terms in Af is convention independent. A second type of phase can

appear in scattering or decay amplitudes even when the Lagrangian is real. Their origin is

the possible contribution from intermediate on-shell states in the decay process. Since these

phases are generated by CP-invariant interactions, they are the same in Af and Af . Usually

the dominant rescattering is due to strong interactions and hence the designation “strong

phases” for the phase shifts so induced. Again, only the relative strong phases between

different terms in the amplitude are physically meaningful.

The ‘weak’ and ‘strong’ phases discussed here appear in addition to the ‘spurious’ CP-

transformation phases of Eq. (B3). Those spurious phases are due to an arbitrary choice of

phase convention, and do not originate from any dynamics or induce any CP violation. For

simplicity, we set them to zero from here on.

It is useful to write each contribution ai to Af in three parts: its magnitude |ai|, its

weak phase φi, and its strong phase δi. If, for example, there are two such contributions,

Af = a1 + a2, we have

Af = |a1|ei(δ1+φ1) + |a2|ei(δ2+φ2),

Af = |a1|ei(δ1−φ1) + |a2|ei(δ2−φ2). (B22)

Similarly, for neutral meson decays, it is useful to write

M12 = |M12|eiφM , Γ12 = |Γ12|eiφΓ . (B23)

Each of the phases appearing in Eqs. (B22,B23) is convention dependent, but combinations

such as δ1 − δ2, φ1 − φ2, φM − φΓ and φM + φ1 − φ1 (where φ1 is a weak phase contributing

to Af ) are physical.

In the approximations that only a single weak phase contributes to decay, Af =

|af |ei(δf +φf ), and that |Γ12/M12| = 0, we obtain |λf | = 1 and the CP asymmetries in decays
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to a final CP eigenstate f [Eq. (B20)] with eigenvalue ηf = ±1 are given by

AfCP
(t) = Im(λf ) sin(∆mt) with Im(λf ) = ηf sin(φM + 2φf). (B24)

Note that the phase so measured is purely a weak phase, and no hadronic parameters are

involved in the extraction of its value from Im(λf ).

APPENDIX C: SUPERSYMMETRIC FLAVOR VIOLATION

1. Mass insertions

Supersymmetric models provide, in general, new sources of flavor violation. We here

present the formalism of mass insertions. We do that for the charged sleptons, but the

formalism is straightforwardly adapted for squarks.

The supersymmetric lepton flavor violation is most commonly analyzed in the basis in

which the charged lepton mass matrix and the gaugino vertices are diagonal. In this basis,

the slepton masses are not necessarily flavor-diagonal, and have the form

ℓ̃∗Mi(M
2
ℓ̃
)MN
ij ℓ̃Nj = (ℓ̃∗Li ℓ̃

∗
Rk)



M2

Lij Ailvd

Ajkvd M
2
Rkl






ℓ̃Lj

ℓ̃Rl


 , (C1)

where M,N = L,R label chirality, and i, j, k, l = 1, 2, 3 are generational indices. M2
L and

M2
R are the supersymmetry breaking slepton masses-squared. The A parameters enter in the

trilinear scalar couplings Aijφdℓ̃Liℓ̃
∗
Rj , where φd is the down-type Higgs boson, and vd = 〈φd〉.

We neglect small flavor-conserving terms involving tanβ = vu/vd.

In this basis, charged LFV takes place through one or more slepton mass insertion. Each

mass insertion brings with it a factor of

δMN
ij ≡ (M2

ℓ̃
)MN
ij /m̃2, (C2)

where m̃2 is the representative slepton mass scale. Physical processes therefore constrain

(δMN
ij )eff ∼ max

[
δMN
ij , δMP

ik δPNkj , . . . , (i↔ j)
]
. (C3)

For example,

(δLR12 )eff ∼ max
[
A12vd/m̃

2,M2
L1kAk2vd/m̃

4, A1kvdM
2
Rk2/m̃

4, . . . , (1 ↔ 2)
]
. (C4)
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Note that contributions with two or more insertions may be less suppressed than those with

only one.

It is useful to express the δMN
ij mass insertions in terms of parameters in the mass basis.

We can write, for example,

δLLij =
1

m̃2

∑

α

KL
iαK

L∗
jα∆m̃2

Lα. (C5)

Here, we ignore L−R mixing, so that KL
iα is the mixing angle in the coupling of a neutralino

to ℓLi − ℓ̃Lα (with ℓi = e, µ, τ denoting charged lepton mass eigenstates and ℓ̃α = ℓ̃1, ℓ̃2, ℓ̃3

denoting charged slepton mass eigenstates), and ∆m̃2
Lα = m2

ℓ̃Lα

− m̃2. Using the unitarity

of the mixing matrix KL, we can write

m̃2δLLij =
∑

α

KL
iαK

L∗
jα (∆m̃2

Lα + m̃2) = (M2

ℓ̃
)LLij , (C6)

thus reproducing the definition (C2).

In many cases, a two generation effective framework is useful. To understand that,

consider a case where (no summation over i, j, k)

|KL
ikK

L∗
jk | ≪ |KL

ijK
L∗
j |,

|KL
ikK

L∗
jk ∆m2

ℓ̃Lk ℓ̃Li
| ≪ |KL

ijK
L∗
j ∆m2

ℓ̃Lj ℓ̃Li
|, (C7)

where ∆m2

ℓ̃j ℓ̃i
= m2

ℓ̃Lj

−m2

ℓ̃Li

. Then, the contribution of the intermediate ℓ̃k can be neglected

and, furthermore, to a good approximation KL
iiK

L∗
ji + KL

ijK
L∗
jj = 0. For these cases, we

obtain

δLLij =
∆m2

ℓ̃Lj ℓ̃Li

m̃2
KL
ijK

L∗
jj . (C8)

2. Neutral meson mixing

We consider the squark-gluino box diagram contribution to D0 − D
0

mixing amplitude

that is proportional toKu
2iK

u∗
1i K

u
2jK

u∗
1j , whereKu is the mixing matrix of the gluino couplings

to left-handed up quarks and their up squark partners. (In the language of the mass insertion

approximation, we calculate here the contribution that is ∝ [(δuLL)12]
2.) We work in the mass

basis for both quarks and squarks.

The contribution is given by

MD
12 = −i4π

2

27
α2
smDf

2
DBDηQCD

∑

i,j

(Ku
2iK

u∗
1i K

u
2jK

u∗
1j )(11Ĩ4ij + 4m̃2

gI4ij). (C9)
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where

Ĩ4ij ≡
∫

d4p

(2π)4

p2

(p2 − m̃2
g)

2(p2 − m̃2
i )(p

2 − m̃2
j )

=
i

(4π)2

[
m̃2
g

(m̃2
i − m̃2

g)(m̃
2
j − m̃2

g)

+
m̃4
i

(m̃2
i − m̃2

j )(m̃
2
i − m̃2

g)
2

ln
m̃2
i

m̃2
g

+
m̃4
j

(m̃2
j − m̃2

i )(m̃
2
j − m̃2

g)
2

ln
m̃2
j

m̃2
g

]
, (C10)

I4ij ≡
∫

d4p

(2π)4

1

(p2 − m̃2
g)

2(p2 − m̃2
i )(p

2 − m̃2
j )

=
i

(4π)2

[
1

(m̃2
i − m̃2

g)(m̃
2
j − m̃2

g)

+
m̃2
i

(m̃2
i − m̃2

j )(m̃
2
i − m̃2

g)
2

ln
m̃2
i

m̃2
g

+
m̃2
j

(m̃2
j − m̃2

i )(m̃
2
j − m̃2

g)
2

ln
m̃2
j

m̃2
g

]
. (C11)

We now follow the discussion in refs. [26, 30]. To see the consequences of the super-GIM

mechanism, let us expand the expression for the box integral around some value m̃2
q for the

squark masses-squared:

I4(m̃
2
g, m̃

2
i , m̃

2
j) = I4(m̃

2
g, m̃

2
q + δm̃2

i , m̃
2
q + δm̃2

j )

= I4(m̃
2
g, m̃

2
q, m̃

2
q) + (δm̃2

i + δm̃2
j )I5(m̃

2
g, m̃

2
q, m̃

2
q , m̃

2
q)

+
1

2

[
(δm̃2

i )
2 + (δm̃2

j )
2 + 2(δm̃2

i )(δm̃
2
j)
]
I6(m̃

2
g, m̃

2
q , m̃

2
q, m̃

2
q, m̃

2
q) + · · · ,(C12)

where

In(m̃
2
g, m̃

2
q, . . . , m̃

2
q) ≡

∫ d4p

(2π)4

1

(p2 − m̃2
g)

2(p2 − m̃2
q)
n−2

, (C13)

and similarly for Ĩ4ij. Note that In ∝ (m̃2
q)
n−2 and Ĩn ∝ (m̃2

q)
n−3. Thus, using x ≡ m̃2

g/m̃
2
q,

it is customary to define

In ≡ i

(4π)2(m̃2
q)
n−2

fn(x), Ĩn ≡ i

(4π)2(m̃2
q)
n−3

f̃n(x). (C14)

The unitarity of the mixing matrix implies that

∑

i

(Ku
2iK

u∗
1i K

u
2jK

u∗
1j ) =

∑

j

(Ku
2iK

u∗
1i K

u
2jK

u∗
1j ) = 0. (C15)

We learn that the terms that are proportional f4, f̃4, f5 and f̃5 vanish in their contribution to

M12. When δm̃2
i ≪ m̃2

q for all i, the leading contributions to M12 come from f6 and f̃6. We
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learn that for quasi-degenerate squarks, the leading contribution is quadratic in the small

mass-squared difference. The functions f6(x) and f̃6(x) are given by

f6(x) =
6(1 + 3x) lnx+ x3 − 9x2 − 9x+ 17

6(1 − x)5
,

f̃6(x) =
6x(1 + x) ln x− x3 − 9x2 + 9x+ 1

3(1 − x)5
. (C16)

For example, with x = 1, f6(1) = −1/20 and f̃6 = +1/30; with x = 2.33, f6(2.33) = −0.015

and f̃6 = +0.013.

To further simplify things, let us consider a two generation case. Then

MD
12 ∝ 2(Ku

21K
u∗
11 )2(δm̃2

1)
2 + 2(Ku

22K
u∗
12 )2(δm̃2

2)
2 + (Ku

21K
u∗
11K

u
22K

u∗
12 )(δm̃2

1 + δm̃2
2)

2

= (Ku
21K

u∗
11 )2(m̃2

2 − m̃2
1)

2. (C17)

We thus rewrite Eq. (C9) for the case of quasi-degenerate squarks:

MD
12 =

α2
smDf

2
DBDηQCD

108m̃2
q

[11f̃6(x) + 4xf6(x)]
(∆m̃2

21)
2

m̃4
q

(Ku
21K

u∗
11 )2. (C18)

For example, for x = 1, 11f̃6(x) + 4xf6(x) = +0.17. For x = 2.33, 11f̃6(x) + 4xf6(x) =

+0.003.

APPENDIX D: SMALL SLEPTON MASS SPLITTINGS AT THE LHC

A review of mass measurements techniques proposed for the LHC can be found in Ref.

[64]. We here present two specific ideas of how to measure small mass splittings between

sleptons with large selectron and smuon components, first when the lightest charged slepton

is metastable and therefore visible [46], and the second for the case where the LSP is an

invisible neutralino [65].

1. Shifted peak [46]

Consider supersymmetric models with two sleptons, ℓ̃1,2, with ∆m ≡ m2 − m1 ≪ m1,

with a metastable ℓ1. Such a spectrum is predicted by supersymmetric models that explain

the masses and mixings of the standard models charged leptons and neutrinos in terms of

broken flavor symmetries.
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The method to measure ∆m relies on the decays of a mother particle, in this case the

neutralino χ0
1, to ℓ̃1,2. If we use direct decays to ℓ̃1 to reconstruct the neutralino, the invariant

mass distribution of m2
ℓ̃ℓ

will be peaked at the correct neutralino mass. Some of the time,

however, χ0
1 decays to ℓ̃2, which subsequently decays to ℓ̃1. The leptons produced in the

ℓ̃2 → ℓ̃1 decay are relatively soft, with energies typically of order ∆m. They may therefore

be lost, implying that the decays χ0
1 → ℓ̃1 and χ0

1 → ℓ̃2 have the same topology. Rather

than blurring the picture, however, it turns out that by attempting to reconstruct the χ0
1 in

both cases, one finds two peaks: one at the neutralino mass M , and one slightly shifted by

an amount Eshift ∼ ∆m. Thus, measuring a shift in the neutralino mass peak will tell us

that there are in fact two slepton states lighter than the neutralino. Furthermore, ∆m can

be determined in terms of Eshift, m1 and M .

More specifically, the neutralino can decay directly to ℓ̃1,

χ0
1 → ℓ̃±1 ℓ

∓
1 . (D1)

It can also decay to ℓ̃2,

χ0
1 → ℓ̃±2 ℓ

∓
2 , (D2)

followed by one of the two three-body decays

ℓ̃±2 → ℓ̃±1 X
±∓, (D3)

ℓ̃±2 → ℓ̃∓1 X
±±, (D4)

where X±∓ contains two opposite-sign (OS) leptons, and X±± contains two same-sign (SS)

leptons. We denote these lepton pairs by X to emphasize the fact that they are too soft to

pass our cuts. Thus, the observed particles are the hard lepton from Eq. (D1) or (D2), and

the long-lived slepton ℓ̃1 from Eq. (D1) and (D3) or (D4).

We can thus construct distributions for the following invariant mass squared:

m2
ℓ̃ℓ1

≡ (pℓ̃1 + pℓ1)
2, m2

ℓ̃ℓ2
≡ (pℓ̃1 + pℓ2)

2. (D5)

Obviously,

mℓ̃ℓ1
= M. (D6)

However, because of the missing soft leptons, mℓ̃ℓ2
6= M , so we define the shift of the peak

of the mℓ̃ℓ2
distribution from M :

√
m2
ℓ̃ℓ2
|peak = M − Eshift. (D7)
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One obtains [46]:

Eshift ≈
M2 +m2

1

2Mm1

∆m. (D8)

Thus, Eshift is enhanced compared to ∆m. According to Ref. [46], with an integrated

luminosity of O(1 fb−1), mass splitting as small as 1-2 GeV can be discovered and measured.

2. Shifted edge [65]

Consider the cascade decay

χ0
2 → ℓ̃±ℓ∓ → χ0

1ℓ
±ℓ∓, (D9)

with mass ordering mχ0
2
> mℓ̃ > mχ0

1
. The dilepton mass spectrum has a prominent kine-

matic edge at

m2
ℓℓ =

(m2
χ0

2

−m2
ℓ̃
)(m2

ℓ̃
−m2

χ0
1

)

m2
ℓ̃

. (D10)

Such an edge may be measured at the LHC experiments with per mille precision.

Exercise 13: Prove Eq. (D10).

Consider now the case of two quasidegenerate sleptons with mass splitting ∆mℓ̃, and

average mass mℓ̃. The variation of the edge position with the slepton mass is given by

dm2
ℓℓ

m2
ℓ̃

=
m2
χ0

1

m2
χ0

2

m4
ℓ̃

− 1. (D11)

Thus, when mℓ̃ =
√
mχ0

1
mχ0

2
, the shift in the edge vanishes to leading order in ∆mℓ̃/mℓ̃.

The fractional shift in the invariant mass edge is given by

∆mℓℓ

mℓℓ
=

∆mℓ̃

mℓ̃




m2
χ0

1

m2
χ0

2

−m4
ℓ̃

(m2
χ0

2

−m2
ℓ̃
)(m2

ℓ̃
−m2

χ0
1

)


 , (D12)

Note that under favorable circumstances the fractional shift in the edge could be significantly

enhanced compared to the fractional splitting. Specifically, the enhancement could be strong

when mχ0
2

approaches mχ0
1
, though the benefit may be diluted by the fact that the leptons

will be softer and thus harder to identify and measure.

Now consider the case that one of the sleptons is dominantly a smuon µ̃, and the other is

dominantly a selectron ẽ. Then, the shift in the edge can be experimentally established by
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measuring mµµ and mee separately. According to Ref. [65], a fractional splitting of order a

few per mille can be discovered with 30 fb−1.
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