Tools and Monte-Carlos for the New Physics

- Limitation of PS codes: need for spin correlation and multiparticle matrix element
- Basic ingredients for Matrix Element Generators: techniques
- A simple home made tool
- MEG at helicity amplitude level, GRACE/HELAS: automation
- Automation of Feynman rules: LanHEP, FeynRules
- Small "Tutorial" LanHEP and interface to

CalcHEP/FormCalc-FeynArts/micrOMEGAs

- Play with CalcHEP
- One-loop extensions, example
- Modular Structure of codes, Putting all together, Les Houches Accords
- (Conclusions and Outlook)

$\mathcal{L}_{\text {New Physics Models }}$

experimental discovery and data analyses

- event generators with PS,...generate events with as much details as possible: in our example with W production
W will decay...uniformly?
production comes with non negligible radiation, but is all of the radiation accounted for?

〇 $\sigma_{\text {final state }}=\sigma_{\text {hard process }} \mathcal{P}_{\text {tot }}$
$\cap \mathcal{P}_{\text {tot }}=\mathcal{P}_{\text {decay }} \mathcal{P}_{\text {ISR }} \mathcal{P}_{\text {FSR }} \mathcal{P}_{\text {remnants }} \mathcal{P}_{\text {hadronise }} \mathcal{P}_{\text {ord. dec. }}$

- $\mathcal{P} \times \mathcal{P}_{\text {ord. dec. }}$, means a combination of $a b \rightarrow X Y$ followed by $X(Y) \rightarrow c, d$ or $X \rightarrow X+g$ could do....
is $a, b \rightarrow X(Y) \rightarrow c d=a, b \rightarrow X c d$ resonant vs non resonant contribution $a, b \rightarrow X(Y) \rightarrow Y g=a, b \rightarrow X g$ PS vs full MEG

Spin and distributions: NP scenarios often differ but their spin content

Edelhauser, Porod, Ritesh (2010)

Differential width divided by a phase space factor PS for the different decays $X \rightarrow f \bar{f} Y$, $X, Y \in S, V$ taking $m_{f}=0, m_{X} / m_{Y}=0.1$ and all couplings equal. In addition the phase space factor is drawn.

ME vs PS: Limitations of PS

- The majority of the processes in the general purpose event generators were implemented one by one, most of them are $2 \rightarrow 2$ processes.

ME vs PS: Limitations of PS

- The majority of the processes in the general purpose event generators were implemented one by one, most of them are $2 \rightarrow 2$ processes.
- However for the LHC we are often interested in higher multiplicity final states.
- These require specialized matrix element generators
- These are usually dedicated specialised stand-alone codes or recently some of the EG have built in MEG or at least part of the components of these MEG

Currently implemented processes, complete with respect to groups, but with some individual processes missing for lack of space (represented by "..."). In the names, a "2" separates initial and final state, an " $(s: X)$ ", " $t: X)$ " or " $(1: X)$ " occasionally appends info on an s - or t-channel- or loop-exchanged particle X.

Process Group	Processiname
SOftQCD	minBias, elastic, singleDiffractive, doubleDiffractive
HardQCD	```gg2gg, gg2qqbar, qg2qg, qq2qq, qqbar2gg, qqbar2qqbarNew, gg2ccbar, qqbar2ccbar, gg2bbbar, qqbar2bbbar```
PromptPhoton	qg2qgamma, qqbar2ggamma, gg2ggamma, ffbar2gammagamma, gg2gammagamma
WeakBosonExchange	
WeaksingleBoson	
WeakDoubleBoson	$\pm \pm b a r 2 g m Z g m Z, ~ f \pm b a r 2 Z W, ~ \pm \pm b a r 2 W W ~$
WeakBosonAndParton	qqbar2gmZg, qg2gmZq, ffbar2gmZgm, fgm2gmZf qqbar $2 \mathrm{Wg}, ~ q g 2 W q, ~ f \pm b a r 2 W g m, ~ f g m 2 W f$
Charmonium	$g g 2 Q Q b a r[3 S 1(1)] g, q g 2 Q Q b a r[3 P J(8)] q, \ldots$
Bottomonium	$g \mathrm{~g} 2 \mathrm{QQbar}[3: 1(1)] g, g g 2 Q Q b a r[3 P 2(1)] g, \ldots$
TOP	$\begin{aligned} & g g 2 t t b a r, ~ q q b a r 2 t t b a r, ~ q q 2 t q(t: W), \\ & f f b a r 2 t t b a r(s: g m Z), ~ f \pm b a r 2 t q b a r(s: W) \end{aligned}$
FourthBottom, FourthTop, Fourthpair (fourth generation)	
Higgssm	
Higgs BSM	h, H and A as above, charged Higgs, pairs
SUSY	qqbar2chiochio (not yet completed)
NewGaugeBoson	
LeftRightsymmmetry	
Leptoquark	ql2L.Q, qg2LQl, gg2LQLQbar, qqbar2LQLQbar
ExcitedFermion	dg2dstar, qq2ustarq, qqbar2mustarmu, . . .
ExtraDimensionsG*	gg2G*, qqbar2G*, ...

Currently implemented processes, complete with respect to groups, but with some individual processes missing for lack of space (represented by "..."). In the names, a "2" separates initial and final state, an " $(s: X)$ ", " $t: X)$ " or " $(1: X)$ " occasionally appends info on an s - or t-channel- or loop-exchanged particle X.

Process Group	Processiname
SOftQCD	minBias, elastic, singleDiffractive, doubleDiffractive
HardQCD	```gg2gg, gg2qqbar, qg2qg, qq2qq, qqbar2gg, qqbar2qqbarNew, gg2ccbar, qqbar2ccbar, gg2bbbar, qqbar2bbbar```
PromptPhoton	qg2qgamma, qqbar2ggamma, gg2ggamma, ffbar2gammagamma, gg2gammagamma
WeakBosonExchange	
WeaksingleBoson	
WeakDoubleBoson	$\pm \pm b a r 2 g m Z g m Z, ~ f \pm b a r 2 Z W, ~ \pm \pm b a r 2 W W ~$
WeakBosonAndParton	$\begin{aligned} & \text { qqi } \\ & \text { qqi } \end{aligned}$
Charmonium	gg2qumar Lontersug, पg2QQbar [3PJ(8)]q, ...
Bottomonium	
TOP	gg2ttbar, qqbar2ttbar, qq2tq(t:w), ffbar2ttbar ($s: g m Z), ~ f f b a r 2 t q b a r(s: W)$
FourthBottom, FourthTop, Fourthpair (fourth generation)	
Higgssm	
Higgs BSM	h, H and A as above, charged Higgs, pairs
SUSY	qqbar2chiochio (not yet completed)
NewGaugeBoson	fıbar2gmZZprime, fibar2Wprime, fıbar2RO
LeftRightsymmmetry	
Leptoquark	ql2L.Q, qg2LQl, gg2LQLQbar, qqbar2LQLQbar
ExcitedFermion	dg2dstar, qq2ustarq, qqbar2mustarmu, . . .
ExtradimensionsG*	gg2G*, qqbar2G*, ...

ME vs PS: Limitations of PS

- PS do not describe hard jets
- ME do but in practice can not produce as many jets as PS
- ME evaluates the complete set of all diagrams/configurations: costly
- some real progress has been made in interfacing ME with PS
- CKKW, MLM (say more if time permits) Peter has done this

ATLAS TDR (same with CMS)

QCD and SM processes can also produce hard jets! and these are/were lacking in PS/MC

ME vs PS: Resonant vs non resonant

(a) Peripheral
(b) single W production
(c) Resonant diagram

$$
\gamma \gamma \rightarrow W^{-} W^{+} W^{ \pm} \rightarrow l \nu_{l}, W^{\mp} \rightarrow j j^{\prime} \text { with } l=e, \mu .
$$

ME vs PS: Resonant vs non resonant

- Full calculation needs to evaluate $|\mathcal{M}|^{2}$
- draw all Feynman diagrams,
- associate Feynman rules to each vertex,
- sum over all diagrams $\mathcal{M}=\sum_{i} \mathcal{M}_{i}$

ME vs PS: Resonant vs non resonant

- Full calculation needs to evaluate $|\mathcal{M}|^{2}$
- draw all Feynman diagrams,
- associate Feynman rules to each vertex,
- sum over all diagrams $\mathcal{M}=\sum_{i} \mathcal{M}_{i}$

Squaring technique

- Most textbook will tell you to square summing over all polarisations, with tricks like spinors leading to traces, pola. vectors to completeness relations $\sum_{\lambda}\left(\epsilon_{\mu} \epsilon_{\nu}\right) \rightarrow-g_{\mu \nu}, \ldots$.
- with more than $2 \rightarrow 2$ this is intractable wit huge number of terms (due to interference) $\mathcal{M}_{i} \mathcal{M}_{j}^{*}$ with long expressions from squaring
- Any info on polarisation (initial or final, that can be crucial) is lost
- This technique can be automatised and is used in CompHEP, CalcHEP

ME vs PS: Resonant vs non resonant

- Full calculation needs to evaluate $|\mathcal{M}|^{2}$
- draw all Feynman diagrams,
- associate Feynman rules to each vertex,
- sum over all diagrams $\mathcal{M}=\sum_{i} \mathcal{M}_{i}$

Helicity amplitude technique

- Calculate each \mathcal{M}_{i} for a helicity configuration $h_{\alpha}, \mathcal{M}_{i}\left(h_{\alpha}\right)$
- each $\mathcal{M}_{i}\left(h_{\alpha}\right)$ is a c-number
- Sum over i to get the full amplitude (sum before squaring) $\sum_{i} \mathcal{M}_{i}\left(h_{\alpha}\right)=\mathcal{M}\left(h_{\alpha}\right)$
- Store $\mathcal{M}\left(h_{\alpha}\right)$ to get polarised/unpolarised/spin-correlation
- Used in GRACE, MadGraph,...

ME vs PS: Resonant vs non resonant

- Full calculation needs to evaluate $|\mathcal{M}|^{2}$
- draw all Feynman diagrams,
- associate Feynman rules to each vertex,
- sum over all diagrams $\mathcal{M}=\sum_{i} \mathcal{M}_{i}$

Recursion relations (mostly for massless states within QCD)

- not based on Feynman diagrams
- idea is to build amplitude for $N+1$ leg from N leg recursively
- Methods based on off-shell currents (Berends-Giele)
- New techniques MHV (Maximum Helicity Violating) based on formal, twistor inspired work by Cachazo-Svreck-Witten(CVS)
- Many developments (BCFW, Britto-Cachazo-Feng-Witten) including some applications to massive states
- SYM ($\mathrm{N}=4$ based)/Wilson loops (tree-level and beyond)

ME vs PS: Resonant vs non resonant

- Full calculation needs to evaluate $|\mathcal{M}|^{2}$
- draw all Feynman diagrams,
- associate Feynman rules to each vertex,
- sum over all diagrams $\mathcal{M}=\sum_{i} \mathcal{M}_{i}$

Approximation: Resonant diagrams only?

- Production \times decay
- $\sigma=\sigma_{W W} \times B r_{W^{+}} B r_{W^{-}}$is OK only for total cross section without cuts
- distribution sensitive to the spin of decaying particles
- improve with full spin correlation

ME vs PS: Resonant vs non resonant, Density Matrix, Full Spin Correlation

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma\left(\gamma\left(\lambda_{1}\right) \gamma\left(\lambda_{2}\right) \rightarrow W^{+} W^{-} \rightarrow f_{1} \bar{f}_{2} f_{3} \bar{f}_{4}\right)}{\mathrm{d} \cos \theta \mathrm{~d} \cos \theta_{-}^{*} \mathrm{~d} \phi_{-}^{*} \mathrm{~d} \cos \theta_{+}^{*} \mathrm{~d} \phi_{+}^{*}}=B r_{W}^{f_{1} \bar{f}_{2}} B r_{W}^{f_{3} \bar{f}_{4}} \frac{\beta}{32 \pi s}\left(\frac{3}{8 \pi}\right)^{2} \times \\
& \sum_{\lambda_{-} \lambda_{+} \lambda_{-}^{\prime} \lambda_{+}^{\prime}} \mathcal{M}_{\lambda_{1}, \lambda_{2} ; \lambda_{-} \lambda_{+}}(s, \cos \theta) \mathcal{M}_{\lambda_{1}, \lambda_{2} ; \lambda_{-}^{\prime} \lambda_{+}^{\prime}}^{*}(s, \cos \theta) \times \\
& D_{\lambda_{-} \lambda_{-}^{\prime}}\left(\theta_{-}^{*}, \phi_{-}^{*}\right) D_{\lambda_{+} \lambda_{+}^{\prime}}\left(\pi-\theta_{+}^{*}, \phi_{+}^{*}+\pi\right) \\
& \equiv \frac{\mathrm{d} \sigma\left(\gamma\left(\lambda_{1}\right) \gamma\left(\lambda_{2}\right) \rightarrow W^{+} W^{-}\right)}{\mathrm{d} \cos \theta}\left(\frac{3}{8 \pi}\right)^{2} B r_{W}^{f_{1} \bar{f}_{2}} B r_{W}^{f_{3} \bar{f}_{4}} \\
& \sum_{\lambda_{-} \lambda_{+} \lambda_{-}^{\prime} \lambda_{+}^{\prime}} \rho_{\lambda_{-} \lambda_{+} \lambda_{-}^{\prime} \lambda_{+}^{\prime}}^{\lambda_{1}, \lambda_{2}} D_{\lambda_{-} \lambda_{-}^{\prime}}\left(\theta_{-}^{*}, \phi_{-}^{*}\right) D_{\lambda_{+} \lambda_{+}^{\prime}}\left(\pi-\theta_{+}^{*}, \phi_{+}^{*}+\pi\right) \\
& \text { with } \quad \rho_{\lambda_{-} \lambda_{+} \lambda_{-}^{\prime} \lambda_{+}^{\prime}}^{\lambda_{1}, \lambda_{2}}(s, \cos \theta)=\frac{\mathcal{M}_{\lambda_{1}, \lambda_{2} ; \lambda_{-} \lambda_{+}}(s, \cos \theta) \mathcal{M}_{\lambda_{1}, \lambda_{2} ; \lambda_{-}^{\prime} \lambda_{+}^{\prime}}^{*}(s, \cos \theta)}{\sum_{\lambda_{-} \lambda_{+}}\left|\mathcal{M}_{\lambda_{1}, \lambda_{2} ; \lambda_{-} \lambda_{+}}(s, \cos \theta)\right|^{2}}
\end{aligned}
$$

ME vs PS: Resonant vs non resonant, Density Matrix, Full Spin Correlation

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma\left(\gamma\left(\lambda_{1}\right) \gamma\left(\lambda_{2}\right) \rightarrow W^{+} W^{-} \rightarrow f_{1} \bar{f}_{2} f_{3} \bar{f}_{4}\right)}{\mathrm{d} \cos \theta \mathrm{~d} \cos \theta_{-}^{*} \mathrm{~d} \phi_{-}^{*} \mathrm{~d} \cos \theta_{+}^{*} \mathrm{~d} \phi_{+}^{*}}=B r_{W}^{f_{1} \bar{f}_{2}} B r_{W}^{f_{3} \bar{f}_{4}} \frac{\beta}{32 \pi s}\left(\frac{3}{8 \pi}\right)^{2} \times \\
& \sum_{\lambda_{-} \lambda_{+} \lambda_{-}^{\prime} \lambda_{+}^{\prime}} \mathcal{M}_{\lambda_{1}, \lambda_{2} ; \lambda_{-} \lambda_{+}}(s, \cos \theta) \mathcal{M}_{\lambda_{1}, \lambda_{2} ; \lambda_{-}^{\prime} \lambda_{+}^{\prime}}^{*}(s, \cos \theta) \times \\
& D_{\lambda_{-} \lambda_{-}^{\prime}}\left(\theta_{-}^{*}, \phi_{-}^{*}\right) D_{\lambda_{+} \lambda_{+}^{\prime}}\left(\pi-\theta_{+}^{*}, \phi_{+}^{*}+\pi\right) \\
& \equiv \frac{\mathrm{d} \sigma\left(\gamma\left(\lambda_{1}\right) \gamma\left(\lambda_{2}\right) \rightarrow W^{+} W^{-}\right)}{\mathrm{d} \cos \theta}\left(\frac{3}{8 \pi}\right)^{2} B r_{W}^{f_{1} \bar{f}_{2}} B r_{W}^{f_{3} \bar{f}_{4}} \\
& \sum_{\lambda_{-} \lambda_{+} \lambda_{-}^{\prime} \lambda_{+}^{\prime}} \rho_{\lambda_{-} \lambda_{+} \lambda_{-}^{\prime} \lambda_{+}^{\prime}}^{\lambda_{1}, \lambda_{2}} D_{\lambda_{-} \lambda_{-}^{\prime}}\left(\theta_{-}^{*}, \phi_{-}^{*}\right) D_{\lambda_{+} \lambda_{+}^{\prime}}\left(\pi-\theta_{+}^{*}, \phi_{+}^{*}+\pi\right) \\
& \text { with } \quad \rho_{\lambda_{-} \lambda_{+} \lambda_{-}^{\prime} \lambda_{+}^{\prime}}^{\lambda_{1}, \lambda_{2}}(s, \cos \theta)=\frac{\mathcal{M}_{\lambda_{1}, \lambda_{2} ; \lambda_{-} \lambda_{+}}(s, \cos \theta) \mathcal{M}_{\lambda_{1}, \lambda_{2} ; \lambda_{-}^{\prime} \lambda_{+}^{\prime}}^{*}(s, \cos \theta)}{\sum_{\lambda_{-} \lambda_{+}}\left|\mathcal{M}_{\lambda_{1}, \lambda_{2} ; \lambda_{-} \lambda_{+}}(s, \cos \theta)\right|^{2}}
\end{aligned}
$$

ME vs PS: Resonant vs non resonant, Density Matrix, Full Spin Correlation

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma\left(\gamma\left(\lambda_{1}\right) \gamma\left(\lambda_{2}\right) \rightarrow W^{+} W^{-} \rightarrow f_{1} \bar{f}_{2} f_{3} \bar{f}_{4}\right)}{\mathrm{d} \cos \theta \mathrm{~d} \cos \theta_{-}^{*} \mathrm{~d} \phi_{-}^{*} \mathrm{~d} \cos \theta_{+}^{*} \mathrm{~d} \phi_{+}^{*}}=\operatorname{Br}_{W}^{f_{1} \bar{f}_{2}} B r_{W}^{f_{3} \bar{f}_{4}} \frac{\beta}{32 \pi s}\left(\frac{3}{8 \pi}\right)^{2} \times \\
& \sum_{\lambda_{-} \lambda_{+} \lambda_{-}^{\prime} \lambda_{+}^{\prime}} \mathcal{M}_{\lambda_{1}, \lambda_{2} ; \lambda_{-} \lambda_{+}}(s, \cos \theta) \mathcal{M}_{\lambda_{1}, \lambda_{2} ; \lambda_{-}^{\prime} \lambda_{+}^{\prime}}^{*}(s, \cos \theta) \times \\
& D_{\lambda_{-} \lambda_{-}^{\prime}}\left(\theta_{-}^{*}, \phi_{-}^{*}\right) D_{\lambda_{+} \lambda_{+}^{\prime}}\left(\pi-\theta_{+}^{*}, \phi_{+}^{*}+\pi\right) \\
& \equiv \frac{\mathrm{d} \sigma\left(\gamma\left(\lambda_{1}\right) \gamma\left(\lambda_{2}\right) \rightarrow W^{+} W^{-}\right)}{\mathrm{d} \cos \theta}\left(\frac{3}{8 \pi}\right)^{2} B r_{W}^{f_{1} \bar{f}_{2}} B r_{W}^{f_{3} \bar{f}_{4}} \\
& \sum_{\lambda_{-} \lambda_{+} \lambda_{-}^{\prime} \lambda_{+}^{\prime}} \rho_{\lambda_{-} \lambda_{+} \lambda_{-}^{\prime} \lambda_{+}^{\prime}}^{\lambda_{1}, \lambda_{2}} D_{\lambda_{-} \lambda_{-}^{\prime}}\left(\theta_{-}^{*}, \phi_{-}^{*}\right) D_{\lambda_{+} \lambda_{+}^{\prime}}\left(\pi-\theta_{+}^{*}, \phi_{+}^{*}+\pi\right) \\
& \text { with } \quad \rho_{\lambda_{-} \lambda_{+} \lambda_{-}^{\prime} \lambda_{+}^{\prime}}^{\lambda_{1}, \lambda_{2}}(s, \cos \theta)=\frac{\mathcal{M}_{\lambda_{1}, \lambda_{2} ; \lambda_{-} \lambda_{+}}(s, \cos \theta) \mathcal{M}_{\lambda_{1}, \lambda_{2} ; \lambda_{-}^{\prime} \lambda_{+}^{\prime}}^{*}(s, \cos \theta)}{\sum_{\lambda_{-} \lambda_{+}}\left|\mathcal{M}_{\lambda_{1}, \lambda_{2} ; \lambda_{-} \lambda_{+}}(s, \cos \theta)\right|^{2}}
\end{aligned}
$$

W decay functions

$$
\begin{array}{rll}
D_{\lambda, \lambda^{\prime}}^{W^{-}}\left(\theta^{*}, \phi^{*}\right) \equiv D_{\lambda, \lambda^{\prime}}, & D_{\lambda, \lambda^{\prime}}=D_{\lambda^{\prime}, \lambda}^{*} \\
D_{+,-}=\frac{1}{2}\left(1-\cos ^{2} \theta^{*}\right) e^{2 i \phi^{*}}, & D_{ \pm, 0}=-\frac{1}{\sqrt{2}}\left(1 \mp \cos \theta^{*}\right) \sin \theta^{*} e^{ \pm i \phi^{*}}, \\
& D_{ \pm, \pm}=\frac{1}{2}\left(1 \mp \cos \theta^{*}\right)^{2}, & D_{0,0}=\sin ^{2} \theta^{*} .
\end{array}
$$

ME vs PS: Resonant vs non resonant

$\lambda_{1} \lambda_{2}$	Inv. Mass. Cuts	Narrow Width Improved	All diag. $\Gamma_{W}\left(M_{W}^{2}\right)$	All diag. $\Gamma_{W}(s)$	All diag. Fudge	"Resonant" Subset
$\sqrt{\mathrm{s}}=400 \mathrm{GeV}$						
+ +	None	2288	2310	2312	2309	2354
+ -	None	1893	1926	1927	1923	1975
- +	None	1890	1927	1927	1926	1975
- -	None	2186	2184	2183	2183	2252
+ +	$\Delta_{j j}, \Delta_{l \nu}<5 \mathrm{GeV}$	1759	1762	1764	1761	1761
+ -	$\Delta_{j j}, \Delta_{l \nu}<5 \mathrm{GeV}$	1455	1458	1458	1456	1456
+	$\Delta_{j j}, \Delta_{l \nu}<5 \mathrm{GeV}$	1454	1457	1458	1457	1456
- -	$\Delta_{j j}, \Delta_{l \nu}<5 \mathrm{GeV}$	1681	1683	1681	1682	1682
$\sqrt{\mathrm{s}}=1600 \mathrm{GeV}$						
+ +	None	377	389	389	389	456
+ -	None	320	335	335	335	388
- +	None	320	336	336	336	391
- -	None	427	447	447	447	490
+ +	$\Delta_{j j}, \Delta_{l \nu}<5 \mathrm{GeV}$	290	291	291	291	291
+ -	$\Delta_{j j}, \Delta_{l \nu}<5 \mathrm{GeV}$	246	246	246	246	246
- +	$\Delta_{j j}, \Delta_{l \nu}<5 \mathrm{GeV}$	246	246	247	246	247
- -	$\Delta_{j j}, \Delta_{l \nu}<5 \mathrm{GeV}$	328	329	329	330	329

Spin Correlation and Radiation

Usual techniques require production and decay to be generated at the same time In a generator the difficulty is that

- We need to generate QCD radiation before particle decays
- There may be a long chain of sequential decays
- The particle may have different decay channels
- There may be a few final state particles

Need an algorithm for the production and decay to be done separately Complexity should not grow more than the number of external particles in HERWIG spin correlation is implemented not always the case for Pythia (even without radiation)

Matrix Elements Generation and Automation: Feynman diagrams

Automation of LO calculations of (partonic) processes $2 \rightarrow N$ are now automatised including integration, for (say) $N<8$ based on different methods

- Alpgen (non Feynman based) quite powerful especially for multiparticle Sm background (not much BSM, Z'...)
- CompHEP/CalcHEP could be slow with lots of particles but interface to Dark Matter codes, LanHEP
- Grace various guises some public others not
- HELAS/PHEGAS
- MADGRAPH/MADEVENT major activity (you've had tutorials here)
- O^{\prime} Mega/whizARD
- SHERPA/Amegic powerful, CKKW, integrated within SHERPA evt generator

Automation of LO calculations of (partonic) processes $2 \rightarrow N$ are now automatised including integration, for (say) $N<8$ based on different methods

- Alpgen (non Feynman based) quite powerful especially for multiparticle Sm background (not much BSM, Z'...)
- CompHEP/CalcHEP could be slow with lots of particles but interface to Dark Matter codes, LanHEP
- Grace various guises some public others not
- HELAS/PHEGAS
- MADGRAPH/MADEVENT major activity (you've had tutorials here)
- 0^{\prime} Mega/whizARD
- SHERPA/Amegic powerful, CKKW, integrated within SHERPA evt generator the more particles one deals with a (Feynman) diagrammatic calculations is costly as the number of diagrams grows N !

\#gluons	2	3	4	5	6	7	8
\#diagrams	4	25	220	2485	34300	0.5M	80M

Basics and ingredients of automated MEG

How would I go about calculating a Matrix element or/and a cross section without a dedicated tool?
tool: does not include pen/chalk, computer, (Symbolic manipulation software)

Basics and ingredients of automated MEG

How would I go about calculating a Matrix element or/and a cross section without a dedicated tool?
tool: does not include pen/chalk, computer, (Symbolic manipulation software)

$$
\text { I need } \mathcal{L}_{\text {New }} \text { Physics Models }
$$

Basics and ingredients of automated MEG

How would I go about calculating a Matrix element or/and a cross section without a dedicated tool?
tool: does not include pen/chalk, computer, (Symbolic manipulation software)

$$
\text { I need } \mathcal{L}_{\text {New Physics Models }}
$$

Figure out what my particles are spin assignment, colour, charges,...quantum numbers

Label them

Basics and ingredients of automated MEG

How would I go about calculating a Matrix element or/and a cross section without a dedicated tool?
tool: does not include pen/chalk, computer, (Symbolic manipulation software)

$$
\text { I need } \mathcal{L}_{\text {New }} \text { Physics Models }
$$

> Get the set of Feynman rules get them from a trustworthy source (text book?) better to have the complete set! getting the full from different sources is asking for trouble derive the rules myself

Basics and ingredients of automated MEG

How would I go about calculating a Matrix element or/and a cross section without a dedicated tool?
tool: does not include pen/chalk, computer, (Symbolic manipulation software)

$$
\text { I need } \mathcal{L}_{\text {New }} \text { Physics Models }
$$

Keep a table for numerics, parameters masses, couplings, combinations of such

Basics and ingredients of automated MEG

How would I go about calculating a Matrix element or/and a cross section without a dedicated tool?
tool: does not include pen/chalk, computer, (Symbolic manipulation software)

$$
\text { I need } \mathcal{L}_{\text {New Physics Models }}
$$

Would need a tool or efficient way for algebraic manipulations Mathematica, Maple, Form,..
compilers for numerics also

Basics and ingredients of automated MEG

How would I go about calculating a Matrix element or/and a cross section without a dedicated tool?
tool: does not include pen/chalk, computer, (Symbolic manipulation software)

$$
\text { I need } \mathcal{L}_{\text {New Physics Models }}
$$

Define the Process
Squaring technique or helicity amplitude?
Integration over phase space. Analytical?, numerical, MC?

Feynman Recipe, knitting with vertices and propagators

Draw all possible types of diagrams	topology
Figure out which particles can run on each type of diagram	combinatorics
Translate diagrams into expressions applying the Feynman rules	data-base look up
contract indices, take traces, (multiply add blocks)	algebra
Collect and write up the results as a computer code integrate over phase space	programming
run the program to get numerical values	waiting!

Your desiderata and wishes come true!

- Create the topologies
- Insert fields
- Apply the Feynman rules
- Paint the diagrams

- Convert Mathematica output to Fortran code
- Supply a driver program
- Implementation of the integrals

EXAMPLE: generating the Higgs self-energy

one outgoing particle
Paint [top]

the name of the Higgs boson in the "SM" model file

Paint [ins]

$$
\text { amp }=\text { CreateFeynAmp [ins] }
$$

amp >> HíggaSelfBnergy.amp

Very simple and compact tools for spin-1 manipulations, 20lines

```
ok / : ok [x_] := Free\ell[{sca, Times, List, Dot, Plus, Power, Cos, Sin}, x]
tens/: tens := %/. (f__) ?ok[Y__] -> SequenceForm[f, Superscript[SequenceForm[y]]]
Format[sca [k__, k__]] := k^2
Format [sca [k_, f__]]:= SequenceForm[k, ".", m]
```

Attributes [g] $=$ \{Orderless\}
Attributes[sca] = \{Orderless\}
$\operatorname{sca} /: \operatorname{sca}[x \ldots, y \ldots+z \ldots]:=\operatorname{sca}[x, y]+\operatorname{sca}[x, z]$
$\operatorname{sca} /: \operatorname{sca}[-x \ldots, y \ldots]:=-\operatorname{sca}[x, y]$
$g /: g\left[u_{\ldots}, u_{L}\right]:=4$

$g /: g\left[u \ldots, v _\right] \sim 2:=4$
Unprotect [Times, Power]
Times /: \mathbf{k} _ $\left[\mathbf{u} _\right] \mathbf{f}_{\text {_ }}\left[\mathbf{u} _\right]:=\mathbf{s c a}[k, \mathbf{f}]$
Power /: k _ [u_] $\mathcal{L} \mathbf{2}:=s c a[k, k]$
Protect [Times, Power]

3t Mathematica 5.0 - [TENSEUR.m *]
File Edit Cell Format Input Kernel Find Window Help
3 TENSEUR.m *
$g /: g\left[u_{-}, v\right]^{\wedge} 2:=4$

Unprotect [Times, Power]
Tines /:k_[u_] f_[u_]:=sca[k,f]
Power/:k_[u_]^2:=sca[k,k]
Protect [Tines, Power]

```
Out[20]= {Orderless}
Out[[1]= {Orderless}
Out[27]= {Times, Power }
Out[30]= {Times, Power}
ln[31]= = k[mu] k[mu]
```

Out [31] $=\mathrm{k}^{2}$
$\ln [32]=\boldsymbol{g}[\mathbf{m u}, \mathbf{m u}]$
Out[32] $=4$
$\ln [33]=\mathbf{G}[\mathbf{m u}, \mathbf{n u}] \mathbf{k}[\mathbf{n u}]$
Out[33]= $\mathrm{k}[\mathrm{mu}]$

FeynCalc.m, 8000 lines (dirac, PV reduction,..)

$$
\text { DiracGamma [5] } \rightarrow \text { (—DimacGamma [5])/ . }
$$

[DiracGamma [6] : \rightarrow DiracGamma [7]. DiracGamma [7] = >DiracGamma [6]\}
) ;

ComplexConjugate / : ComplexConjugate[ComplexConjugate[x_] : =x;
 csindex[x_] $==$ sunIndex[ComplexConjugate[x]]; Unprotect [Conjugate];

 f/ Complex[a_, b_] \rightarrow Complex[a, b] / . Dot \rightarrow rev / I rev \rightarrow Dot / . LorentzIndex \rightarrow cIIndex / -
SUNIncler \rightarrow cSIncler;
Protect [Conjugate];
Polarization/ : Momentum [Polarization [k_, \qquad], di__Symbol
] = =Momentum[Polarization[k,i]]
Polarization/:Momentum[Polarization [k__


```
(* Mainl4

(* MetricTensordef *)
Options [MetricTensor]=\{Dimension->4\};
MetricTensor [x__] = MetricTensor [x] =metrictensor [x];
1oinl[x_r__] =
metricTensor [a_b_
_- opt \(\qquad\) ] = =metrictensor [a,b,opt];
metricTensor [a—人2 , opt \(\qquad\) ] = =metricTensor [a, a, opt];




Pair [ IorentzInclex[x, Dimension/ - op/ - Options [Metrictensor] ],
IorentzInder [Y, Dimension/ - op/ - Options [MetricTensor] ] 1 :
( \(*\) Polarizationvectordef \(*\) )
Polarization [k_] = =Polarization [k] =Polarization [k, 1 ; ;
Polarizationvector [x__] = Poolarizationvector[x]=polarizationvector[x];
(* By default a second argument "i" is put into polarization
( \(t\) This is changed to v-i" for conjugate polarization vectors t) polarizationvector [k_, mu_] = =

Fourvector [Polarization [k, l], mu, Dinension->4 ];
polarizationvector[k_, mu_, glu_] =
(*trilinear vertex \(\mathrm{W}-(\mathrm{m}, \mathrm{mu}) \mathrm{W}+(\mathrm{p}, \mathrm{nu}) \mathrm{Z} /\) gamma ( z, rho) all momenta entering*) ( \(*\) - \(\mathrm{i} \mathrm{e} *\) ) WWZ \(\left[\mathrm{m}_{-}, \mathrm{p}_{-}, \mathrm{z}_{-}, m \mathrm{mu}_{-}, n u_{-}, r h 0_{-}\right]:=\mathrm{g}[\mathrm{mu}, \mathrm{nu}](\mathrm{m}[\mathrm{rho}]-\mathrm{p}[r h o])+\)
\((z[n u] g[m u, r h o]-z[m u] g[n u, r h o])+(p[m u] g[n u, r h o]-m[n u] g[m u, r h o]) ;\) (*quadratic*)
(*-i \(e^{\wedge} 2 *\) )
WWZZ[mu_, nu_, rho_, sig_] :=
\(-2 g[m u, n u] g[r h o, s i g]+g[m u, r h o] g[n u, s i g]+g[m u, s i g] g[n u, r h o] ;\)
(*Propagator of massive spin-1*)
(*-i*)
\(\operatorname{PropagV}\left[\mathrm{M}_{-}, \mathrm{p}_{-}, \mathrm{mu}_{-}, \mathrm{nu} u_{-}\right]:=\left(\mathrm{g}[\mathrm{mu}, \mathrm{nu}]-\mathrm{p}[\mathrm{mu}] \mathrm{p}[\mathrm{nu}] / \mathrm{M}^{\wedge} 2\right) /\left(\mathrm{sca}[\mathrm{p}, \mathrm{p}]-\mathrm{M}^{\wedge} 2\right)\); (*Sum on polarisations*)
PolVVsq[M_, \(\left.P_{-}, m u, n u \_\right]:=g[m u, n u]-p[m u] p[n u] / M^{\wedge} 2\);

Example, Z'decay, kinematics
```

(*Z (k,rho,ez) to w-(p1,mu, em) W+(p2, nu, ep)*)
(*kinematics*)
sca[k, k] = Mz^2;
sca[p1, P1]= Mw^2;
sca[p2, P2] = Mw^2;
sca[p1, p2]=Mz^2/2-Mw^2;
sca[p1, k] = Mz^2/2;
sca[p2,k] = Mz^2/2;
sca[ez,k] = O;
sca[ez, Pl] = -Mz * beta * st/ 2;
sca[ez, P2] = +Mz * beta * st/ 2;
sca[em, pl] = O;
sca[em, k]=Mz^2 * beta/2/Mw;
sca[em, ep] = (1 + beta^2) *Mz^2/4/Mw^2;
sca[em, ez] = - (Mz/2/Mw) *st;
sca[ep, ez] = (Mz/2/Mw) *st;
sca[ep, p2] = 0;
sca[em, P2] = Mz * beta * Mz/2/Mw;
sca[ep, pl] = Mz * beta *Mz/2/Mw;
sca[ep,k]=Mz^2*beta/2/Mw;

```

\section*{Z'decay matrix element squared technique}
(*Matrix Elements Squared over ALL polarisations*)
Expand[WWZ[-p1, -p2, k, mu, nu, rho] *WWZ[-p1, -p2, k, mup, nup, rhop] *
PolVsqq[Mw, p1, mu, mup] *PolVVsq[Mw, p2, nu, nup] *PolVVsq[Mz, k, rho, rhop]]
\(\operatorname{sca}[\mathrm{p} 1, \mathrm{k}]=\mathrm{Hz} z^{\wedge} 2 / 2 ;\)
\(\mathrm{sca}[\mathrm{p} 2, \mathrm{k}]=\mathrm{Mz}{ }^{\prime} 2 / 2\);
\(\operatorname{sca}[\mathrm{ez}, \mathrm{k}]=0\);
sca \([\mathrm{ez}, \mathrm{p} 1]=-\mathrm{Mz} *\) heta \(\#\) st \(/ 2\);
sca \([\mathrm{ez}, \mathrm{p} 2]=+\mathrm{Mz}\) \#heta *st \(/ 2\);
\(\mathrm{sca}[\mathrm{em} ; \mathrm{p} 1]=\mathbf{0}\);
sca \([\) en, \(k]=1 z^{\wedge} 2 \pi\) beta \(/ 2 / \mathrm{lfs} ;\)
sca \([\) en, eq\(]=\left(1+\right.\) heta \(\left.{ }^{\wedge} 2\right)+\mathrm{Hz}^{\wedge} 2 / 4 / \mathrm{lkw}^{\wedge} 2\);
sca[em, ez] \(=-(\mathrm{Mz} / 2 / \mathrm{hn})+\mathrm{st}\);
sca[ep, ez] \(=(\mathrm{Mz} / 2 / \mathrm{Nm}) * s t\);
\(\operatorname{sca}\left[\mathrm{ep}, \mathrm{p}^{2}\right]=0\);
sca \([\) ent, \(\mathrm{p} 2]=\mathrm{Mz} *\) heta \(\# \mathrm{Mz} / 2 / \mathrm{Mh}\);
sca \([e p, ~ p 1]=\mathrm{Mz} \pi\) heta \(n \mathrm{Mz} / 2 / \mathrm{hk}\);
sca[ep, k\(]=\mathrm{Mz} \wedge 2 \pi\) beta \(/ 2 / \mathrm{hk}\);

In [ P\(] \mathrm{]}=\) ( \(n\) Matrix Elements Squared over MLL polarisations \(n\) )
 \(\arg \left[72=12 M \pi^{2}+17 M z^{2}-\frac{4 M z^{4}}{M \pi^{2}}-\frac{M z^{6}}{4 N \pi^{4}}\right.\)

\section*{Z'decay helicity amplitude}

\section*{}
sca \([\) ep, \(k]=1 z^{\wedge} 2\) *heta \(/ 2 / \mathrm{Mm} ;\)
General::spell1: Possible spelling error: new symbol name "beta" is similar to existing symbol "Beta". More...

\section*{\(\ln [2]=\) ( \(n\) Matrix Elenents Squared over MLL polarisationst)}

Out \([2]=12 M w^{2}+17 \mathrm{Mz}^{2}-\frac{4 M z^{4}}{M w^{2}}-\frac{M z^{6}}{4 M w^{4}}\)
(*transversality*)
\(\ln [7]=\operatorname{Expand}[m \mathrm{~m}[-\mathrm{p} 1,-\mathrm{p} 2, \mathrm{k}, \mathrm{nu}, \mathrm{nu}\), rho \(] \mathrm{k}[\mathrm{rho}] \mathrm{p} 1[\mathrm{mu}] \mathrm{p} 2[\mathrm{nu}]]\)
Out \([7]=0\)
\(\ln (84)=\) Simplify[Expand[WZZ[- \(\mathrm{p} 1,-\mathrm{p} 2, \mathrm{k}, \mathrm{mu}, \mathrm{nu}\), rho] ez[rho] en[mu] ep[nu]]]
Out[ \(\left[84=-\sqrt{1-\frac{4 M \pi^{2}}{M z^{2}}} M z s=\frac{\sqrt{1-\frac{4 m^{2}}{M z^{2}}} M z^{3} s t}{2 M \pi^{2}}\right.\)
\(\ln [85]=\) Expand[ \([\mathrm{mR}[-\mathrm{p} 1,-\mathrm{p} 2, \mathrm{k}, \mathrm{nu}, \mathrm{nu}, \mathrm{rho}] \mathrm{ez}[\mathrm{rho} 0 \mathrm{p} 1[\mathrm{mu}] \mathrm{p} 2[\mathrm{nu}]]\)
Outrgo \(\left(-\frac{1}{2} \sqrt{1-\frac{4 M w^{2}}{M z^{2}}} \mathbb{M} z^{3}\right.\) st
\(\ln (8)]=\) beta \(=S\left(q \mathrm{rt}\left[1-4 \pi \mathrm{~Hz}^{\wedge} 2 / \mathrm{Mz} z^{\wedge} 2\right]\right.\)
\[
\gamma \gamma \rightarrow W^{+} W^{-}
\]


\section*{(*First diagram*)}

Slabmn = WWZ[p2-kl, -p2, kl, alp, nu, al]


PropagV[Mw, k1-p2, alp, bep] WWZ[k1 -p2, -p1, k2, bep, mu, be]; (*second diagram*)
S2abmn = WWZ[p2-k2,-p2, k2, bep, nu, be]
PropagV[Mw, k2-p2, bep, alp] WWZ[k2 -p2, -p1, k1, alp, mu, al]; (*third diagram*)

Qabmn \(=-\operatorname{WWZZ}[\mathrm{al}, \mathrm{be}, \mathrm{mu}, \mathrm{nu}]\);

\section*{Kinematics for \(\gamma \gamma \rightarrow W^{+} W^{-}\)}
(*kinematics for gamma (k1,al,e1) gamma (k2,be,e2) to w(p1,mu,w1) W+(p2,nu,w2) *) sca[k1, k1] = 0;
(*kinematics*)
sca [k2, k2] = 0;
sca[k1, e1] = 0;
sca[k2, e2] = 0;
sca[k1, k2] = s/2;
sca[p1, p 1\(]=\mathrm{Mw}\) ^2;
sca[p2, p 2\(]=\mathrm{Mw}\) ^2;
sca[p1, p2] = s/2-Mw^2;
sca[p1, w1] = 0;
sca[p2, w2] = 0;
sca \([k 1, p 1]=(M w \wedge 2-t) / 2 ;\)
sca \([k 2, \mathrm{p} 2]=(\mathrm{Mw}\) ^2-t) \(/ 2\);
sca \([k 1, \mathrm{p} 2]=\left(\mathrm{Mw}^{\wedge} 2-u\right) / 2\);
sca \([k 2, \mathrm{p} 1]=\left(\mathrm{Mw}^{\wedge} 2-u\right) / 2\);

\section*{Helicity amplitude for \(\gamma \gamma \rightarrow W^{+} W^{-}\)}

The photons with helicity \(\lambda_{1}\left(\lambda_{2}\right)\) are in the \(+z(-z)\) direction and the outgoing \(W^{-}\left(W^{+}\right)\) with helicity \(\lambda_{-}\left(\lambda_{+}\right)\)and 4-momentum \(p_{-}\left(p_{+}\right)\):
\[
p_{\mp}^{\mu}=\frac{\sqrt{s}}{2}(1, \pm \beta \sin \theta, 0, \pm \beta \cos \theta) \quad ; \quad \beta=\sqrt{1-4 / \gamma} ; \gamma=s / M_{W}^{2} .
\]

The polarisations for the helicity basis are defined as
\[
\begin{array}{cc}
\epsilon_{1}^{\mu}\left(\lambda_{1}\right)=\frac{1}{\sqrt{2}}\left(0,-\lambda_{1},-i, 0\right) & \epsilon_{2}^{\mu}\left(\lambda_{2}\right)=\frac{1}{\sqrt{2}}\left(0, \lambda_{2},-i, 0\right) \quad \lambda_{1,2}= \pm \\
\epsilon_{-}^{\mu}\left(\lambda_{-}\right)^{*}=\frac{1}{\sqrt{2}}\left(0,-\lambda_{-} \cos \theta, i, \lambda_{-} \sin \theta\right) & \epsilon_{+}^{\mu}\left(\lambda_{+}\right)^{*}=\frac{1}{\sqrt{2}}\left(0, \lambda_{+} \cos \theta, i,-\lambda_{+} \sin \theta\right) \quad \lambda_{ \pm}= \\
\epsilon_{-}^{\mu}(0)^{*}=\frac{\sqrt{s}}{2 M_{W}}(\beta, \sin \theta, 0, \cos \theta) & \epsilon_{+}^{\mu}(0)^{*}=\frac{\sqrt{s}}{2 M_{W}}(\beta,-\sin \theta, 0,-\cos \theta) \quad \lambda_{ \pm}=0 .
\end{array}
\]

\section*{Helicity amplitude for \(\gamma \gamma \rightarrow W^{+} W^{-}\), pretty compact}
\[
\mathcal{M}_{\lambda_{1} \lambda_{2} ; \lambda_{-} \lambda_{+}}=\frac{4 \pi \alpha}{1-\beta^{2} \cos ^{2} \theta} \mathcal{N}_{\lambda_{1} \lambda_{2} ; \lambda_{-} \lambda_{+}},
\]
where
\[
\begin{aligned}
\mathcal{N}_{\lambda_{1} \lambda_{2} ; 00}= & -\frac{1}{\gamma}\left\{-4\left(1+\lambda_{1} \lambda_{2}\right)+\left(1-\lambda_{1} \lambda_{2}\right)(4+\gamma) \sin ^{2} \theta\right\} \\
\mathcal{N}_{\lambda_{1} \lambda_{2} ; \lambda_{-}}= & \sqrt{\frac{8}{\gamma}}\left(\lambda_{1}-\lambda_{2}\right)\left(1+\lambda_{1} \lambda_{-} \cos \theta\right) \sin \theta, \quad \lambda_{-}= \pm \\
\mathcal{N}_{\lambda_{1} \lambda_{2} ; 0, \lambda_{+}}= & -\sqrt{\frac{8}{\gamma}}\left(\lambda_{1}-\lambda_{2}\right)\left(1-\lambda_{1} \lambda_{+} \cos \theta\right) \sin \theta, \quad \lambda_{+}= \pm \\
\mathcal{N}_{\lambda_{1} \lambda_{2} ; \lambda_{-} \lambda_{+}}= & \beta\left(\lambda_{1}+\lambda_{2}\right)\left(\lambda_{-}+\lambda_{+}\right)+\frac{1}{2 \gamma}\left\{-8 \lambda_{1} \lambda_{2}\left(1+\lambda_{-} \lambda_{+}\right)\right. \\
& \quad+\gamma\left(1+\lambda_{1} \lambda_{2} \lambda_{-} \lambda_{+}\right)\left(3+\lambda_{1} \lambda_{2}\right) \\
+ & 2 \gamma\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{-}-\lambda_{+}\right) \cos \theta-4\left(1-\lambda_{1} \lambda_{2}\right)\left(1+\lambda_{-} \lambda_{+}\right) \cos ^{2} \theta \\
+ & \left.\gamma\left(1-\lambda_{1} \lambda_{2}\right)\left(1-\lambda_{-} \lambda_{+}\right) \cos ^{2} \theta\right\} \quad \lambda_{ \pm}= \pm .
\end{aligned}
\]

\section*{Matrix Elements Generation and Automation: Feynman diagrams}

Take as an example GRACE and \(e^{+} e^{-} \rightarrow W^{+} W^{-} \gamma\)
\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%
Model="sm.mdl";
\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%
Process;
ELWK=3;
Initial=\{electron, positron\};
Final \(=\{p h o t o n, W-p l u s, W\)-minus \(\} ;\)
Kinem="2302";
Pend;

\section*{Matrix Elements Generation and Automation: Feynman diagrams}

Take as an example GRACE and \(e^{+} e^{-} \rightarrow W^{+} W^{-} \gamma\)
1. Generate the number of vertices. The number of vertices is restricted by the order of the coupling constants for the physical process. Each vertex has a fixed number of propagators and external particles to be connected.
2. Connect vertices with propagators or external particles. There are multiple ways to connect vertices. All possible configuration are to be generated.
3. Particle assignment. Particles are assigned to propagators confirming that the connected vertex is defined in the model. As there will be many ways to assign particles to propagators, all possible configurations are to be generated.
4. Conservation laws such as electric charge and fermion numbers conservation will be employed in order to avoid fruitless trials.
5. Avoid duplication, use graph theory (edges and nodes)
6. QGRAPH: Powerful generator of graphs

\section*{Matrix Elements Generation and Automation: Feynman diagrams}

Take as an example GRACE and \(e^{+} e^{-} \rightarrow W^{+} W^{-} \gamma\)
```

Process=1; External=5;
0= initial electron;
1= initial positron;
2= final photon;
3= final w-plus;
4= final w-minus;
Eend; elwk=3;Loop=0;
Graph=1; Gtype=1; Sfactor=-1; Vertex=3;
0={ 1[positron]};
1={ 2[electron]};
2={ 3[photon]};
3={ 4[w-plus]};
4={ 5[w-minus]};

```

```

5 [order $=\{1,0\}]=\{$ 1 [electron], 2 [positron], 6 [photon]\};
$6[$ order $=\{1,0\}]=\{4[\mathrm{w}$-minus], $6[\mathrm{photon}]$, $7[\mathrm{w}-\mathrm{plus}]$ 7roduced by GRACEFIG
7 [order $=\{1,0\}]=\{3[$ photon $], \quad 5[w-p l u s], \quad 7[w-$ minus $]\} ;$
Vend; Gend;
Graph=2;

```

Matrix Elements Generation and Automation: Helicity amplitude, How it works

\[
\begin{aligned}
& T_{f i}\left(\left(p_{1}, h_{1}\right),\left(p_{2}, h_{2}\right),\left(q_{1}, \lambda_{1}\right),\left(q_{2}, \lambda_{2}\right),\left(k, \lambda_{3}\right)\right)= \\
& \bar{v}\left(p_{1}, h_{1}\right) c_{e W}^{\eta} \epsilon_{1 \eta}\left(q_{1}\right) S_{F}\left(-p_{1}+q_{1}, 0\right) c_{e W}^{\mu} u\left(p_{2}, h_{2}\right) \\
& \times D_{V \mu \nu}\left(q_{2}+k, M_{W}\right) c_{W W}^{\nu \rho \sigma} \\
& c_{e W}^{\mu}=\frac{e M_{Z}}{\sqrt{2\left(M_{Z}^{2}-M_{W}^{2}\right)}} \gamma^{\mu} \frac{1-\gamma_{5}}{2} \\
& c_{W W \gamma}^{\nu \rho \sigma}\left(p, q, q_{2},-k\right) \epsilon_{2 \rho}\left(q_{2}\right) \epsilon_{3 \sigma}(k) \\
&
\end{aligned}
\]

Matrix Elements Generation and Automation: Helicity amplitude, How it works
\[
\begin{aligned}
& T_{f i}\left(\left(p_{1}, h_{1}\right),\left(p_{2}, h_{2}\right),\left(q_{1}, \lambda_{1}\right),\left(q_{2}, \lambda_{2}\right),\left(k, \lambda_{3}\right)\right)=
\end{aligned}
\]
\[
\begin{aligned}
& \bar{v}\left(p_{1}, h_{1}\right) c_{e W}^{\eta} \epsilon_{1 \eta}\left(q_{1}\right) S_{F}\left(-p_{1}+q_{1}, 0\right) c_{e W}^{\mu} u\left(p_{2}, h_{2}\right) \\
& \times D_{V \mu \nu}\left(q_{2}+k, M_{W}\right) c_{W W \gamma}^{\nu \rho \sigma}\left(q_{2}+k,-q_{2},-k\right) \epsilon_{2 \rho}\left(q_{2}\right) \epsilon_{3 \sigma}(k) \\
& c_{e W}^{\mu}=\frac{e M_{Z}}{\sqrt{2\left(M_{Z}^{2}-M_{W}^{2}\right)}} \gamma^{\mu} \frac{1-\gamma_{5}}{2} \\
& c_{W W \gamma}^{\nu \rho \sigma}(p, q, r)=e\left[(p-q)^{\sigma} g^{\nu \rho}+(q-r)^{\nu} g^{\rho \sigma}+(r-p)^{\rho} g^{\sigma \nu}\right] \\
& S_{F}(p, m)=(\not p+m) D(p, m) \quad D_{V \mu \nu}(p)=\left(-g_{\mu \nu}+\frac{p_{\mu} p_{\nu}}{M^{2}}\right) D(p, m) \quad D(p, m)=\frac{1}{p^{2}-m^{2}}
\end{aligned}
\]

Matrix Elements Generation and Automation: Helicity amplitude, How it works
\[
\begin{aligned}
& T_{f i}\left(\left(p_{1}, h_{1}\right),\left(p_{2}, h_{2}\right),\left(q_{1}, \lambda_{1}\right),\left(q_{2}, \lambda_{2}\right),\left(k, \lambda_{3}\right)\right)=
\end{aligned}
\]
\[
\begin{aligned}
& \bar{v}\left(p_{1}, h_{1}\right) c_{e W}^{\eta} \epsilon_{1 \eta}\left(q_{1}\right) S_{F}\left(-p_{1}+q_{1}, 0\right) c_{e W}^{\mu} u\left(p_{2}, h_{2}\right) \\
& \times D_{V \mu \nu}\left(q_{2}+k, M_{W}\right) c_{W W \gamma}^{\nu \rho \sigma}\left(q_{2}+k,-q_{2},-k\right) \epsilon_{2 \rho}\left(q_{2}\right) \epsilon_{3 \sigma}(k) \\
& c_{e W}^{\mu}=\frac{e M_{Z}}{\sqrt{2\left(M_{Z}^{2}-M_{W}^{2}\right)}} \gamma^{\mu} \frac{1-\gamma_{5}}{2} \\
& c_{W W \gamma}^{\nu \rho \sigma}(p, q, r)=e\left[(p-q)^{\sigma} g^{\nu \rho}+(q-r)^{\nu} g^{\rho \sigma}+(r-p)^{\rho} g^{\sigma \nu}\right] \\
& S_{F}(p)=\frac{\sum_{\alpha i} w_{\alpha, i} U^{\alpha}\left(h^{(i)}, p^{(i)}\right) \bar{U}^{\alpha}\left(h^{(i)}, p^{(i)}\right)}{p^{2}-m^{2}}, \quad D_{V \mu \nu}(p)=\frac{\sum_{i} w_{i} \epsilon_{\mu}^{(i)}(p) \epsilon_{\nu}^{(i)}(p)}{p^{2}-m^{2}}
\end{aligned}
\]

Matrix Elements Generation and Automation: Helicity amplitude, How it works


Matrix Elements Generation and Automation: Helicity amplitude, How it works
\[
\begin{aligned}
& \xrightarrow[e^{-}\left(p_{2}, h_{2}\right)]{e^{+}\left(p_{1}, h_{1}\right)} \\
& T_{f i}\left(\left(p_{1}, h_{1}\right),\left(p_{2}, h_{2}\right),\left(q_{1}, \lambda_{1}\right),\left(q_{2}, \lambda_{2}\right),\left(k, \lambda_{3}\right)\right)= \\
& \bar{v}\left(p_{1}, h_{1}\right) c_{e W}^{\eta} \epsilon_{1 \eta}\left(q_{1}\right) S_{F}\left(-p_{1}+q_{1}, 0\right) c_{e W}^{\mu} u\left(p_{2}, h_{2}\right) \\
& \times D_{V \mu \nu}\left(q_{2}+k, M_{W}\right) c_{W W \gamma}^{\nu \rho \sigma}\left(q_{2}+k,-q_{2},-k\right) \epsilon_{2 \rho}\left(q_{2}\right) \epsilon_{3 \sigma}(k) \\
& c_{e W}^{\mu}=\frac{e M_{Z}}{\sqrt{2\left(M_{Z}^{2}-M_{W}^{2}\right)}} \gamma^{\mu} \frac{1-\gamma_{5}}{2} \\
& c_{W W \gamma}^{\nu \rho \sigma}(p, q, r)=e\left[(p-q)^{\sigma} g^{\nu \rho}+(q-r)^{\nu} g^{\rho \sigma}+(r-p)^{\rho} g^{\sigma \nu}\right] \\
& S_{F}(p)=\frac{\sum_{\alpha i} w_{\alpha, i} U^{\alpha}\left(h^{(i)}, p^{(i)}\right) \bar{U}^{\alpha}\left(h^{(i)}, p^{(i)}\right)}{p^{2}-m^{2}}, \quad D_{V \mu \nu}(p)=\frac{\sum_{i} w_{i} \epsilon_{\mu}^{(i)}(p) \epsilon_{\nu}^{(i)}(p)}{p^{2}-m^{2}} \\
& T_{f i}=D\left(-p_{1}+q_{1}, 0\right) D\left(q_{2}+k, m_{W}\right) \sum_{\alpha, i} w_{\alpha, i} \sum_{l} w_{l} \times V_{e W^{+}}^{(\alpha, i)} V_{e W-}^{(\alpha, i, l)} V_{W W \gamma}^{(l)},
\end{aligned}
\]

The building blocks: c-numbers Library subroutines
\[
\begin{aligned}
V_{e W+}^{(\alpha, i)} & =\bar{v}\left(p_{1}, h_{1}\right) c_{e W}^{\eta} \epsilon_{1 \eta}\left(q_{1}\right) U^{\alpha}\left(\left(-p_{1}+q_{1}\right)^{(i)}, h^{(i)}\right), \quad \mathrm{FFV} \\
V_{e W-}^{(\alpha, i, l)} & =\bar{U}^{\alpha}\left(p^{(i)}, h^{(i)}\right) c_{e W}^{\mu} \epsilon_{\mu}^{(l)}\left(q_{2}+k\right) u\left(p_{2}, h_{2}\right), \\
V_{W W \gamma}^{(l)} & =c_{W W \gamma}^{\nu \rho \sigma}\left(q_{2}+k,-q_{2},-k\right) \epsilon_{\nu}^{(l)}\left(q_{2}+k\right) \epsilon_{2 \rho}\left(q_{2}\right) \epsilon_{3 \sigma}(k) \quad \mathrm{VVV} .
\end{aligned}
\]

Matrix Elements Generation and Automation: Helicity amplitude, How it works
\[
\begin{aligned}
& T_{f i}\left(\left(p_{1}, h_{1}\right),\left(p_{2}, h_{2}\right),\left(q_{1}, \lambda_{1}\right),\left(q_{2}, \lambda_{2}\right),\left(k, \lambda_{3}\right)\right)= \\
& \bar{v}\left(p_{1}, h_{1}\right) c_{e W}^{\eta} \epsilon_{1 \eta}\left(q_{1}\right) S_{F}\left(-p_{1}+q_{1}, 0\right) c_{e W}^{\mu} u\left(p_{2}, h_{2}\right) \\
& \times D_{V \mu \nu}\left(q_{2}+k, M_{W}\right) c_{W W \gamma}^{\nu \rho \sigma}\left(q_{2}+k,-q_{2},-k\right) \epsilon_{2 \rho}\left(q_{2}\right) \epsilon_{3 \sigma}(k) \\
& c_{e W}^{\mu}=\frac{e M_{Z}}{\sqrt{2\left(M_{Z}^{2}-M_{W}^{2}\right)}} \gamma^{\mu} \frac{1-\gamma_{5}}{2} \\
& c_{W W \gamma}^{\nu \rho \sigma}(p, q, r)=e\left[(p-q)^{\sigma} g^{\nu \rho}+(q-r)^{\nu} g^{\rho \sigma}+(r-p)^{\rho} g^{\sigma \nu}\right]
\end{aligned}
\]
\[
S_{F}(p)=\frac{\sum_{\alpha i} w_{\alpha, i} U^{\alpha}\left(h^{(i)}, p^{(i)}\right) \bar{U}^{\alpha}\left(h^{(i)}, p^{(i)}\right)}{p^{2}-m^{2}}, \quad D_{V \mu \nu}(p)=\frac{\sum_{i} w_{i} \epsilon_{\mu}^{(i)}(p) \epsilon_{\nu}^{(i)}(p)}{p^{2}-m^{2}}
\]
\[
T_{f i}=D\left(-p_{1}+q_{1}, 0\right) D\left(q_{2}+k, m_{W}\right) \sum_{\alpha, i} w_{\alpha, i} \sum_{l} w_{l} \times V_{e W^{+}}^{(\alpha, i)} V_{e W^{-}}^{(\alpha, i, l)} V_{W W \gamma}^{(l)}
\]

The building blocks: c-numbers Library. If New Physics? extend library?
read in new Feynman rules, calculate new entries for subroutines
\[
\begin{aligned}
V_{e W+}^{(\alpha, i)} & =\bar{v}\left(p_{1}, h_{1}\right) c_{e W, N P}^{\eta} \epsilon_{1 \eta}\left(q_{1}\right) U^{\alpha}\left(\left(-p_{1}+q_{1}\right)^{(i)}, h^{(i)}\right), \\
V_{e W-}^{(\alpha, i, l)} & =\bar{U}^{\alpha}\left(p^{(i)}, h^{(i)}\right) c_{e W, N P}^{\mu} \epsilon_{\mu}^{(l)}\left(q_{2}+k\right) u\left(p_{2}, h_{2}\right), \\
V_{W W \gamma}^{(l)} & =c_{W W \gamma, N P}^{\nu \rho \sigma}\left(q_{2}+k,-q_{2},-k\right) \epsilon_{\nu}^{(l)}\left(q_{2}+k\right) \epsilon_{2, \text { BOUDJEMA, Tools and Monte-Carlos }}\left(q_{2}\right) \epsilon_{3 \sigma}(k) .
\end{aligned}
\]
- This is now used in SHERPA and HERWIG
- The method is purely numerical.
- The amplitude for each Feynman graph is first decomposed into vertex sub-amplitudes
- Each of these sub-amplitudes is read from a pre-defined model file library
- drawback: Libraries exists for Standard Couplings (renormalisable),
for example \(\left(a+b \gamma \gamma_{5}\right) \gamma_{\mu}\) type OK
higher order operators need to be generated from scratch
anomalous VVV couplings not assuming the general gauge VVV need to be generated
- ALOHA is on the way
- spin \(>2\) (but even theory needs firm ground)

\section*{Speed up}
can speed up by reusing common pieces GRACE, AMEGIC


\section*{MEG, Matrix Elements Generators (Tree-level)}
\begin{tabular}{|c|c|c|c|}
\hline Int/Amp. & Squaring & Helicity & Off-Shell \\
\hline Adaptive & CompHEP/CalcHEP & GRACE & ALPGEN \\
\hline Multi-Channel & - & MadGraph/Sherpa & \\
& - & HELAC/Whizard & \\
\hline
\end{tabular}

\section*{More automation}

\section*{but we need to feed in the Feynman rules}
what if the new physics is like the MSSM? huge number of vertices? need to input new models quickly and efficiently

LanHEP (A. Semenov) as prototype for automatic Feynman rules generation
```

http://theory.sinp.msu.ru/~semenov/lanhep.html

```
- LanHEP was developed since 1994 as a part of CompHEP project to help to create new models (complete set of Feynamn rules) starting from the Lagrangian, the first goal was MSSM.
- can now output to FeynArts/FeynCalc
- Lagrangian writes in a texbook format, outputs also to LateX
- extremely powerful, extended to one-loop: generates counterterms and new vertices
- A model in a MEG (CompHEP/CalcHEP/FeynArts,..) is defined by the tables of parameters, particles and interaction vertices with implicit Lorentz structure.
- Flexible model format allows to introduce into these MEG new gauge theories as well as various anomalous terms.
- Not restricted to dim-4 (renormalisable) operators.
- Gauge theories highly automated (gauge-fixing, ghost, BRST)
- Powerful use of compact objects (multiplets, supermultiplets,..) and thus SUSY-friendly: 2-component fermions and superpotential notation
- The LanHEP program is written in C, external mathematical software is NOT required.
- LanHEP reads an input file which describes the physical model by a set of statements.
- Large projects can be split into several files.
- Conditional processing of the model file allows the user to use the same input file(s) for several species of the physical model. This feature allows, for example, to chose gauge fixing and MSSM extensions by setting some switches instead of creating several slightly different input files.
- Command-line tool: no graphical interface means easy compilation on any platform where 32-bit C compiler exists.

\section*{An example: Lanhep in CompHEP/CalcHEP}

A physical model in CompHEP/CalcHEP is defined by the (3/4) tables of
- parameters
- particles
- interaction vertices with implicit Lorentz structure (any Lorentz structure is allowed)
- a file for book-keeping (constraints, dependent parameters)

A physical model in CompHEP is defined by the tables of parameters, particles and interaction vertice

\section*{Parameters}
```

EE |0.31345 |Electromagnetic coupling constant (<->1/127.9)
MW $\mid \mathrm{MZ}$ *CW

```

\section*{Particles}
\begin{tabular}{lllllllll} 
photon & \(\mid\) A & \(\mid\) A & \(\mid 2\) & \(\mid 0\) & \(\mid 0\) & \(\mid 1\) & \(\mid G\) & \(\mid A\) \\
Z boson & \(\mid \mathrm{Z}\) & \(\mid \mathrm{Z}\) & \(\mid 2\) & \(\mid \mathrm{MZ}\) & \(\mid \mathrm{WZ}\) & \(\mid 1\) & \(\mid \mathrm{G}\) & \(\mid \mathrm{Z}\) \\
W boson & \(\mid \mathrm{W}+\) & \(\mid \mathrm{W}-\) & \(\mid 2\) & \(\mid \mathrm{MW}\) & \(\mid \mathrm{WW}\) & \(\mid 1\) & \(\mid \mathrm{G}\) & \(\mid \mathrm{W}^{\wedge}+\) \\
electron & \(\mid \mathrm{e}\) & \(\mid \mathrm{E}\) & \(\mid 1\) & \(\mid \mathrm{Me}\) & \(\mid 0\) & \(\mid 1\) & \(\mid\) & \(\mid \mathrm{e}\)
\end{tabular}

\section*{Vertices}
\begin{tabular}{|c|c|c|c|c|}
\hline E & |e & | A & | EE & | G (m3) \\
\hline E & |e & | H & \(\mid-E E * M e * C a /(2 * M W * S W * c b)\) & \(\mid 1\) \\
\hline E & |e & | H 3 & |i*EE*Me*tb/ ( 2 *MW*SW) & | G5 \\
\hline E & |e & | z & |EE/ ( 2 *S2W) & \(\mid \mathrm{C} 2 \mathrm{~W} * \mathrm{G}(\mathrm{m} 3) *(1-\mathrm{G} 5)-2 * S W^{\wedge} 2 *\) \\
\hline E & |e & | \(\mathrm{z} . \mathrm{f}\) & \(\mid-i * E E * M e /(2 * M W *\) SW \()\) & | G5 \\
\hline E & |e & | h & \(\mid E E * M e * s a /(2 * M W * S W * C b)\) & \(\mid 1\) \\
\hline E & | ne & | \(\mathrm{H}-\) & |EE*Me*Sqrt2*tb/ ( 4 *MW*SW) & | (1-G5) \\
\hline E & | ne & | W - & |-EE*Sqrt2/ (4*SW) & \(\mid \mathrm{G}(\mathrm{m} 3) *(1-\mathrm{G} 5)\) \\
\hline E & | ne & | W -.f & |-EE*Me*Sqrt2/ ( 4 *MW*SW) & | (1-G5) \\
\hline
\end{tabular}

LanHEP to MEG

—

\section*{LanHEP \\ mysupermodel.mdl}
 -

\section*{LanHEP}


Description of the physical model for LanHEP
- The user declares the physical parameters to be included in the Lagrangian. The value of a parameter can be a number or an expression:
```

parameter ee=0.31333:'elementary electric charge'.
parameter sw=0.478:'sinus of weak angle'.
parameter cw=Sqrt(1-sw**2):'cosine of weak angle'.

```
- The user declares scalar, spinor, vector, (also spin \(3 / 2\) and 2 ) particles . It is possible to prescribe the colour structure for a particle:
```

spinor e1/E1:(electron, mass Me=0.000511).
spinor q/Q:(quark, color c3, mass Mq=10).
vector A/A:(photon, gauge).

```
- New symmetry groups are also possible. They can be defined in a way like color \(S U(3)\) symmetry is defined, as well as corresponding matrices and structure constants:
```

group color:SU(3).
repres color:(c3/c3b,c8).
special lambda:(color c3, color c3b, color c8).

```

\section*{Description of the physical model for LanHEP (cont)}
- The user can define the substitution rules, for example for covariant derivative \(F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}\) :
\[
\text { let } \mathrm{F}^{\wedge} \mathrm{mu} n \mathrm{nu}=\operatorname{deriv\wedge mu*A\wedge nu~-~deriv\wedge nu*A\wedge mu.~}
\]
- It is possible to define multiplets, and their components:
\[
\text { let } 11=\{\mathrm{n} 1, \mathrm{e} 1\}, \mathrm{L} 1=\{\mathrm{N} 1, \mathrm{E} 1\}
\]
- The user can write Lagrangian terms with Lorenz and multiplet indices explicitly or omit indices (all or part of them):(QED vertex \(\bar{e}(x) \gamma^{\mu} A_{\mu}(x) e(x)\) )
```

lterm E1^a*gamma^a^b^mu*A^mu*e1^b.
lterm E1*gamma^mu*A^mu*e1.
lterm E1*gamma*A*e1.

```
- LanHEP performs explicit summation over the indices of Lagrangian terms, if the corresponding components for multiplets and matrices are introduced.

\section*{LanHEP features}
- 2-component fermion notation makes possible the introduction of supersymmetric Lagrangian in a more natural way, closer to the form used in most textbooks on the supersymmetry.
- Superpotential can be used for supersymmetric theories; this option allows to introduce easily various extensions of MSSM (R-parity violation, NMSSM, etc). Yukawa and \(F^{*} F\) terms are now automatically derived by the program.
- Generating Hermitian conjugate terms allow to simplify model description.
- Constructing the ghost Lagrangian from BRST transformation.
- Conterterms can be generated if the necassy shifts for parameters and fields are prescribed.

\section*{LanHEP features}
- Checking the correctness of the model
- Electric charge conservation
- Hermiticity
- Probing kinetic and mass terms, the mass matrix is extracted
- BRST invariance
- Extracting classes of vertices
- Simplifying the expression for vertices
- Orthogonal (and hermitian) matrices
- Trigonometric expressions \((\sin \alpha \pm \beta)\)
- Lengthly expressions in the vertices can be transferred to the table of parameters.
- Complete MSSM in unitary and t'Hooft-Feynman gauges with the Higgs sector by linking with the FeynHiggs, effective potential is used to take into account radiative corrections to Higgs masses and interaction; mSUGRA and GMSB by means of SLHA interface
- MSSM extensions include:
- MSSM with R-parity violation
- Model with gravitino and sgoldstinos
- NMSSM (an extension of the MSSM by a gauge singlet \(N\) with hypercharge 0)
- MSSM with CP violation
- Complete Leptoquark model which includes Yukawa couplings for all types of LQ, gauge couplings and anomalous gauge couplings for vector LQ
- Complete two-Higgs-doublet model with conserved or broken CP invariance
- Anomalous quartic vector bosons self-couplings
- A new signature for color octet pseudoscalars at the LHC, in theories of extra-dim. Alfonso R. Zerwekh, Claudio O. Dib, Rogerio Rosenfeld;
- Minimal Higgsless model, Chivukula et al;
- Inert Doublet Model, Pierce and Thaler;
- Excited fermions, Boos et al;
- Technihadrons, technicolour, Zerwekh;
- Little Higgs Models, Phenomenology of littlest Higgs model with T-parity: including effects of T-odd fermions. Alexander Belyaev, Chuan-Ren Chen, Kazuhiro Tobe, C.-P. Yuan (Michigan State U.);
- Universal extra-dim, Matchev et al.

New option allows to modify the format of the output particle table and to add new proprties (new columns in the table). One can add, say, PDG particle number to the table:
```

prtcformat fullname:' Full Name ',
name:' p ',
aname:' ap',
spin2,color,mass,width, aux,
pdg:'PDG ID',
texname:' latex P name ',
atexname:' latex aP name ' .

```

Then the new property value can be written in the particle declaration statement:
```

scalar h:(higgs, mass Mh, pdg 123, width wh).

```
- Electric charge can be extracted automatically from the photon interaction and then added to the table.

Vertices table format: explicit colour structure

Color matrices and dot products can be optionally written in the Lorentz Part, e.g. QCD plus quark-photon interactions produces the following vertices file:
\begin{tabular}{|c|c|c|c|c|c|}
\hline P1 & | P 2 & | P 3 & | P 4 & | \(>\) Factor & <|> dLagrangian/ dA (p1) dA (p2) dA (p3 \\
\hline G & | G & | G & | & | gg & m2.p3*m1.m3*F (c1, c2, c3) \\
\hline & & & | & & -m1.p3*m2.m3*F (c1, c2, c3) \\
\hline & & & | & & +m3.p1*m1.m2*F (c1, c2, c3) \\
\hline & & & & & \(-m 2 . p 1 * m 1 . m 3 * F(c 1, c 2, c 3)\) \\
\hline & & & & & \(-m 3 . p 2 * m 1 . m 2 * F(c 1, c 2, c 3)\) \\
\hline & & & & & +m1.p2*m2.m3*F (c1, c2, c3) \\
\hline G.C & | G.c & | G & & |-gg & m3.p2*F (c1, c2, c3) \\
\hline Q & |q & | G & & 1 gg & \(\mathrm{L}(\mathrm{c} 1, \mathrm{c} 2, \mathrm{c} 3)\) *G(m3) \\
\hline Q & |q & A & & |ee/3 & |c1.c2*G(m3) \\
\hline G & | \({ }^{\text {g }}\) & | G & | G & \(\mid \mathrm{gg}{ }^{\wedge} 2\) & m1.m3*m2.m4*F (c1, c2, c0 ) *F (c3, c4, c0 \\
\hline & | & & | & & \(-\mathrm{m} 1 . \mathrm{m} 4 * \mathrm{~m} 2 . \mathrm{m} 3 * \mathrm{~F}(\mathrm{c} 1, \mathrm{c} 2, \mathrm{c} 0) * \mathrm{~F}(\mathrm{c} 3, \mathrm{c} 4, \mathrm{c}\) \\
\hline & & & & & +m1.m2*m3.m4*F(c1, c3, c0 ) *F (c2, c4, c \\
\hline & & & & & \(-\mathrm{m} 1 . \mathrm{m} 4 * \mathrm{~m} 2 . \mathrm{m} 3 * \mathrm{~F}(\mathrm{c} 1, \mathrm{c} 3, \mathrm{c} 0) * \mathrm{~F}(\mathrm{c} 2, \mathrm{c} 4, \mathrm{c}\) \\
\hline & & & & & \(+\mathrm{m} 1 . \mathrm{m} 2 * \mathrm{~m} 3 . \mathrm{m} 4 * \mathrm{~F}(\mathrm{c} 1, \mathrm{c} 4, \mathrm{c} 0) * \mathrm{~F}(\mathrm{c} 2, \mathrm{c} 3, \mathrm{c}\) \\
\hline & & & & & \(-\mathrm{m} 1 . \mathrm{m} 3 * \mathrm{~m} 2 . \mathrm{m} 4 * \mathrm{~F}(\mathrm{c} 1, \mathrm{c} 4, \mathrm{c} 0) * \mathrm{~F}(\mathrm{c} 2, \mathrm{c} 3, \mathrm{c}\) \\
\hline
\end{tabular}

\section*{Claude Duhr (in collaboration with N. D. Christensen and B. Fuks)}
```

http://feynrules.phys.ucl.ac.be

```
- FeynRules has been developed since 2008 originally as a part of the MadGraph
- FeynRules is a Mathematica package that allows to derive Feynman rules from a Lagrangian.
- The syntax of FeynRules is an extension of the syntax used in FeynArts
- The only requirements on the Lagrangian are:

All indices need to be contracted (Lorentz and gauge invariance)
Locality
Supported field types: spin \(0,1 / 2,1,2\) and ghosts (ghost Lagrangian not automatically derived though)
- In progress

Support for Weyl fermions and superfields
Diagonalisation of mass matrices
- can export the Feynman rules into a TeX file.
- Standard Model (CD, N. Christensen)
- Most general two Higgs doublet model (CD, M. Herquet)
- Minimal Higgsless Model (N. Christensen)
- Validation of the models:
- Full MSSM (B. Fuks)
- NMSSM (B. Fuks)
- R-symmetric MSSM (B. Fuks)
- RPV MSSM (B. Fuks)
- Universal Extra Dimensions (P. de Aquino)
- Large extra dimensions (P. de Aquino)
- Randall-Sundrum I (P. de Aquino)
- Strongly interacting Little Higgs (C. Degrande)
- Composite Top model (C. Degrande)
- Chiral perturbation theory (C. Degrande)

\section*{Validation}
- 3-site model: 222 key-processes tested in CalcHep/CompHep
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & Lanhep & Lanhep & FeynRules & FeynRules & FeynRules \\
\hline & CalcHEP & Calchep & Calcher & Calchep & CompHEP \\
\hline & Feynman & Unitary & Feynman & Unitary & Feynman \\
\hline ūu->gg & 170.5 & 170.5 & 170.5 & 170.5 & 170.49 \\
\hline u'鄗->gg & 0.098763 & 0.098763 & 0.098763 & 0.098763 & 0.098761 \\
\hline te-> \({ }^{\text {P }}\) & 1.1233 & 1.1233 & 1.1233 & 1.1233 & 1.1233 \\
\hline \(t^{\prime \prime} \mathrm{E}^{\prime}->\gamma \mathrm{Z}\) & 0.033204 & 0.033204 & 0.033204 & 0.033204 & 0.033204 \\
\hline \(t^{\prime \prime}{ }^{\prime}->Z^{\prime}{ }^{\prime}\) & 1.887 & 1.887 & 1.887 & 1.887 & 1.887 \\
\hline \(t \bar{b}->\mathrm{ZW}^{+}{ }^{\text {, }}\) & 1.5603 & 1.5603 & 1.5603 & 1.5603 & 1.5604 \\
\hline eē->e'ē & 0.093127 & 0.093127 & 0.093127 & 0.093127 & 0.093127 \\
\hline \(e^{\prime}\) è>>u'ú & 2.3603 & 2.3603 & 2.3603 & 2.3603 & 2.3603 \\
\hline evere \(->\mu^{\prime} \overline{v_{\mu}^{\prime}}\) & 0.0005618 & 0.0005618 & 0.0005618 & 0.0005618 & 0.00056181 \\
\hline  & 2.5761 & 2.5761 & 2.5761 & 2.5761 & 2.5762 \\
\hline gg->gg & 114310. & 114310. & 114310. & 114310. & 114310. \\
\hline ZZ->Z'Z' & 0 & & & & \\
\hline \(\mathrm{W}^{+} \mathrm{W}^{-1}->x \mathrm{Z}\) & 8.329 & 8.329 & 8.329 & 8.329 & 8.3288 \\
\hline
\end{tabular}

Feynrules flow, note the need for 2 input files

\section*{FeynRules}


Strong feature: could output to many MEG,.... in principle (higher order operators? specific Lorentz structures?,...)

\section*{How to use FeynRules}
- The input requested form the user is twofold.
- The Model File:

Definitions of particles and parameters (e.g., a quark)

F[1] ==
\{ClassName -> q,
SelfConjugate -> False,
Indices -> \{Index[Colour]\},
Mass -> \{MQ, 200\},
Width \(\quad->\{W Q, 5\}\) \}
- The Lagrangian:
\(\mathcal{L}=-\frac{1}{4} G_{\mu \nu}^{a} G_{a}^{\mu \nu}+i \bar{q} \gamma^{\mu} D_{\mu} q-M_{q} \bar{q} q\)
\(\mathrm{L}=\)
\(-1 / 4\) FS[G,mu,nu,a] FS[G,mu,nu,a]
+ I qbar.Ga[mu].del[q,mu]
- MQ qbar.q
- Once this information has been provided, FeynRules can be used to compute the Feynman rules for the model:

FeynmanRules[ L ]
- Equivalently, we can export the Feynman rules to a matrix element generator, e.g., for MadGraph 4, WriteMGOutput[ L ]

Feynrules and ALOHA project, in planning
- MEG based on squaring techniques (CalcHEP/CompHEP and FeynArts/FomCalc with some(!) tweaking) are not restricted to particular Lorentz structures: dim-4, gauge structures,...

Feynrules and ALOHA project, in planning
- MEG based on squaring techniques (CalcHEP/CompHEP and FeynArts/FomCalc with some(!) tweaking) are not restricted to particular Lorentz structures: dim-4, gauge structures,...
- MEG based on helicity amplitudes are based on HELAS/Grace subroutines so a vertex must be recognised first so a general output of LanHEP or FeynArts will be of no use

Feynrules and ALOHA project, in planning
- MEG based on squaring techniques (CalcHEP/CompHEP and FeynArts/FomCalc with some(!) tweaking) are not restricted to particular Lorentz structures: dim-4, gauge structures,...
- MEG based on helicity amplitudes are based on HELAS/Grace subroutines so a vertex must be recognised first so a general output of LanHEP or FeynArts will be of no use
- Madgraph/FeynArts development: ALOHA (Automatic Languageindependent Output of Helicity Amplitudes) a code that allows to create HELAS routines from...
- MEG based on squaring techniques (CalcHEP/CompHEP and FeynArts/FomCalc with some(!) tweaking) are not restricted to particular Lorentz structures: dim-4, gauge structures,...
- MEG based on helicity amplitudes are based on HELAS/Grace subroutines so a vertex must be recognised first so a general output of LanHEP or FeynArts will be of no use
- Madgraph/FeynArts development: ALOHA (Automatic Languageindependent Output of Helicity Amplitudes) a code that allows to create HELAS routines from...
- UFO Universal FeynRules Output

Idea: Create Python modules that can be linked to other codes and contain all the information on a given model.

The UFO is a self-contained Python code, and not tied to a specific matrix element generator.

LanHEP to MEG

—

\section*{LanHEP \\ mysupermodel.mdl}
 -

\section*{LanHEP}


\section*{QED simple}
\[
\mathcal{L}_{Q E D}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\bar{e} \gamma^{\mu}\left(i \partial_{\mu}+g_{e} A_{\mu}\right) e-m \bar{e} e, \quad \mathcal{L}_{G F}=-\frac{1}{2}\left(\partial_{\mu} A^{\mu}\right)^{2} .
\]

\section*{QED simple}
\[
\mathcal{L}_{Q E D}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\bar{e} \gamma^{\mu}\left(i \partial_{\mu}+g_{e} A_{\mu}\right) e-m \bar{e} e, \quad \mathcal{L}_{G F}=-\frac{1}{2}\left(\partial_{\mu} A^{\mu}\right)^{2} .
\]

\section*{model IED/1.}
paraneter ee=0.31333:' 'elemenarary electric charge'. spinor e1/ \(/\) Ei: (electron, mass me=0.00511).
vector a/A: (photon).
let FimunulderivimxAnuderivinuxAmu.




\section*{QED simple}
\[
\mathcal{L}_{Q E D}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\bar{e} \gamma^{\mu}\left(i \partial_{\mu}+g_{e} A_{\mu}\right) e-m \bar{e} e, \quad \mathcal{L}_{G F}=-\frac{1}{2}\left(\partial_{\mu} A^{\mu}\right)^{2} .
\]

\section*{model QED/1.}
paraneter \(e=0=0.313333^{\prime}\) ' 1 lenentary electric charge'. spinor el \(1 / \mathrm{EL}\) : (electron, mass ne=O. .00511).
vector A/A: (photon).
let FimunuiderivimxannuderivinuxAmu.


lterm exex:1x gamaxax \(\times\) el.
lterm ee*E1^a*gamma^a^b^mu*A^mu*e1^b.

\section*{QCD on paper}
\[
L_{Y M}=-\frac{1}{4} F^{a \mu \nu} F_{\mu \nu}^{a},
\]
where
\[
F_{\mu \nu}^{a}=\partial_{\mu} G_{\nu}^{a}-\partial_{\nu} G_{\mu}^{a}-g_{s} f^{a b c} G_{\mu}^{b} G_{\nu}^{c},
\]
\[
L_{F}=\bar{q}_{i} \gamma^{\mu} \partial_{\mu} q_{i}+g_{s} \lambda_{i j}^{a} \bar{q}_{i} \gamma^{\mu} q_{j} G_{\mu}^{c}
\]
where \(\lambda_{i j}^{a}\) are Gell-Mann matrices.
\[
L_{G F+G h}=-\frac{1}{2}\left(\partial_{\mu} G_{a}^{\mu}\right)^{2}+i g_{s} f^{a b c} \bar{c}^{a} G_{\mu}^{b} \partial^{\mu} c^{c}
\]
( \(c, \bar{c}\) ) ghost fields.
model QCD/2.
parameter gg=1.117:'Strong coupling'.
spinor \(q / Q:\) : (quark, mass mq=0.01, color c3).
vector G/G: (gluon, color c8, gauge).


1term \(-\mathrm{F} * * 2 / 4-(\) deriv \(*(G) * 2 / 2\).
lterm \(Q *(i * g a m m a x d e r i v+m q) * q\).
lterm ixgg*f.SU3*ccghost(G) \()\) G*deriv*ghost(G).
lterm gg*Q*gammaxlambdax6*q.
model QCD/2.
parameter \(\quad g \quad=1.13\) : 'Strong coupling'.
vector G/G: (gluon, color c8, gauge). spinor q:(quark, color c3, mass Mq=0.02). lterm i*gg*f_SU3*ccghost (G) *G*deriv*ghost (G). lterm Q*gamma*(i*deriv + gg*lambda*G) *q. lterm \(-\mathrm{F} * * 2 / 4\) where


\section*{QCD, Feynman rules from LanHEP, compHEP/CalcHEP format}
\begin{tabular}{|lll|l|}
\hline \multicolumn{4}{|c|}{ Fields in the vertex } \\
\hline\(G_{\mu p}\) & \(\bar{\eta}_{q}^{G}\) & \(\eta_{r}^{G}\) & \(-g_{s} p_{3}^{\mu} f_{p q r}\) \\
\(\bar{q}_{a p}\) & \(q_{b q}\) & \(G_{\mu r}\) & \(g_{s} \gamma_{a b}^{\mu} \lambda_{p q}^{r}\) \\
\(G_{\mu p}\) & \(G_{\nu q}\) & \(G_{\rho r}\) & \\
\(G_{\mu p}\) & \(G_{\nu q}\) & \(G_{\rho r}\) & \(G_{\sigma s}\)
\end{tabular} \begin{tabular}{l}
\(g_{p q r}^{2}\left(p_{3}^{\nu} g^{\mu \rho}-p_{2}^{\rho \rho} g^{\mu \nu}-p_{3}^{\mu \sigma} f_{p q t} f_{r s t}-g^{\mu \sigma}+g_{1}^{\nu \rho} f_{p q t} f_{r s t}+g^{\mu \nu}+p_{2}^{\mu} g^{\nu \rho}-p_{1}^{\nu \sigma} g_{p r t} f_{q s t}\right)\) \\
\(\left.+g^{\mu \nu} g^{\rho \sigma} f_{p s t} f_{q r t}-g^{\mu \sigma} g^{\nu \rho} f_{p r t} f_{q s t}-g^{\mu \rho} g^{\nu \sigma} f_{p s t} f_{q r t}\right)\) \\
\hline
\end{tabular}

We introduce a complex/charged scalar field \(\phi\)
model qedscal/20.
parameter ee \(=0.3133:\) 'Electric charge'.
vector A/A: photon.
let \(\mathrm{F}^{\wedge} \mathrm{mu}{ }^{\wedge} \mathrm{nu}=\) deriv^ \(\mathrm{mu}^{\wedge} \mathrm{A}^{\wedge} \mathrm{nu}\)-deriv^nu* \(\mathrm{A}^{\wedge} \mathrm{mu}\).
spinor e1: (electron, mass me=0.000511).
scalar phi/PHI:(scalar, mass mphi=100).
lterm ee*E1*gamma*A*e1.
let \(D p h i \wedge m u=\left(d e r i v \wedge m u+i * e e * A^{\wedge} m u\right) * p h i\).
let \(D P H I^{\wedge} m u=\left(d^{\prime} v^{\wedge} m u-i * e e * A \wedge m u\right) * P H I\).
lterm DPHI*Dphi.
```

LanHEP output CalcHEP/(CompHEP): partclsxx.mdl

```
qedscal
Particles
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Full name & P | ap| & 2 & mass & & & & \\
\hline photon & A |A & 22|2 & 10 & 0 & |1 & & \\
\hline electron & |e1 |E1 | & 11|1 & |me & 0 & |1 & & \\
\hline scalar & |phi|PHI| & \(0 \mid 0\) & |mphi & 0 & | 1 & & \\
\hline
\end{tabular}

LanHEP output CalcHEP/CompHEP, variables: varxx.mdl
\(\left.\)\begin{tabular}{ll}
\multicolumn{2}{l}{\begin{tabular}{l} 
qedscal \\
Variables
\end{tabular}} \\
Name & \\
ee Value & \(\mid 0.3133\)
\end{tabular}\(\quad \right\rvert\,>\) Comment

\section*{LanHEP output CalcHEP/CompHEP, constraints: funcxx.mdl}
qedscal
Constraints
Name |> Expression
\(<\&>\) Comment
\(<1\)

\section*{qedscal}

\section*{Lagrangian}


\section*{LanHEP output Feyn package: mdl ini20.F}
```

* LanHEP output produced at Mon Jul 19 17:57:52
Model named 'qedscal'
subroutine ModelDefaults
implicit none
\#include "model.h"
$\mathrm{ee}=0.3133 \mathrm{DO}$
$\mathrm{me}=0.000511 \mathrm{DO}$
$\mathrm{mphi}=100 \mathrm{D} 0$
end
subroutine ModelConstIni(fail)
implicit none
integer fail
\#include "model.h"
fail=0
call mtrini
end
subroutine mtrini
implicit none
\#include "model.h"
integer $\mathrm{m} 1, \mathrm{~m} 2, \mathrm{~m} 3, \mathrm{~m} 4$
end

```


end
```

```
Gubroutine ModelVarIni(fail, sqrtS)
```

Gubroutine ModelVarIni(fail, sqrtS)
implicit none
implicit none
double precision sqrtS
double precision sqrtS
integer fail
integer fail
double precision Alfas
double precision Alfas
\#include "model.h"
\#include "model.h"
c double precision ALPHAS2
c double precision ALPHAS2
c external ALPHAS2
c external ALPHAS2
c Alfas = ALPHAS2 (sqrtS)
c Alfas = ALPHAS2 (sqrtS)
c}\quadGG=\operatorname{sqrt(4*pi*Alfas)
c}\quadGG=\operatorname{sqrt(4*pi*Alfas)
fail=0
fail=0
end

```
    end
```



```
    subroutine ModelDigest
```

 subroutine ModelDigest
 implicit none
 implicit none
 \#include "model.h"

```
#include "model.h"
```

LanHEP output Feyn package: mdl ini20.F

```
* LanHEP output produced at Mon Jul 19 17:57:52 2010
* Model named 'qedscal'
subroutine ModelDefaults
implicit none
#include "model.h"
ee = 0.3133D0
me = 0.000511D0
mphi = 100D0
end
subroutine ModelConstIni(fail)
implicit none
integer fail
```


LanHEP output Feyn package: Generic file: modelxx.gen

```
    (* greneral vector boson propagator: *)
AnalyticalPropagator[External] [ si v[j1, mom, {lizs] ] ==
    Polarizationvector[V[j1], mom, liz],
AnalyticalPropagator[Internal] [ si V[j1, mom, {lil} -> {liz}] ] ==
    -I PropagatorDenominator [mom, Mass[v[j1]]]**
        (MetricTensor[li1, liz] - (1 - Gaugexi[v[j1]]) *
            Fourvector[mom, lil] Fourvector[mom, liz] .
                PropagatorDenominator[mom, Sqrt[Gaugexi[v[j1]]] Mass[v[j1]]]),
    (* greneral mixing scalar-vector propagator: *)
AnalyticalPropagator[Internal][ si SV[j1, mom, {lil} -> {liz)] ] ==
    I Mass[SV[j1]] PropagatorDenominator [mom, Mass[Sv[j1]]] *
        FourVector[mom, If[s1== 1 || s1 == -2, lil, liz]],
    (* general scalar propagator: *)
AnalyticalPropagator[External] [ si s[j1, mom] ] == 1,
AnalyticalPropagator[Internal] [ S1S[j1, mom] ] ==
    I PropagatorDenominator[mom, Sqrt[GaugeXi[s[j1]]] Mass[s[j1]]],
    (* general Fadeev-Popov ghost propagator: *)
AnalyticalPropagator[External] [ si U[j1, mom] ] == 1,
AnalyticalPropagator[Internal] [ si U[j1, mom] ] ==
    I Sqrt[GaugeXi[U[j1]]] *
        PropagatorDenominator[mom, Sqrt[Gaugexi[U[j1]]] Mass[U[j1]]]
3
    (* Generic analytical couplings for the model *)
MsGenericCouplings = {
```

```
(* v-v *)
```

(* v-v *)
Analyticalcoupling[s1 V[j1, mom1, \{li1\}], sZ V[j2, momz, \{liz)] $==$
Analyticalcoupling[s1 V[j1, mom1, \{li1\}], sZ V[j2, momz, \{liz)] $==$
$G[1][s 1$ V[j1], $32 \mathrm{~V}[j 2]]$.
$G[1][s 1$ V[j1], $32 \mathrm{~V}[j 2]]$.
(MetricTensor[lil, liz] ScalarProduct[mom1, momz],
(MetricTensor[lil, liz] ScalarProduct[mom1, momz],
MetricTensor[li1, liz],
MetricTensor[li1, liz],
Fourvector [mom1, liz] Fourvector [momz, li1] ,
Fourvector [mom1, liz] Fourvector [momz, li1] ,
(* s-v*)
(* s-v*)
Analyticalcoupling[$s 1 \mathrm{~s}[j 1, \operatorname{mom} 1], 32 \mathrm{v}[j 2, \operatorname{mom},(1 i 2)]]==$

```
    Analyticalcoupling[ \(s 1 \mathrm{~s}[j 1, \operatorname{mom} 1], 32 \mathrm{v}[j 2, \operatorname{mom},(1 i 2)]]==\)
```

LanHEP output Feyn Generic file: modelxx.gen

```
M$GenericPropagators = {
```

(* general fermion propagator: *)
AnalyticalPropagator[External][s1 F[j1, mom]] ==
NonCommutative[SpinorType[j1][-mom, Mass[F[j1]]]],
(* Remarks:
Fermionic propagators have (like all others, too) their
momentum flowing from left to right. The fermion flow (for
Dirac fermions: fermion number flow) is from right to left.
If the fermion inside the propagator has no sign (i.e. fermion
number flow is opposite to fermion flow or fermion is self
conjugate) we just use the internal propagator $S(-p)$.
If the fermion has a sign, we have to use the Feynman rule $S(p)$
according to the Majorana paper. However, this rule is given
for a momentum flowing against the fermion flow so, again, we
end up with S(-p). *)

LanHEP output Feyn package: modelxx.mod

```
```

|*

```
```

|*
LanHEP output produced at Mon Jul 19 17:57:52 2010
LanHEP output produced at Mon Jul 19 17:57:52 2010
from the file 1/home1/Work_In_Progress/SloopS-FC6/lanhep304/mdl/qedscal.mdl
from the file 1/home1/Work_In_Progress/SloopS-FC6/lanhep304/mdl/qedscal.mdl
Model named 'qedscal'

```
```

 Model named 'qedscal'
    ```
```

*)
IndexRange[Index[Colour]] = NoUnfold[Range[3]]
IndexRange[Index[Gluon]] = NoUnfold[Range[8]]
VSESign :=-1
M§ClassesDescription $=$ \{
$\mathrm{V}[1]==$ ((* photon *)
SelfConjugate \rightarrow True,
Indices \rightarrow \{ ,
Mass -> 0,
PropagatorLabel -> "A",
Propagator Type -> Sine,
Propagatordrrow -> None),
F[1] == ((* electron *)
SelfConjugate \rightarrow False,
Indices \rightarrow \{ $\}$,
Mass \rightarrow me,
PropagatorLabel -> "e1",
PropagatorType -> Straight,
Propagatorarrow \rightarrow Forward),
S[1] == ((* scalar *)
SelfConjugate -> False,
Indices -> \{\},
Mass -> mphi,
PropagatorLabel -> "phi",
PropagatorType -> ScalarDash,
Propagatordrrow -> Forward))
PropagatorTjpe Straight,
42

IndexRange[Index[Colour]] = NoUnfold[Range[3]]
IndexRange[Index[Gluon]] = NoUnfold[Range[8]]

VSESign := -1
(* Model particles *)

M\$ClassesDescription $=$ \{
$\mathrm{V}[1]==$ ((* photon *)
SelfConjugate \rightarrow True,
Indices \rightarrow \{
PropagatorLabel -> "A",
PropagatorArrow \rightarrow None),
F[1] == ((* electron *)
SelfConjugate \rightarrow False,
Indices $->$ \}

PropagatorType -> Straight,
Propagatordrrow \rightarrow Forward),

Propagatordrrow \rightarrow Forward)
PropagatorLabel $->$ "phi",
PropagatorType $->$ ScalarDash,
Propagatordrrow \rightarrow Forward ;

```
pre["Arr] = V[1]
```

pre["Arr] = V[1]
pre["E1"] = F [1]
pre["E1"] = F [1]
prt["e1"] = F[1]
prt["e1"] = F[1]
pre["PHI"] = -S[1]
pre["PHI"] = -S[1]
pre["phi"] = S[1]
pre["phi"] = S[1]
Gaugexi[_] = 1
Gaugexi[_] = 1
MScouplingMatrices = {
MScouplingMatrices = {
(*------ PHI phi \& ------*)
(*------ PHI phi \& ------*)
C[-S[1],S[1],V[1]]== I ee**
C[-S[1],S[1],V[1]]== I ee**
<
<
{ 1},
{ 1},
{ -1 }
{ -1 }
3

```
3
```



```
&
```

\&
{ 1},
{ 1},
{ 1 }
{ 1 }
*
*
(*------ PHI phi \& A ------*)
(*------ PHI phi \& A ------*)
c[-S[1],S[1],V[1],V[1]] == 2 I ee^2 *
c[-S[1],S[1],V[1],V[1]] == 2 I ee^2 *
<
<
{1}
{1}
}
}
3
3
M$LastModelRules = {}
M$LastModelRules = {}
scan[(RealQ[\#] = True) \&,
scan[(RealQ[\#] = True) \&,
{ ee, me, mphi }]

```
    { ee, me, mphi } ]
```

LanHEP output: modelxx.mod part 1

```
    (*
    LanHEP output produced at Mon Jul 19 17:57:52 2010
        from the file '/home1/Work_In_Progress/SloopS-FC6/lanhep304/mdl/qedsc
        Model named 'qedscal'
*)
IndexRange[ Index[Colour] ] = NoUnfold[Range[3]] IndexRange[
Index[Gluon] ] = NoUnfold[Range[8]]
VSESign := -1
        (* Model particles *)
    M$ClassesDescription = {
        V[1] == { (* photon *)
        SelfConjugate -> True,
        Indices -> {},
```

Cargese School, MLerss -> 0,

LanHEP output: modelxx.mod part 2

```
GaugeXi[_] = 1
```

M\$CouplingMatrices $=$ \{

```
    (*------ PHI phi A ------*)
        C[ -S[1], S[1], V[1] ] == I ee *
{
    { 1 },
    { -1 }
},
            (*------- E1 e1 A ------*)
            C[ -F[1], F[1], V[1] ] == I ee *
{
        { 1 },
        { 1 }
},
(*------ PHI phi A A ------*)
C[ -S[1], S[1], V[1], V[1] ] == 2 I ee^2 *
```


LanHEP output Feyn package: modelxx.mod


```
1
Model named 'gedscal'
double precision Sqrt2, pi, degree, hbar_c2,bogus
parameter (Sqrt2=1.41421356237309504880168872421D0)
parameter (pi = 3.1415926535897932384626433832795029D0)
parameter (degree = pi/180D0)
parameter (hbar_c2 = 3.893796608)
parameter (bogus = -1D123)
double complex cI
parameter (cI = (ODO, 1DO))
double precision Divergence
common /renorm/ Divergence
double precision ee, me, mphi, GG
cormon /mdl_para/
& ee, me, mphi, GG
```

double precision Sqrt2, pi, degree, hbar_c2,bogus
parameter (Sqrt2=1.41421356237309504880168872421D0)
parameter (pi = 3.1415926535897932384626433832795029D0)
parameter (degree $=$ pi/180D0)
parameter (hbar_c2 = 3.8937966D8)
parameter (bogus = -1D123)
double complex cI
parameter (cI = (0D0, 1DO))
double precision Divergence
common /renorm/ Divergence
double precision ee, me, mphi, GG
common /mdl_para/

Using our newly implemented model in CalcHEP 1.

CalcHEP/symb

Abstract

CalcHEP package is created for calculation of decay and high energy collision processes of elementary particles in the lowest order (tree) approximation. The main idea put into the CalcHEP

Standard Model (CKM=1)
sugrasAMSB MSSM
eusbriSSM
IMPORT OF MODELS was to make available passing from the lagrangian to the final distributions effectively with the high level of automatization.

Use F2 key to get information about interface facilities and F1 - as online help.

Using our newly implemented model in CalcHEP 2.

Using our newly implemented model in CalcHEP 3.

| Pus CalcHEP/symb |
| :--- |
| \qquadCalcHEP package is created for calculation of
 decay and high energy collision processes of
 elementary particles in the lowest order (tree)
 approximation. The main idea put into the CalcHEP
 was to make available passing from the lagrangian
 to the final distributions effectively with the
 high level of automatization.
 Use F2 key to get information about interface
 facilities and F1 - as online help. |

Using our newly implemented model in CalcHEP 3.

| Pus CalcHEP/symb |
| :--- |
| \qquadCalcHEP package is created for calculation of
 decay and high energy collision processes of
 elementary particles in the lowest order (tree)
 approximation. The main idea put into the CalcHEP
 was to make available passing from the lagrangian
 to the final distributions effectively with the
 high level of automatization.
 Use F2 key to get information about interface
 facilities and F1 - as online help. |

Using our newly implemented model in CalcHEP 4.

```
                                    CalcHEP/symb
        Model: qedscal
        List of particles (antiparticles)
A(A )- photon e1(E1 )- electron
    Phi(PHI)- scalar
```

Enter process: e1,E1->phi,PHI

Using our newly implemented model in CalcHEP 5.

Using our newly implemented model in CalcHEP 6.

프중

CalcHEP/num

(sub)Process: e1, E1 $->$ phi, PHI Monte Carlo session* 1(begin)

```
Subprocess
IN state
Model parameters
Constraints
QCD coupling
Breit-Wigner
Cuts
Phase space mapping
Vegas
Generate events
Easy 2->2
```


Using our newly implemented model in CalcHEP 7.

CalcHEP/num

(sub)Process: e1, E1 -> phi, PHI $\mathrm{P}\left(\mathrm{c}+\mathrm{m}_{+} \mathrm{s}_{+}\right)$) $\quad 250,000000$ [GeV] $\operatorname{Cos}(\mathrm{p} 1, \mathrm{p} 3) \div$ min $=-0.999000 \quad \max =0.999000$ Cross Section: 0.0766129 [pb]

```
Change parameter
Set precision
Cos13(min) = -0.999000
Cos13(max) = 0,999000
Angular dependence
Parameter dependence
sigma*u plots
```


Using our newly implemented model in Feyn-Form Package 1.

Using our newly implemented model in Feyn-Form Package 2.

```
Eichier Édition Affichage Rechercher O्⿱utils Documents Aide
Nouveau Ouvrir Enregistrer Imprimer... Annuler Rétablir Couper Copier Coller Rechercher Remplacer
```



```
1* process.h
2* defines all process-dependent parameters
3* this file is part of Formcalc
4* last modified 26 May 08 th
5
7* Definition of the external particles.
8* Each TYPEn is one of SCALAR, FERMION, PHOTON (= GLUON), or VECTOR.
9* (PHOTON/GLUON is equivalent to VECTOR, except that longitudinal
10* modes are not allowed)
11
12* Note: The initial definitions for particles 2..5 are of course
13* sample entries for demonstration purposes.
14
15 #define TYPEI FERMION
16 #define MASSl me
17 #define CHARGE1 -1
18
19 #define TYPE2 FERMION
20##define MASS2 me
21 #define CHARGE2 I
22
23 #define TYPE3 SCALAR
24 #define MASS3 mphi
25 #define CHARGE3 -1
26
27 #define TYPE4 SCALAR
28 #define MASS4 mphi
29 #define CHARGE4 1
30
31 #define TYPE5 typepart5
32 #define MASS5 masspart5
33 #define CHARGE5 chargpart5
34
36* When using Dirac fermions (FermionChains -> Chiral|VA) and
37* the trace technique (HelicityME), the following flag should be
38* defined to compute unpolarized cross-sections efficiently,
39* i.e. without actually summing up the different helicities.
40* This has no effect on the result, only on the speed of the
41* calculation.
42* Note: DIRACFERMIONS must NOT be defined when using weyl fermions
43* i.e. FermionChains -> weyl in CalcFeynAmp.
4 4
```


Using our newly implemented model in Feyn-Form Package 3.

chalons@lappc-f169:~/Work_In_Progress/SloopS-FC6/FormCalc/fortran_elE1phiPHI_QEDSCAL\$./run uuuu 500,500
FF 2.0, a package to evaluate one-loop integrals written by G. J. van Oldenborgh, NIKHEF-H, Amsterdam
for the algorithms used see preprint NIKHEF-H 89/17, 'New Algorithms for One-loop Integrals', by G.J. van Oldenborgh and J.A.M. Vermaseren, published in Zeitschrift fuer Physik C46(1990)425.
./run. UUSS . 00500, 00500, 00010/0000001
total number of errors and warnings

```
fferr: no errors
chalons@lappc-f169:~/Work_In_Progress/SloopS-FC6/FormCalc/fortran_elE1phiPHI_QEDSCAL$ more run.UUSS.00500,00500,00010/0000001
Patterson integration results:
nregions = 1
neval = 21
fail = 0
1 0.766130322358816E-01 +- 0.00000000000000 p = -1.000
2 0.00000000000000 +- 0.00000000000000 p = -1.000
500.0000000
+ 0.766130322358816E-01 0.00000000000000
+ 0.00000000000000 0.00000000000000
```


Using our newly implemented model in Feyn-Form Package 3.

result agrees with CalcHEP

chalons@lappc-f169:~/Work_In_Progress/SloopS-FC6/FormCalc/fortran_elE1phiPhI_QEDSCAL\$./run uuuu 500,500
FF 2.0, a package to evaluate one-loop integrals written by G. J. van Oldenborgh, NIKHEF-H, Amsterdam
for the algorithms used see preprint NIKHEF-H 89/17, 'New Algorithms for One-loop Integrals', by G.J. van Oldenborgh and J.A.M. Vermaseren, published in Zeitschrift fuer Physik C46(1990)425.

```
./run.UUSS.00500,00500,00010/0000001
total number of errors and warnings
fferr: no errors
chalons@lappc-f169:~/Work_In_Progress/SloopS-FC6/FormCalc/fortran_elE1phiPHI_QEDSCAL$ more run.UUSS.00500,00500,00010/0000001
Patterson integration results:
nregions = 1
neval = 21
fail =0
1 0.766130322358816E-01 +- 0.00000000000000 }\quadp=-1.00
2 0.00000000000000 +- 0.00000000000000 p = -1.000
500.0000000
+ 0.766130322358816E-01 0.00000000000000
I+ 0.00000000000000 0.00000000000000
```

LanHEP, CalcHEP, micrOMEGAs: implementing a model for Dark Matter

- A particle that could qualify as a DM candidate need to be neutral and stable.

LanHEP, CalcHEP, micrOMEGAs: implementing a model for Dark Matter

- A particle that could qualify as a DM candidate need to be neutral and stable.
- One way for it to be stable is that it has to have a new quantum number that is odd as compared to the SM which would have this quantum number even.

LanHEP, CalcHEP, micrOMEGAs: implementing a model for Dark Matter

- A particle that could qualify as a DM candidate need to be neutral and stable.
- One way for it to be stable is that it has to have a new quantum number that is odd as compared to the SM which would have this quantum number even.
- Then the DM particle could qualify if it is the lightest among the odd particles

LanHEP, CalcHEP, micrOMEGAs: implementing a model for Dark Matter

- A particle that could qualify as a DM candidate need to be neutral and stable.
- One way for it to be stable is that it has to have a new quantum number that is odd as compared to the SM which would have this quantum number even.
- Then the DM particle could qualify if it is the lightest among the odd particles
- simple model: add both a charged scalar $s, S \longrightarrow p h i, P h i$ and a heavy neutrino n, N to our QED model

LanHEP, CalcHEP, micrOMEGAs: implementing a model for Dark Matter

- A particle that could qualify as a DM candidate need to be neutral and stable.
- One way for it to be stable is that it has to have a new quantum number that is odd as compared to the SM which would have this quantum number even.
- Then the DM particle could qualify if it is the lightest among the odd particles
- simple model: add both a charged scalar $s, S \rightarrow p h i, P h i$ and a heavy neutrino n, N to our QED model
- n will couple through a magnetic moment coupling to the photon (example of a higher dim operator)

LanHEP, CalcHEP, micrOMEGAs: implementing a model for Dark Matter

- A particle that could qualify as a DM candidate need to be neutral and stable.
- One way for it to be stable is that it has to have a new quantum number that is odd as compared to the SM which would have this quantum number even.
- Then the DM particle could qualify if it is the lightest among the odd particles
- simple model: add both a charged scalar $s, S \rightarrow p h i, P h i$ and a heavy neutrino n, N to our QED model
- n will couple through a magnetic moment coupling to the photon (example of a higher dim operator)
- both n, s are odd, we will label them as \tilde{n}, \tilde{S}
model qedscalneutrino/31.
parameter ee $=0.3133:$ 'Electric charge'.
parameter mag = 0.01: 'magnetic momentum'.
vector A/A: photon.
let $F^{\wedge} m u \wedge n u=d e r i v \wedge m u * A^{\wedge} n u-d e r i v \wedge n u * A \wedge m u$.
spinor e1: (electron, mass me=0.000511).
spinor $\sim n u / \sim N u \quad:(n e u t r i n o, ~ m a s s ~ m n u=90, ~ w i d t h ~ w n u=0) . ~$
scalar ~s/ ~S: (scalar, mass mS=100, width wS=0).
lterm ee*E1*gamma*A*e1.
let Dphi^mu $=\left(\operatorname{deriv}{ }^{\wedge} m u+i * e e * A \wedge m u\right) *^{\prime} \sim s^{\prime}$.
let DPHI^mu $=\left(\right.$ deriv^$\left.^{\wedge} m u-i * e e * A^{\wedge} m u\right) *^{\prime} \sim S^{\prime}$.
lterm DPHI*Dphi.
lterm $i * m a g / 2 *^{\prime} \sim N u^{\prime} *\left(g a m m a \wedge^{\wedge} m u * g a m m a{ }^{\wedge} n u-\operatorname{lamma}^{\wedge} n u * g a m m a{ }^{\wedge} m u\right) *^{\prime} \sim n u u^{\prime} * F^{\wedge} m u{ }^{\wedge} n u$

Lanhep pdg code for calchep.

| qedscalneutrino |
| :--- |
| Variables |

| Name | Value | \|> Comment |
| :--- | :--- | :--- |
| ee | $\mid 0.3133$ | \|Electric charge |
| mag | $\mid 0.01$ | \|magnetic momentum |
| me | $\mid 0.000511$ | \|mass of electron |
| mnu | $\mid 90$ | \|mass of neutrino |
| wnu | $\mid 0$ | \|width of neutrino |
| mS | $\mid 100$ | \|mass of scalar |
| wS | $\mid 0$ | \|width of scalar |

Results of micrOMEGAs, large magnetic moment

```
=== MASSES OF ODD SECTOR: ===
Masses of odd sector Particles: ~nu : mnu = 90.0 || ~s :
ms = 100.0 ||
==== Physical Constraints: =====
==== Calculation of relic density =====
Dark Matter candidate is ~nu Xf=3.40e+01 Omega=5.83e-06
Channels which contribute to 1/(omega) more than 1%.
Relative contributions in % are displayed
    97% ~nu ~Nu -> A A
    3% ~nu ~Nu ->> e1 E1
==== Indirect detection =======
1.38E-02 gamma with E > 1.00E-01 are generated at one collision
gamma flux for fi=0.00E+00[rad] is 3.00E-06[ph/cm^2/s/sr]
```


Results of micrOMEGAs, co-annihilation!

ms 100. mnu 99.9. mag 0.0001.
=== MASSES OF ODD SECTOR: ===

Masses of odd sector Particles:

| $\sim n u$ | mnu | = | 99.9 |
| :---: | :---: | :---: | :---: |
| | mS | $=$ | 100.0 |

==== Physical Constraints: =====
==== Calculation of relic density =====
Dark Matter candidate is ~nu Xf=2.46e+01 Omega=1.22e-01

Channels which contribute to $1 /$ (omega) more than 1%.
Relative contributions in \% are displayed
95\% ~s ~S -> A A
4\% ~nu ~Nu \rightarrow e1 E1
1\% ~s ~S \rightarrow e1 E1
==== Indirect detection =======
4.78E-01 gamma with $\mathrm{E}>1.00 \mathrm{E}-01$ are generated at one collision

Part of the SM input file

Use of multiplets (doublets)

$$
\Phi=\binom{-i W_{f}^{+}}{\left(\frac{2 M_{W}}{e s_{W}}+H+i Z_{f}\right) / \sqrt{2}}
$$

Part of the SM input file

Use of multiplets (doublets)

$$
\Phi=\binom{-i W_{f}^{+}}{\left(\frac{2 M_{W}}{e s_{W}}+H+i Z_{f}\right) / \sqrt{2}}
$$

Option gauge in the declaration of gauge fields allows to use gsb (Z) and gsb (' $\mathrm{W}+{ }^{\prime}$) for the goldstone bosons.

```
model Higgs/1.
parameter EE = 0.31333 : 'Electromagnetic coupling constant',
    SW = 0.4740 : 'sin of the Weinberg angle (PDG-94)',
    CW = Sqrt(1-SW**2) : 'cos of the Weinberg angle'.
let g=EE/SW, g1=EE/CW.
vector A/A: (photon, gauge),
    Z/Z:('Z boson', mass MZ = 91.187, gauge),
    'W+'/'W-': ('W boson', mass MW = MZ*CW, gauge).
scalar H/H:(Higgs, mass MH = 200, width wH = 1.461).
let B = -SW*Z+CW*A.
let W = {'W+', CW*Z+SW*A, 'W-'}.
let phi = { -i*gsb('W+'), (vev(2*MW/EE*SW)+H+i*gsb(Z))/Sqrt2 },
    Phi = anti(phi).
lterm -2*lambda*(phi*anti(phi)-v**2/2)**2 where
    lambda=(g*MH/MW)**2/16, v=2*MW*SW/EE.
let D^a^b^mu =(deriv^mu+i*g1/2*B^mu)*delta(2)^a^b
    +i*g/2*taupm^a^b^c*W`mu^c,
    Dc^a^b^mu=(deriv^mu-i*g1/2*B^mu)*delta(2)^a^b
        -i*g/2*taupm^a^b^c*anti(W)^mu^c.
lterm D^a^b^mu*phi^b*Dc^a^c^mu*Phi^c.
```

Bosonic sector of the SM, Feynman rules

Weyl and two component fermion vs Dirac

$$
\psi=\binom{\xi}{\bar{\eta}}, \quad \psi^{c}=\binom{\eta}{\bar{\xi}}, \quad \bar{\psi}=\binom{\eta}{\bar{\xi}}^{T}, \quad \bar{\psi}^{c}=\binom{\xi}{\bar{\eta}}^{T} .
$$

If the user has declared a spinor particle p (with antiparticle P), the LanHEP notation for its

Weyl and two component fermion vs Dirac

$$
\begin{aligned}
& \psi=\binom{\xi}{\bar{\eta}}, \quad \psi^{c}=\binom{\eta}{\bar{\xi}}, \quad \bar{\psi}=\binom{\eta}{\bar{\xi}}^{T}, \quad \bar{\psi}^{c}=\binom{\xi}{\bar{\eta}}^{T} . \\
& \eta_{1} \xi_{2}=\bar{\psi}_{1} P_{L} \psi_{2} \\
& \bar{\eta}_{1} \bar{\xi}_{2}=\bar{\psi}_{1} P_{R} \psi_{2} \\
& \xi_{1} \xi_{2}=\bar{\psi}_{1}^{c} P_{L} \psi_{2} \\
& \bar{\xi}_{1} \bar{\xi}_{2}=\bar{\psi}_{1} P_{R} \psi_{2}^{c} \\
& \xi_{1} \eta_{2}=\bar{\psi}_{1}^{c} P_{L} \psi_{2}^{c} \\
& \bar{\xi}_{1} \bar{\eta}_{2}=\bar{\psi}_{1}^{c} P_{R} \psi_{2}^{c} \\
& \eta_{1} \eta_{2}=\bar{\psi}_{1} P_{L} \psi_{2}^{c} \\
& \bar{\eta}_{1} \bar{\eta}_{2}=\bar{\psi}_{1}^{c} P_{R} \psi_{2} \\
& \bar{\xi}_{1} \sigma^{\mu} \xi_{2}=\bar{\psi}_{1} \gamma^{\mu} P_{L} \psi_{2} \quad \text { down (P1)*sigma*up }(\mathrm{p} 2) \quad \rightarrow \quad \mathrm{P} 1 * \operatorname{gamma}(1-\text { gamma } 5) / 2 \star \mathrm{p} 2 \\
& \bar{\eta}_{1} \sigma^{\mu} \eta_{2}=\bar{\psi}_{1}^{c} \gamma^{\mu} P_{L} \psi_{2}^{c} \quad \text { down (p1)*sigma*up(P2) } \quad \rightarrow \quad \mathrm{cc}(\mathrm{p} 1) * \operatorname{gamma}(1-\text { gamma } 5) /
\end{aligned}
$$

Superpotential W

$$
\mathbf{W}=e p s_{i j}\left(\mu H_{i}^{1} H_{j}^{2}+M_{l}^{I J} H_{i}^{1} L_{j}^{I} R^{J}+M_{d}^{I J} H_{i}^{1} Q_{j}^{I} D^{J}+M_{u}^{I J} H_{i}^{2} Q_{j}^{I} U^{J}\right)
$$

(H_{i}, L, Q, R, U, D defined as doublets and singlets, here in terms of scalar part.)

keep_lets W.
let $W=e p s *(m u * H 1 * H 2+m l * H 1 * L * R+m d * H 1 * Q * D+m u * H 2 * Q * U)$.
Yukawa interactions

$$
-\frac{1}{2}\left(\frac{\partial^{2} W}{\partial A_{i} \partial A_{j}} \Psi_{i} \Psi_{j}+\text { h.c. }\right)
$$

Ψ_{i} fermionic partners of A_{i}
lterm - df(W,H1,H2) *fH1*fH2 - ... + AddHermConj.
$F_{i}^{*} F_{i}$ terms, $F_{i}=\partial W / \partial A_{i}$

```
lterm - df(W,H1)*df(Wc,H1c) - ....
```

or even shorter

```
lterm - dfdfc(W,H1) - ....
```

```
run lanHEP to generate the output files (compHEP)
cd ~/lanhep304/mdl/
./lhep qedscalneutrino.mdl
run convert output from compHEP to calcHEP
cd ~/micromegas/CalcHEP_src/utile/
./lan2calchep ~/lanhep304/mdl/ 30 1
running micrOMEGAs
cd ~/micromegas
create new project with new model
./newProject DMheavyneut
cd DMheavyneut
import the model (into CalcHEP)
mv ~/micromegas/CalcHEP_src/utile/*1.mdl work/models/.
compile and execute
gmake main=main.c
./main data.par
```


Lanhep at one-loop

New gauge structures, novel gauge fixing Interface with FeynArts/FormCacl/LoopTools MSSM example

- Need for an automatic tool for susy calculations, for Colliders and Dark Matter, On-Shell scheme
- handles large numbers of diagrams both for tree-level
- and loop level
- able to compute loop diagrams at $v=0$: dark matter, LSP, move at galactic velocities, $v=10^{-3}$
- ability to check results: UV and IR finiteness but also gauge parameter independence for example
- ability to include different models easily and switch between different renormalisation schemes
- Used for SM one-loop multi-leg: new powerful loop libraries (with Ninh Le Duc)

LanHEP application to one-loop calculation: SloopS project

- FeynArts and FormCalc are used for matrix element calculation: FeynArts model format output implemented in LanHEP.
- Shifts in fields and parameters to produce counterterms by LanHEP:

```
infinitesimal dMHsq, dMZsq, dMWsq,dZAA, dZAZ, dZZA, dZZZ, dZW,
dZH. infinitesimal dEE= -(dZAA - SW/CW*dZZA)/2. transform
A->A* (1+dZAA/2) +dZAZ*Z/2, Z->Z* (1+dZZZ/2) +dZZA*A/2,
    'W+' ->'W+'*(1+dZW/2),'W-' ->'W-'*(1+dZW/2), H->H* (1+dZH/2).
```

Different normalization schemes can be used, easy to switch between different RS

- Non-linear gauge fixing (see later)

SloopS

search.

UBLIC PAGES

Home

The Project

Publications and Talks

Hews and Articles

Events: Workshops,...

Blog

Links

RSS Feeds

NTRANET LOGIN

Embers only sername
assword

Remember me

Login

ost Password?
YNDICATE

| RSS | 0.31 |
| :--- | :--- |
| RSE | 1.0 |
| RSE | 2.0 |
| ATGH | 0.3 |
| OFML | SHARE ITI |

Spoop

is a code for the calculation of cross sections and other observables at one-loop in the MSSM. Renormalisation is performed in the On-Shell Scheme with the possibility of easily switching to other schemes. SloopS has been designed so that it has applications not only for physics at colliders but also for astrophysics and cosmology.

The principle behind the code is modularity. Considering the complex structure of the MSSM (large number of parameters) and that no simple complete renormalisation scheme of the MSSM has emerged one should have a code that is flexible enough so that it simple to define the model file. Moreover since different codes exist already that deal with important ingredients in the calculation of loops it is best to exploit these, combine them together and whenever improve on them.

The model file is implemented in automatic way both at tree-level and at the one-loop level with the help of LAMHEP adapted such that it can be interfaced with the FeynCalc/FormCalc package. LANHEP has been extended so that it can generate counterterms in a most efficient manner.

- Model file:

- example of particle definition, gauge fixing and ghost Lagrangian via BRS in LANHEP.
- Feymman rules including counterterms (see here).
- renormalisation conditions (see here).
- A poweful feature of the code is the use of a non-linear gauge fixing condition (see here).
- The aim of the code is also to be used for annihilation of dark matter that is highly non relativistic, this calls for an added routine in the loop tensor reduction that avoids Gram determinants. Our trick is to do this and this.
- Overview of strategy (here)
- Example of combining Sloops with micromegAs to predict the photon flux from neutralino annihilation.

Home

There are no Items to clisplay

LATEST POSTINGS

- Tools of the Project
- Tearn Members
- The Project
- Summary and Aims

CALENDAR

| \ll July O9 | | | | | | \gg |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mo | Tu | We Th | Fr | Sa | Su | |
| 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| 13 | 14 | 15 | 16 | 17 | 18 | 19 |
| 20 | 21 | 22 | 23 | 24 | 25 | 26 |
| 27 | 28 | 29 | 30 | 31 | | |

WHO'S ON LINE

Strategy: Exploiting and interfacing modules from different codes

Lagrangian of the model defined in LanHEP

- particle content
- interaction terms
- shifts in fields and parameters
- ghost terms constructed by BRST
\downarrow
Generic Model
-kinematical structures

Classes Model
-Feynman rules, including CT
\Downarrow

Evaluation via FeynArts-FormCalc

LoopTools modified!!
tensor reduction inappropriate for small relative velocities (Zero Gram determinants)

\uparrow

Renormalisation scheme

- definition of renorm. const. in the classes model

Non-Linear gauge-fixing constraints, gauge parameter dependence checks
vector
A/A: (photon, gauge),
Z/Z:('Z boson', mass MZ = 91.1875, gauge),
'W+'/'W-': ('W boson', mass MW = MZ*CW, gauge).
scalar H/H: (Higgs, mass $M H=115)$.
transform A->A*(1+dZAA/2)+dZAZ*Z/2, Z->Z*(1+dZZZ/2)+dZZA*A/2,
'W+'->'W+'*(1+dZW/2), 'W-'->'W-'*(1+dZW/2).
transform H->H*(1+dZH/2), 'Z.f'->'Z.f'*(1+dZZf/2)
'W+.f'->'W+.f'*(1+dZWf/2), 'W-.f'->'W-.f'*(1+dZWf/2).

```
let pp = { -i*'W+.f', (vev(2*MW/EE*SW)+H+i*'Z.f')/Sqrt2 },
``` PP=anti(pp).
```

lterm -2*lambda*(pp*anti(pp)-v**2/2)**2

```
where
lambda \(=(\mathrm{EE} * \mathrm{MH} / \mathrm{MW} / \mathrm{SW}) * * 2 / 16, \mathrm{v}=2 * \mathrm{MW} * \mathrm{SW} / \mathrm{EE}\).

\(i * g / 2 *\) taupm \({ }^{\wedge} a^{\wedge} b^{\wedge} c^{*} * W W^{\wedge} m u^{\wedge} c * p p^{\wedge} b\).

lterm DPP*Dpp

\section*{Gauge fixing and BRS transformation}
```

let G_Z = deriv*Z+(MW/CW+EE/SW/CW/2*nle*H)*'Z.f'.
lterm -G_A**2/2 - G_Wp*G_Wm - G_Z**2/2.
lterm -'Z.C'*brst(G_Z).

```

\section*{vector}

A/A: (photon, gauge),
Z/Z:('Z boson', mass MZ = 91.1875, gauge),
'W+'/'W-': ('W boson', mass MW = MZ*CW, gauge).
scalar H/H:(Higgs, mass \(\mathrm{MH}=115\))
transform A->A*(1+dZAA/2)+dZAZ*Z/2, Z->Z*(1+dZZZ/2)+dZZA*A/2
'W+'->'W+'*(1+dZW/2), 'W-'->'W-'*(1+dZW/2).
transform H->H*(1+dZH/2), 'Z.f'->'Z.f'*(1+dZZf/2),
'W+.f'->'W+.f'*(1+dZWf/2), 'W-.f'->'W-.f'*(1+dZWf/2).
let \(p p=\{-i * ' W+. f\), \((\operatorname{vev}(2 * M W / E E * S W)+H+i * ' Z . f \prime) / S q r t 2\}\), PP=anti(pp).
lterm \(-2 *\) lambda*(pp*anti(pp) \(-\mathrm{v} * * 2 / 2\)) **2
where
lambda \(=(\mathrm{EE} * \mathrm{MH} / \mathrm{MW} / \mathrm{SW}) * * 2 / 16, \mathrm{v}=2 * \mathrm{MW} * \mathrm{SW} / \mathrm{EE}\)

\(i * g / 2 *\) taupm \({ }^{\wedge} a^{\wedge} b^{\wedge} c^{*} * W W^{\wedge} m u^{\wedge} c * p p^{\wedge} b\).

lterm DPP*Dpp.

\section*{Gauge fixing and BRS transformation}
let \(G _Z=\) deriv*Z+(MW/CW+EE/SW/CW/2*nle*H)*'Z.f'.
lterm -G_A**2/2 - G_Wp*G_Wm - G_Z**2/2.
lterm -'Z.C'*brst(G_Z).

\section*{Output of Feynman Rules with Counterterms !!}

M\$CouplingMatrices \(=\) \{
```

    (*------ H H ------*)
    ```
\{
\{ O , dZH \},
 \{ O , MH~2 dZH + dMHsq \}
\},
```

        (*------ W+.f W-.f --
    ```
\{
 \{ \(0, d Z W f\) \},
 \{ 0,0 \}
\}, (*------ A Z ------*)
 \(C[\mathrm{~V}[1], \mathrm{V}[2]]==1 / 2 \mathrm{I} / \mathrm{CW}^{-} 2 \mathrm{MW}^{\wedge} 2\) *
\{
 \(\{0,0\}\),
\{ O , dZZA \},
\{ O, O \}
\},
(*------ H H H ------*)
 C[S[3], \(S[3], S[3]]==-3 / 4 \mathrm{I} \mathrm{EE} / \mathrm{MW} / \mathrm{SW} *\)
\{
 \{ \(2 \mathrm{MH}^{\wedge} 2,3 \mathrm{MH}^{\wedge} 2 \mathrm{dZH}-2 \mathrm{MH}^{\wedge} 2 / \mathrm{SW}\) dSW \(-\mathrm{MH}^{\wedge} 2 / \mathrm{MW}^{-} 2 \mathrm{dMWsq}\)
\},
 (*------ H W+.f W-.f ------*)
 \(\mathrm{C}[\mathrm{S}[3], \mathrm{S}[2],-\mathrm{S}[2] \mathrm{l}==-1 / 4 \mathrm{I} \mathrm{EE} / \mathrm{MW} / \mathrm{SW} *\)
\{
 \{ \(2 \mathrm{MH}^{\wedge} 2, \mathrm{MH}^{\wedge} 2 \mathrm{dZH}+2 \mathrm{MH}^{\wedge} 2 \mathrm{dZW} f-2 \mathrm{MH}^{\wedge} 2 / \mathrm{SW} \mathrm{dSW}-\mathrm{MH}^{\wedge} 2\)
\},
```

    (*------ W-.C A.C W+ ------*)
    C[ -U[3], U[1], V[3] ] == - I EE *
    ```
\{
 \{ 1 \},
 \{ - nla \}
\},

\section*{vector}

A/A: (photon, gauge),
Z/Z:('Z boson', mass MZ = 91.1875, gauge),
'W+'/'W-': ('W boson', mass MW = MZ*CW, gauge).
scalar H/H:(Higgs, mass \(\mathrm{MH}=115\))
transform A->A*(1+dZAA/2)+dZAZ*Z/2, Z->Z*(1+dZZZ/2)+dZZA*A/2,
'W+'->'W+'*(1+dZW/2), 'W-'->'W-'*(1+dZW/2)
transform H->H*(1+dZH/2), 'Z.f'->'Z.f'*(1+dZZf/2)
'W+.f'->'W+.f'*(1+dZWf/2), 'W-.f'->'W-.f'*(1+dZWf/2).
let \(p p=\{-i * ' W+. f \prime, \quad(v e v(2 * M W / E E * S W)+H+i * ' Z . f \prime) / S q r t 2\}\), PP=anti(pp).
lterm \(-2 *\) lambda*(pp*anti(pp) \(-\mathrm{v} * * 2 / 2\)) **2
where
\(1 \mathrm{ambda}=(\mathrm{EE} * \mathrm{MH} / \mathrm{MW} / \mathrm{SW}) * * 2 / 16, \mathrm{v}=2 * \mathrm{MW} * \mathrm{SW} / \mathrm{EE}\)
let Dpp^mu^a = (deriv^mu+i*g1/2*B0^mu)*pp^a +
\(i * g / 2 * t a u p m^{\wedge} a^{\wedge} b^{\wedge} c * W W^{\wedge} m u \wedge c * p p^{\wedge} b\).
let \(\mathrm{DPP}^{\wedge} \mathrm{mu}\) ^a \(=\left(d e r i v \wedge m u-i * g 1 / 2 * B O^{\wedge} m u\right) * P^{\wedge}\) a

lterm DPP*Dpp.

\section*{Gauge fixing and BRS transformation}
let \(G _Z=\operatorname{deriv} * Z+(M W / C W+E E / S W / C W / 2 * n l e * H) * ' Z . f\) '
lterm -G_A**2/2 - G_Wp*G_Wm - G_Z**2/2
lterm -'Z.C'*brst(G_Z).
RenConst[dMHsq] := ReTilde[SelfEnergy[prt["H"] -> prt["H"], MH]]
RenConst[dZH] := -ReTilde[DSelfEnergy[prt["H"] -> prt["H"], MH]]
RenConst[dZZf] := -ReTilde[DSelfEnergy[prt["Z.f"] -> prt["Z.f"], MZ]] RenConst[dZWf] := -ReTilde[DSelfEnergy[prt["W+.f"] ->

\section*{Output of Feynman Rules with Counterterms !}

M\$CouplingMatrices \(=\) \{
```

    (*------ H H ------*)
    ```
\{
\{ O , dZH \},
\{ O , MH² \(2 \mathrm{dZH}+\mathrm{dMHsq}\}\)
\},
```

        (*------ W+.f W-.f ---
    ```
\{
\{ O , dZWf \},
 \{ O, O \}
\}, (*------ A Z ------*)
 \(C[\mathrm{~V}[1], \mathrm{V}[2]]==1 / 2 \mathrm{I} / \mathrm{CW}^{-} 2 \mathrm{MW}^{-} 2\) *
\{
 \{ O, O \},
\{ \(0, d Z Z A\}\),
\(\{0,0\}\)
\},
(*------ H H H ------**)
 C[S[3], \(S[3], S[3]]==-3 / 4 \mathrm{I} \mathrm{EE} / \mathrm{MW} / \mathrm{SW} *\)
\{
 \(\left\{2 \mathrm{MH}^{\wedge} 2,3 \mathrm{MH}^{\wedge} 2 \mathrm{dZH}-2 \mathrm{MH}^{\wedge} 2 / \mathrm{SW}\right.\) dSW - MH^2 / MW^2 dMWsq
\},
 (*------ H W+.f W-.f ------*)
 C[S[3], \(\mathrm{S}[2],-\mathrm{S}[2]\)] \(==-1 / 4 \mathrm{I} \mathrm{EE} / \mathrm{MW} / \mathrm{SW} *\)
\{
 \(2 \mathrm{MH}^{\wedge} 2, \mathrm{MH}^{\wedge} 2 \mathrm{dZH}+2 \mathrm{MH}^{\wedge} 2 \mathrm{dZWf}-2 \mathrm{MH}^{\wedge} 2 / S W \mathrm{dSW}-\mathrm{MH}^{\wedge} 2\)
\},
 (*------ \(\quad \mathrm{W}-. \mathrm{C} \quad \mathrm{A} . \mathrm{C} \quad \mathrm{W}+\quad------*)\)
\{
\{ 1 \},
\{ - nla \}
\},

\section*{Tree Level calculations}

\section*{Comparison with public codes: Grace and CompHEP}
\begin{tabular}{|c|c|c|c|}
\hline Cross-section [pb] & SloopS & CompHEP & Grace \\
\hline \(h^{0} n^{0} \rightarrow h^{0} h^{0}\) & \(3.932 \times 10^{-2}\) & \(3932 \times 10^{-2}\) & \(3.929 \times 10^{-2}\) \\
\hline \(\mathrm{W}^{+} \mathrm{W}^{-} \rightarrow \mathrm{t}_{1} \mathrm{~F}_{1}\) & \(7.022 \times 10^{-1}\) & \(7.082 \times 10^{-1}\) & \(7.083 \times 10^{-1}\) \\
\hline \(e^{+} e^{-} \rightarrow \hat{\tau}_{1} \bar{\tau}_{2}\) & \(2.854 \times 10^{-3}\) & \(2.854 \times 10^{-3}\) & \(2.854 \times 10^{-3}\) \\
\hline \(\mathrm{H}^{+} \mathrm{H}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-}\) & \(6.643 \times 10^{-1}\) & \(6.643 \times 10^{-1}\) & \(6.644 \times 10^{-1}\) \\
\hline Deay[Gel] & & & \\
\hline \(A^{0} \rightarrow \dot{x}_{1}^{+} \dot{\chi}_{1}^{-}\) & \(1.137 \times 10^{0}\) & \(1.137 \times 10^{0}\) & \(1.137 \times 10^{0}\) \\
\hline \(\dot{\chi}_{1}^{+} \rightarrow \dot{t i b}_{1}\) & \(5.428 \times 10^{0}\) & \(5.428 \times 10^{0}\) & \(5.428 \times 10^{0}\) \\
\hline \(\mathrm{H}^{0} \rightarrow \dot{\tau}_{1} \stackrel{\Sigma}{t}_{1}\) & \(7.579 \times 10^{-3}\) & \(7.579 \times 10^{-3}\) & \(7.579 \times 10^{-3}\) \\
\hline \(\mathrm{H}^{+} \rightarrow \dot{\chi}_{1}^{+} \dot{x}_{1}^{0}\) & \(1.113 \times 10^{-1}\) & \(1.113 \times 10^{-1}\) & \(1.113 \times 10^{-1}\) \\
\hline
\end{tabular}

\section*{Non-linear gauge implementation}
\[
\begin{aligned}
\mathcal{L}_{G F}= & -\frac{1}{\xi_{W}}\left|\partial . W^{+}+\xi_{W} \frac{g}{2} v G^{+}\right|^{2} \\
& -\frac{1}{2 \xi_{Z}}\left(\partial . Z+\xi_{Z} \frac{g}{2 c_{W}} v+G^{0}\right)^{2}-\frac{1}{2 \xi_{\gamma}}(\partial . A)^{2}
\end{aligned}
\]

This only affects the propagators. Usually calculations done with \(\xi=1\), otherwise large expressions, higher rank tensors, unphysical thresholds,..
\[
\frac{1}{k^{2}-M_{W}^{2}}\left(g_{\mu \nu}-\left(1-\xi_{W}\right) \frac{k_{\mu} k_{\nu}}{k^{2}-\xi_{W} M_{W}^{2}}\right)
\]
how to have \(\xi=1\) and still check for gauge parameter independence?

\section*{Non-linear gauge implementation}
\[
\begin{aligned}
\mathcal{L}_{G F}= & -\frac{1}{\xi_{W}}\left|\left(\partial_{\mu}-i e \tilde{\alpha} A_{\mu}-i g c_{W} \tilde{\beta} Z_{\mu}\right) W^{\mu+}+\xi_{W} \frac{g}{2}\left(v+\tilde{\delta} h+\tilde{\omega} H+i \tilde{\rho} A^{0}+i \tilde{\kappa} G^{0}\right) G^{+}\right|^{2} \\
& -\frac{1}{2 \xi_{Z}}\left(\partial . Z+\xi_{Z} \frac{g}{2 c_{W}}(v+\tilde{\epsilon} h+\tilde{\gamma} H) G^{0}\right)^{2}-\frac{1}{2 \xi_{\gamma}}(\partial . A)^{2}
\end{aligned}
\]
- quite a handful of gauge parameters, but with \(\xi_{i}=1\), no "unphysical threshold", no higher rank tensors, gauge parameter dependence in gauge/Goldstone/ghosts vertices.
- more important: no need for higher (than the minimal set)for higher rank tensors and tedious algebraic manipulations

\section*{Non-linear gauge implementation}
\[
\begin{gathered}
\mathcal{L}_{G F}=-\frac{1}{\xi_{W}}\left|\left(\partial_{\mu}-i e \tilde{\alpha} A_{\mu}-i g c_{W} \tilde{\beta} Z_{\mu}\right) W^{\mu+}+\xi_{W} \frac{g}{2}\left(v+\tilde{\delta} h+\tilde{\omega} H+i \tilde{\rho} A^{0}+i \tilde{\kappa} G^{0}\right) G^{+}\right|^{2} \\
-\frac{1}{2 \xi_{Z}}\left(\partial . Z+\xi_{Z} \frac{g}{2 c_{W}}(v+\tilde{\epsilon} h+\tilde{\gamma} H) G^{0}\right)^{2}-\frac{1}{2 \xi_{\gamma}}(\partial . A)^{2} \\
\frac{p_{1}(\mu) p_{2}(\nu) p_{3}(\rho)}{}
\end{gathered}
\]
not your usual VVV gauge vertex!

\section*{SloopS: SUSY renormalisation at one-loop}
- Default: on-shell, GI, renormalisation in ALL sectors

\section*{SloopS: SUSY renormalisation at one-loop}
- Default: on-shell, GI, renormalisation in ALL sectors
- possibility to switch to other schemes easily (DRbar,..)

\section*{SloopS: SUSY renormalisation at one-loop}
- Default: on-shell, GI, renormalisation in ALL sectors
- possibility to switch to other schemes easily (DRbar,..)
- Mixing and rotations: no renormalisation of diagonalisation matrices! ditto gauge-fixing

\section*{SloopS: SUSY renormalisation at one-loop}
- Default: on-shell, GI, renormalisation in ALL sectors
- possibility to switch to other schemes easily (DRbar,..)
- Mixing and rotations: no renormalisation of diagonalisation matrices! ditto gauge-fixing
- Wave-function renormalisation to get rid of all mixing between physical fields when on-shell.

\section*{SloopS: SUSY renormalisation at one-loop}
- Default: on-shell, GI, renormalisation in ALL sectors
- possibility to switch to other schemes easily (DRbar,..)
- Mixing and rotations: no renormalisation of diagonalisation matrices! ditto gauge-fixing
- Wave-function renormalisation to get rid of all mixing between physical fields when on-shell.
- Issues with definition of \(\tan \beta\), many defs not gauge invariant!

\section*{SloopS: SUSY renormalisation at one-loop}
- Default: on-shell, GI, renormalisation in ALL sectors
- possibility to switch to other schemes easily (DRbar,..)
- Mixing and rotations: no renormalisation of diagonalisation matrices! ditto gauge-fixing
- Wave-function renormalisation to get rid of all mixing between physical fields when on-shell.
- Issues with definition of \(\tan \beta\), many defs not gauge invariant!
- Same for mixing angle in the sfermion sector.

SloopS: SUSY renormalisation at one-loop
- Default: on-shell, GI, renormalisation in ALL sectors
- possibility to switch to other schemes easily (DRbar,..)
- Mixing and rotations: no renormalisation of diagonalisation matrices! ditto gauge-fixing
- Wave-function renormalisation to get rid of all mixing between physical fields when on-shell.
- Issues with definition of \(\tan \beta\), many defs not gauge invariant!
- Same for mixing angle in the sfermion sector.
- Good scale dependence of ren. csts.

\section*{Madgraph Web Interface, you've had a tutorial already}

II CP3 MadGraph Home Page ©

\(\frac{\text { Generate }}{\text { Process }}\) Register Tools Database \(\frac{\text { My }}{\frac{\text { Cluster }}{\frac{\text { Downloads }}{\text { (needs }}}}\)
Code can be generated either by:
\begin{tabular}{llll}
MadGraph Version & \(:\) & MadGraph 4 \(\vee\) & \\
Model: & SM & \(\vee\) Model descriptions \\
Input Process: & \(\square\) & Examples/format
\end{tabular}
I. Fill the form:
I. Fill the form:
Max QCD Order:
Max QCD Order:
Max QED order:
Max QED order:
 99
 99
p and j definitions: p=j=duscdN uN sN con v
p and j definitions: p=j=duscdN uN sN con v
sum over leptons: }\quad1+=e+,mu+; l- =e-,mu-; v|=ve,vm;v\mp@subsup{|}{}{~}=v\mp@subsup{e}{}{~},v\mp@subsup{m}{}{~
sum over leptons: }\quad1+=e+,mu+; l- =e-,mu-; v|=ve,vm;v\mp@subsup{|}{}{~}=v\mp@subsup{e}{}{~},v\mp@subsup{m}{}{~
Submit
Submit

\section*{CalcHEP webpage}
CalcHEP - a package for calculation of Feynman diagrams and integration over multi-particle phase
space.
Authors - Alexander Pukhov, Alexander Belyaev, Neil Christensen

Email contact: calchep@googlegroups.com

CalcHEP/symb
CalcHEP - a package for Calculation in High Energy Physics Version 2.5.4: Last correction July 12,2009

Main author: Alexander Pukhov(Skobeltsyn Institute of Nuclear Physics, Moscow) Batch mode : Neil Chistensen (Michigan State University) pYTHIA interface and testing:Alexander Belyaev(University of Southampton)

For contacts:

> email: <pukhov@lapp. in2p3.fr>
> http://theory. sinp.msu.ru/ pukhov/calchep.html

The BSMs for CalcHEP were developed in collaboration with:
G. Belanger, A. Belyaev, F. Boudjema, A. Semenov

The package contains codes written by:
M. Donckt, V.Edneral, V. Ilyin, D. Kovalenko, A. Kryukov, G. Lepage, A. Semenov

Press F9 or click the box below to get
References and Contributions
This information is available during the session by means of the F9 key

In interactive mode you only need to know/press 3 keys

Enter menu selection (forward)

Exit menu selection (back)

Help !
(or details of menu choice)

\section*{Work flow}
```

Standard Model
sugra\&AMSB MSSM
ewsbMSSM
compos_last
Littlest Higgs-T
IMPORT OF MODELS

```

Work flow

Enter Process
Force Unit. Gauge 0FF Edit model
Delete model

Work flow

\section*{Enter Process}

Force Unit.Gauge 05F Edit model
Delete model

Work flow

\section*{Standard Model}
sugra\&AMSB MSSM ewsbMSSM
compos_last
Littlest Higgs-T
IMPORT OF MODELS

\section*{Finter Process}

\section*{Enter Process}

Force Unit. Gauge 05F
Force Unit. Gauge 0FF Edit model

Edit model
Delete model
Delete model

Work flow

\section*{Standard Model}
sugra\&AMSB MSSM ewsbMSSM
compos_last
Littlest Higgs-T
IMPORT OF MODELS

Enter Process
Force Unit.Gauge 0FF Edit model
Delete model

\section*{View diagrams}

Squaring technique
Write down processes
Enter Process
Force Unit. Gauge OFF
Edit model
Delete model

Work flow

Work flow

\section*{Abstract}

CalcHEP package is created for calculation of decay and high energy collision processes of elementary particles in the lowest order (tree) approximation. The main idea put into the CalcHEP was to make available passing from the lagrangian to the final distributions effectively with the high level of automatization.

Use F2 key to get information about interface facilities and F1 - as online help.

\section*{Standard Model (CKM=1)}

Standard Model
IMPORT OF MODEAS
```

Standard Model
sugra\&AMSB MSSM
ewsbMSSM
compos_last
Littlest Higgs-T
IMPORT OF MODELS

```
```

M CalcHEP/symb
Model: Standard Model

```

\section*{Abstract}

Calchep package is created for calculation of decay and high energy collision processes of elementary particles in the lowest order (tree) approximation. The main idea put into the Calchep was to make available passing from the lagrangian to the final distributions effectively with the high level of automatization.

Use F2 key to get information about interface facilities and F1 - as online help.

\section*{Edit model}

\section*{Parameters}

Constraints Particles Vertices
Libraries
RBNAMS CHBCK YOBML

Piter Process
Force bnit. Gaure 0re
Edit model
Delete model
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline >- Calchep/sy & & & & & & & & & & \(\times\) \\
\hline \multicolumn{11}{|c|}{Particles} \\
\hline \multicolumn{11}{|l|}{Clr-Del-Size-Read-ErrMes} \\
\hline Full name & IA & \(1 A^{+}\) & 1 number & 12*spin & 1 mass & I width & Icolor & rlaux & 1>LaTex(A) & \(\langle\mathrm{I}\rangle \operatorname{LaTeX}\left(\mathrm{A}^{+}\right)<\) \\
\hline gluon & & IG & 121 & 12 & 10 & 10 & 18 & IG & 1 g & 1 g \\
\hline photon & 1 A & IA & 122 & 12 & 10 & 10 & 11 & IG & I \gamma & I \gamma \\
\hline Z-boson & 12 & 12 & 123 & 12 & IMZ & IwZ & 11 & IG & 12 & 12 \\
\hline W-boson & \(1 \mathrm{~W}+\) & IW- & & 12 & IMW & I wh & 11 & IG & \(1 W^{\wedge}+\) & 1 W- \\
\hline Higgs & & Ih & 125 & 10 & IMh & \(1!\) wh & 11 & 1 & Ih & Ih \\
\hline electron & & IE & 111 & 11 & 10 & 10 & 11 & I & \(1 e^{\wedge}-\) & \(1 \mathrm{e}^{\wedge}+\) \\
\hline e-neutrino & Ine & \(\mathrm{INe}^{\mathrm{N}}\) & 112 & 11 & 10 & 10 & 11 & IL & I \({ }^{\text {anu_e }}\) & \ \bar\{\nu\}_e \\
\hline muon & & IM & 113 & 11 & 1 Mm & 10 & 11 & 1 & I \(\mathrm{mu}^{\wedge}\) - & \(1 \mathrm{mmu}^{\wedge}+\) \\
\hline m-neutrino & 1 nm & INm & 114 & 11 & 10 & 10 & 11 & IL & I \(\backslash\) nu_\mu & I \(\backslash \mathrm{bar}\{\backslash \mathrm{nu}\}\) _ \mu \(^{\text {a }}\) \\
\hline tau-lepton & 11 & IL & 115 & 11 & IM1 & 10 & 11 & 1 & I tau^- \(^{\text {- }}\) & I tau^- \(^{\text {- }}\) \\
\hline t-neutrino & Inl & INI & 116 & 11 & 10 & 10 & 11 & IL & I \nu_\tau & I barar\{\nu\}_\tau \(^{\text {a }}\) \\
\hline d-quark & & ID & 11 & 11 & 10 & 10 & 13 & 1 & Id & I \(\backslash\) bar \(\{\mathrm{d}\}\) \\
\hline u-quark & & IU & 12 & 11 & 10 & 10 & 13 & I & In & I \(\mathrm{barar}\{\mathrm{u}\}\) \\
\hline s-quark & & & 13 & 11 & 1 Ms & 10 & 13 & I & Is & I \({ }^{\text {bar }}\) [s\} \\
\hline c-quark & & IC & 14 & 11 & IMc & 10 & 13 & I & Ic & I \(\backslash\) bar \(\{\mathrm{c}\}\) \\
\hline b-quark & & & 15 & 11 & IMb & 10 & 13 & I & Ib & | \(\backslash\) bar \(\{\mathrm{b}\}\) \\
\hline t-quark & & & 16 & 11 & 1 Mt & I wt & 13 & I & It & I \(\mathrm{barar}\{\mathrm{t}\}\) \\
\hline
\end{tabular}

\section*{Edit model}

Parameters
Constraints
Particles
Vertices
Libraries
RENAME
CHECK MODEL
```

3ur (. CalcHEP/symb
Parameters
1
Clr-Del-Size-Read-ErrMes
Name I Value I> Comment
alfEMZ10.0078180608 IMS-BAR electromagnetic alpha(MZ)
alfSMZ10.1172 ISrtong alpha(MZ) for running mass calculation
Q I100 Iscale for running mass calculation
GG I1.238 IRunning Strong coupling. The given value doesn't matter.
SW 10.481
s12 10.221
s23 10.041
s13 10.0035
Mm 10.1057
M1 I1.777
McMc I1.2
Ms 10
MbMb 14.25
Mtp I175
MZ I91.187
Mh I120
wt I1.59
wZ I2.49444
wW 12.08895
F1-F2-Xgoto-Ygoto-Find-Write

```

```

C.) CalcHEP/symb
Constraints
Clr-Del-Size-Read-ErrMes
Name |> Expression
smOk | saveSM(MbMb,Mtp,SW, alfSMZ, alfEMZ,MZ,Ml)*saveSLHA (1)
mssmOk | suspectEwsbMSSMc (smOk,tb,MG1,MG2,MG3,Am,Al,At,Ab,MH3,mu,M12,Ml3,Mr2,Mr3,Mq2,Mq
%mssmOk| i sa jetEwsbMSSMc (smOk,tb,MG1,MG2,MG3,Am,Al,At,Ab,MH3,mu,Ml2,Ml3,Mr2,Mr3,Mq2,Mq3
%mssmOk| softSusyEwsbMSSMc (smOk,tb,MG1,MG2,MG3,Am,Al,At,Ab,MH3,mu,Ml2,M13,Mr2,Mr3,Mq2,M
%mssmOk | sphenoEwsbMSSMc (smOk,tb,MG1,MG2,MG3,Am,Al,At,Ab,MH3,mu,Ml2,Ml3,Mr2,Mr3,Mq2,Mq3
*drho |deltarho(mssmOk)
*gmuon |gmuon(mssmOk)
*bsgnlo|bsgnlo(mssmOk)
*bsmumu|bsmumu (mssmOk)
*LEPlim|masslimits(mssmOk)
Mb |MbEff(Q)*one(smOk)
Mt |MtEff(Q)*one(smOk)
*SC Isqrt(alphaQCD(Q)/12.566371)*one(smOk)
Mh |Mh(mssmOk)
MHH |MHH (mssmOk)
MHc |MHc(mssmOk)
alpha lalpha(mssmOk)
MNE1 |MNE1(mssmOk)
MNE2 |MNE2 (mssmOk)
MNE3 |MNE3 (mssmOk)
MNE4 |MNE4 (mssmOk)
MC1 |MC1(mssmOk)
MC2 |MC2(mssmOk)
MSG |MSG(mssmOk)
MCna IMCno(mesmnl)

```

\section*{रur (1) CalcHEP/symb}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Vertices} \\
\hline \multicolumn{6}{|l|}{Clr-Del-Size-Read-ErrMes-} \\
\hline A1 & | A 2 & |A3 & |A4 & |> Factor & <|> Lorentz part \\
\hline h & |W+ & | W- & | & | EE*MW/SW & |m2.m3 \\
\hline h & 12 & | 2 & I & |EE/ (SW* CW^ 2) \({ }^{\text {* }}\) MW & |m2.m3 \\
\hline h & Ih & Ih & I & 1-(3/2)*EE*Mh^2/(MW*SW) & |1 \\
\hline h & |h & |h & |h & \(1(-3 / 4) *(E E * M h /(M W * S W))^{\wedge} 2\) & 11 \\
\hline h & |h & |z & 12 & | (1/2)* (EE/ (SW*CW) \({ }^{\wedge}\) ^ 2 & |m3.m4 \\
\hline h & |h & | W+ & | W - & | (1/2)* (EE/SW)^ 2 & |m3.m4 \\
\hline M & Im & |h & I & 1-EE* \(\mathrm{Mm} /\left({ }^{*}{ }^{\text {M M }}\right.\) *SW) & 11 \\
\hline L & 11 & |h & I & |-EE*MI /(2*MW*SW) & 11 \\
\hline C & Ic & |h & I & 1-EE*MC/ (* \(^{\text {MW* }}\) SW) & 11 \\
\hline S & Is & |h & I & 1-EE*Ms/(\({ }^{*}\) MW*SW) & 11 \\
\hline B & |b & |h & I & 1-EE* Mb/ (* \(^{\text {MW* }}\) SW) & 11 \\
\hline T & It & |h & I & 1-EE*Mt / (2*MW*SW) & 11 \\
\hline E & 1 e & |A & I & 1-EE & |G(m3) \\
\hline M & |m & |A & I & 1-EE & IG(m3) \\
\hline L & 11 & |A & I & 1-EE & |G(m3) \\
\hline Ne & le & | \(\mathrm{N}+\) & I & |EE/ (2*Sqrt2*SW) & |G(m3)* (1-G5) \\
\hline Mam & |m & | \(\mathrm{N}+\) & I & |EE/(2*Sqrt2*SW) & |G(m3)* (1-G5) \\
\hline N1 & 11 & | \(\mathrm{W}+\) & | & |EE/ (\(\mathbf{2 * S q r t 2 * S W}\)) \(^{\text {S }}\) & |G(m3)* (1-G5) \\
\hline E & Ine & | N - & I & |EE/ (\({ }^{*}\) Sqrt2*SW) & |G(m3)* (1-G5) \\
\hline M & 1 nm & 10- & 1 & |EE/(2*Sqrt2*SW) & IG(m3)* (1-G5) \\
\hline L & \(\mid \mathrm{nl}\) & [W - & I & |EE/ (\({ }^{*}\) Sqrt2*SW) & |G(m3)* (1-G5) \\
\hline
\end{tabular}

\section*{Enter Process}

Force Unit. ©huge 0FP Bdit model
Delete model
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{sue - Calchep/symb} & \(\vee\) & \(\star\) \\
\hline \multicolumn{3}{|l|}{Model: Standard Model} & \\
\hline \multicolumn{3}{|c|}{List of particles (antiparticles)} & \\
\hline G(G) - gluon & A(A) - photon & \(Z(Z)\) - Z-boson & \\
\hline \(W+(W-)-W\)-boson & h(h)-Higgs & e(E)- electron & \\
\hline \(\mathrm{ne}(\mathrm{Ne})\) - e-neutrino & \(\mathrm{m}(\mathrm{M})\) - muon & \(\mathrm{nm}(\mathrm{Nm})\) - m-neutrino & \\
\hline \(1(\mathrm{~L}\)) - tau-lepton & nl (N1)- t-neutrino & d(D)-d-quark & \\
\hline \(\mathrm{u}(\mathrm{U})\)-u-quark & s(S)-s-quark & c(C) - c-quark & \\
\hline b(B) - b-quark & t (T)- t-quark & & \\
\hline
\end{tabular}

Enter process: p,p -> W,b,B composit ' p ' consists of: \(\mathrm{u}, \mathrm{U}, \mathrm{d}, \mathrm{D}, \mathrm{s}, \mathrm{S}, \mathrm{c}, \mathrm{C}, \mathrm{b}, \mathrm{B}, \mathrm{G}\) composit ' \(W\) ' consists of: \(W+, W-\)
Exclude diagrams with
```

Mos (CalcHEP/symb
Process: p.p W, W.B

Feynman diagrams
diagrams in 24 subprocesses are constructed. diagrams are deleted.

## View diagrams

Squaring technique Write down processes

```
vue . CalcHEP/symb v 人 x
 Model: Standard Model
 Process: p.p }->\mathrm{ W.b.B
 Feynman diagrams
 diagrams in 24 subprocesses are constructed.
diagrams are deleted.

\section*{```
View diagrams
```


## ```View diagrams``` <br> View diagrams

 diagrams in 24 subprocesses are constructed.

## View diagrams

Squaring technique
Write down processes

| 3uk Calchep/symb |  |  | $\checkmark$ ¢ $\quad$ x |
| :---: | :---: | :---: | :---: |
| Delete, On/off, Restore, Latex |  |  | 1/15 |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

1-Help,F2-Man, PgUp, PgDn, Home,End, \#, Esc


```
C code
C-compiler
Edit Linker
REDUCE code
MATHEMATICA code
FORM code
Enter new process
```

```
mak (- CalcHEP/symb
 Model: Standard Model
 Process: p.p W, W.B
```

```
 diagrams in 24 subprocesses are constructed. diagrams are deleted.
Squared diagrams
5208 diagrams are calculated. \(0 \quad\) Out of memory
```

C code

## C-compiler

Edit Linker REDUCE code MATHEMATICA code
FORM code
Enter new process

```
>wk (. CalcHEP/num
(sub)Process: u, D }->\mp@subsup{W}{+}{+},\textrm{b},\textrm{B
Monte Carlo session: 2(continue)
```


## Subprocess

IN state
Model parameters
Constraints
QCD coupling
Breit-Vigner
Cuts
Phase space mapping Vegas
Generate events


## Subprocess

IN state
Model parameters
Constraints
QCD coupling
Breit-Wigner
Cuts
Phase space mapping
Vegas
Generate events


## IN-STATE, Structure functions

```
Subprocess
IN state
Model parameters
Constraints
QCB coupling
Breit-Wigner
Cuts
Phase space mapping
Vegas
Generate events
```


## IN-STATE, Structure functions

```
S.F.1: OFF
S.F.2: OFF
First particle momentum[GeV] = 7000
Second particle morentur[CeV]] = 7000
First particle unpolarized
Second particle unpolarized
```


## IN-STATE, Structure functions

```
PDT :cteg6m(anti-proton)
PDT :cteq6m(proton)
PDT :cteqG1(anti-proton)
PDT :cteq61(proton)
PDT :CTEQ5M(anti-proton)
PDT :CTEQ5M(proton)
PDT:mrst2002nlo(anti-proton)
PDT :mrst2002nlo(proton)
PDT:mrst2002lo(anti-proton)
PDT:mrst20021o(protion)
```


## IN-STATE, Structure functions

```
S.F.1: PTI:cteafori(proton)
S.F.2: OFF
First particle momatur[CaU] : 7000
Second particle merituri(iell : 700
Finst particle mpolerized
Second particle upplarized
```


## back to menu

```
Subprocess
IN state
Model parameters
Constraints
QCD coupling
Breit-Wigner
Cuts
Phase space mapping
Vegas
Generate events
```

Subprocess
IN state
Model parameters

| alfEMZ | $=0.0078181$ |
| ---: | :--- |
| alfSMZ | $=0.1172$ |
| Q | $=100$ |
| SH | $=0.481$ |
| s 12 | $=0.221$ |
| s 23 | $=0.041$ |
| sin | $=0.0035$ |
| Mm | $=0.1057$ |
| Ml | $=1.777$ |
| McMc | $=1.2$ |
| Ms | $=0$ |
| MbMb | $=4.25$ |
| Mtp | $=175$ |
| MZ | $=91.187$ |
| Mh | $=120$ |

## Constraints, (Higgs width on the fly)



$$
\alpha_{s}\left(Q^{2}\right)
$$

| Subprocess |
| :--- |
| IN state |
| Model parameters |
| Constraints |
| QCD coupling |
| Breit-Xigner |
| Cuts |
| Phase space mapping |
| Yegas |
| Cenerate events |



Setting cuts before integration

| Subprocess |
| :--- |
| IN state |
| Model paraneters |
| Constraints |
| CCO coupling |
| Breit-Migner |
| Cuts |
| Phase space mapping |
| Vegas |
| Generate events |


| Cuts |
| :--- |
| Th/s table apples cuts on the phase space. A phase space function |
| Ls described in the first column. Its limits are defined and the second |
| and the third columns. If one of these fields is empty then a one-side |
| cut is applied. |
| The phase space function is defined by its name which characterize |
| type of cut and a particle list for which the cut is applied. |
| For example, "T(u)" means transverse momentum of 'u' -quark: |
| T(u,D) means summary transverse momentum of quark pair. |
| The following cut functions are available: |
| A - Angle in degree units: |
| C - Cosine of angle: |
| J - Jet cone angle: |
| E - Energy of the particle set: |
| M - Mass of the particle set: |
| P - Cosine in the rest frame of pair: |

Setting cuts before integration

## Subprocess <br> IN state <br> Model parameters <br> Constraints <br> QCD coupling <br> Breit-Wigner

## Cuts

Phase space mapping
Vegas
Generate events


## MC Integration, distributions




Putting all together, Les Houches Accords


Les Houches Accord: Examples
Pass on the names in a standard manner: PDG code.
$\left(\begin{array}{|c|c||c|c||c|c||c|c|}\hline \text { Code } & \text { Name } & \text { Code } & \text { Name } & \text { Code } & \text { Name } & \text { Code } & \text { Name } \\ \hline 1 & \mathrm{~d} & 11 & \mathrm{e}^{-} & 21 & \mathrm{~g} & & \\ 2 & \mathrm{u} & 12 & \nu_{\mathrm{e}} & 22 & \gamma & 35 & \mathrm{H}^{0} \\ 3 & \mathrm{~s} & 13 & \mu^{-} & 23 & Z^{0} & 36 & \mathrm{~A}^{0} \\ 4 & \mathrm{c} & 14 & \nu_{\mu} & 24 & W^{+} & 37 & \mathrm{H}^{+} \\ 5 & \mathrm{~b} & 15 & \tau^{-} & 25 & \mathrm{~h}^{0} & & \\ 6 & \mathrm{t} & 16 & \nu_{\tau} & & & 39 & \mathrm{G} \text { (graviton) } \\ \hline\end{array}\right.$

Les Houches Accord: Examples
Pass on the names in a standard manner: PDG code.

| Code | Name | Code | Name | Code | Name | Code | Name |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | d | 11 | $\mathrm{e}^{-}$ | 21 | g |  |  |
| 2 | u | 12 | $\nu_{\mathrm{e}}$ | 22 | $\gamma$ | 35 | $\mathrm{H}^{0}$ |
| 3 | s | 13 | $\mu^{-}$ | 23 | $Z^{0}$ | 36 | $\mathrm{~A}^{0}$ |
| 4 | c | 14 | $\nu_{\mu}$ | 24 | $W^{+}$ | 37 | $\mathrm{H}^{+}$ |
| 5 | b | 15 | $\tau^{-}$ | 25 | $\mathrm{~h}^{0}$ |  |  |
| 6 | t | 16 | $\nu_{\tau}$ |  |  | 39 | G (graviton) |

For New Physics particles, create new code names (1000000+), SLHA2

> Scalar Quarks

| FLV | No | YES | No | No | YES | YeS | $z$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RPV | No | No | YeS | No | YES | No | 2 |
| CPV | No | No | No | YES | No | YES | T |
| 1000001 | $\widetilde{d}_{L}$ | $\widetilde{d}_{1}$ | $\widetilde{d}_{1}$ | $\widetilde{d}_{L}$ | $\widetilde{d}_{1}$ | $\widetilde{d}_{1}$ | $\tilde{d}_{L}$ |
| 1000002 | $\widetilde{u}_{L}$ | $\widetilde{u}_{1}$ | $\tilde{u}_{1}$ | $\widetilde{u}_{L}$ | $\widetilde{u}_{1}$ | $\tilde{u}_{1}$ | $\widetilde{u}_{L}$ |
| 1000003 | $\widetilde{s}_{L}$ | $\widetilde{d}_{2}$ | $\widetilde{d}_{2}$ | $\widetilde{s}_{L}$ | $\widetilde{d}_{2}$ | $\widetilde{d}_{2}$ | $\widetilde{s}_{L}$ |
| 1000004 | $\widetilde{c}_{L}$ | $\widetilde{u}_{2}$ | $\widetilde{u}_{2}$ | $\widetilde{c}_{L}$ | $\widetilde{u}_{2}$ | $\widetilde{u}_{2}$ | $\widetilde{c}_{L}$ |
| 1000005 | $\widetilde{b}_{1}$ | $\tilde{d}_{3}$ | $\tilde{d}_{3}$ | $\widetilde{b}_{1}$ | $\tilde{d}_{3}$ | $\tilde{d}_{3}$ | $\widetilde{b}_{1}$ |
| 1000006 | $\tilde{t}_{1}$ | $\widetilde{u}_{3}$ | $\widetilde{u}_{3}$ | $\tilde{t}_{1}$ | $\widetilde{u}_{3}$ | $\widetilde{u}_{3}$ | $\tilde{t}_{1}$ |
| 2000001 | $\tilde{d}_{R}$ | $\tilde{d}_{4}$ | $\tilde{d}_{4}$ | $\widetilde{d}_{R}$ | $\tilde{d}_{4}$ | $\tilde{d}_{4}$ | $\tilde{d}_{R}$ |
| 2000002 | $\tilde{u}_{R}$ | $\widetilde{u}_{4}$ | $\tilde{u}_{4}$ | $\tilde{u}_{R}$ | $\widetilde{u}_{4}$ | $\tilde{u}_{4}$ | $\widetilde{u}_{R}$ |
| 2000003 | $\widetilde{s}_{R}$ | $\widetilde{d}_{5}$ | $\widetilde{d}_{5}$ | $\widetilde{s}_{R}$ | $\widetilde{d}_{5}$ | $\widetilde{d}_{5}$ | $\widetilde{s}_{R}$ |
| 2000004 | $\widetilde{c}_{R}$ | $\widetilde{u}_{5}$ | $\widetilde{u}_{5}$ | $\widetilde{c}_{R}$ | $\tilde{u}_{5}$ | $\widetilde{u}_{5}$ | $\widetilde{c}_{R}$ |
| 2000005 | $\widetilde{b}_{2}$ | $\widetilde{d}_{6}$ | $\widetilde{d}_{6}$ | $\widetilde{b}_{2}$ | $\widetilde{d}_{6}$ | $\widetilde{d}_{6}$ | $\widetilde{b}_{2}$ |
| 2000006 | $\tilde{t}_{2}$ | $\widetilde{u}_{6}$ | $\widetilde{u}_{6}$ | $\tilde{t}_{2}$ | $\widetilde{u}_{6}$ | $\widetilde{u}_{6}$ | $\tilde{t}_{2}$ |

Particle codes and corresponding labels for squarks.
The labels in the first column correspond to the current P. PBOGDJEMA, 70015 andadubrte-carlos for the

Les Houches Accord: Examples

|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1$ | ISTUP(I) | IDUP(1) | MOTHUP(1,I) | MOTHUP(2,I) | ICOLUP(1,I) | ICOLUP(2,I) |
| - | -1 | 21 (g) | 0 | 0 | 501 | 502 |
| 2 | -1 | 21 (g) | 0 | 0 | 503 | 501 |
| 3 | +2 | -6 ( $\bar{t})$ | 1 | 2 | 0 | 502 |
| 4 | +2 | $6(t)$ | 1 | 2 | 503 | 0 |
| 5 | +1 | -5 ( $\bar{b}$ ) | 3 | 3 | 0 | 502 |
| 6 | +1 | -24 ( $W^{-}$) | 3 | 3 | 0 | 0 |
| 7 | +1 | 5 (b) | 4 | 4 | 503 | 0 |
| 8 | +1 | $24\left(W^{+}\right)$ | 4 | 4 | 0 | 0 |

Pass the colour information, essential for parton shower and hadronisation, apart of course from the, kinematics

Les Houches Accord: Examples

|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ISTUP(I) | IDUP(I) | MOTHUP(1,I) | MOTHUP(2,I) | $\operatorname{ICOLUP}(1, \mathrm{I})$ | ICOLUP |
| 1 | -1 | 11 ( $e^{-}$) | 0 | 0 | 0 | 0 |
| 2 | -1 | -11 ( $e^{+}$) | 0 | 0 | 0 | 0 |
| 3 | +2 | $23\left(Z^{0}\right)$ | 1 | 2 | 0 | 0 |
| 4 | +2 | -1000002 ( $\bar{u}$ ) | 3 | 3 | 0 | 501 |
| 5 | +2 | $1000002(\widetilde{u})$ | 3 | 3 | 501 | 0 |
| 6 | +1 | 1 (d) | 4 | 4 | 502 | 0 |
| 7 | +1 | 1 (d) | 4 | 4 | 503 | 0 |
| 8 | +1 | -1 ( $\bar{d})$ | 5 | 5 | 0 | 504 |
| 9 | +1 | -1 ( $\bar{d})$ | 5 | 5 | 0 | 505 |

Great Idea: A New Physics Model

FINAL AIM
 quickly and efficiently

## from Konstantin Matchev

Experimentalist's complaint: This model is very nice, but do you have an event generator for it? is it in Pythia? not that many MC developers
On the other hand, too many model builders
$N_{\text {model builders }} \gg N_{\text {MCdev }} \rightarrow$
$N_{\text {existing models }} \gg N_{\text {implemented model }}$
even worse
$d N_{\text {existing models }} / d t \gg d N_{\text {implemented model }} / d t$

## SLHA 1 and 2

SLHA (1): MSSM, SLHA2 (CPV,RPV,NMSSM) Most of the authors have adopted it

- Signs $(\mu, .$.$) , factors of \sqrt{2}$
- Mixing angles conventions
- Eigenstates decomposition
- Renormalisation schemes/scales !!!
- Effective field content (sparticles integrated out or not)
- SLHA2 more of a headache, but we got there eventually


## BSM LHEF

This is a mix of

- SLHA2 and (model parameters)
introduce new SLHA like blocks QNUMBERS for each BSM particle containing PDG code, spin, elec. charge, colour rep., particle/antiparticle
- and LHEF2 (xml format) for event files

tree-level vs "1-loop level", fits after background subtraction?

FINAL AIM





## Spectrum Calc

MSSM
mSUGRA
GMSB, AMSB
NMSSM
RPV, CPV , ...

- TeXColour
- Extra-dim
- Little Higgs
- $f^{\star}, V^{\prime}$
- Black Holes (!)


## Flavour Calc

## Dark Matter

Event Generators

Fitters


MSSM
mSUGRA
GMSB, AMSB
NMSSM
RPV, CPV,...

- TeXColour
- Extra-dim
- Little Higgs
- $f^{\star}, V^{\prime}$
- Black Holes (!)


## Spectrum Calc

- FeynHiggs
- NMHDECAYネ
- RGE Codes

Isasusy
SoftSusy
Spheno
Suspect

## Flavour Calc

## Dark Matter

Event Generators

Fitters


## Event Generators

Spheno
Suspect

## Flavour Calc

- TeXColour
- Extra-dim
- Little Higgs
- $f^{\star}, V^{\prime}$
- Black Holes (!)
- $(g-2)_{\mu}$
- $b \rightarrow s \gamma$
- $B_{s} \rightarrow \mu^{+} \mu^{-}$
- Asym, $\Delta M, \cdots$

Dark Matter


MSSM
mSUGRA
GMSB, AMSB
NMSSM
RPV , CPV , ...

- TeXColour
- Extra-dim
- Little Higgs
- $f^{\star}, V^{\prime}$
- Black Holes (!)

| Spectrum Calc | Cross sections Calc, MEG |  |
| :---: | :---: | :---: |
| O Fe | - Tree-level,any |  |
|  | Calchep, Comphep |  |
| - NMHDECAY* | GRACE, FORMCalc |  |
| - RGE Codes | Madgraph |  |
| Isasusy | SHERPA/Amegic++ | Event Generators |
| SoftSusy | Whizard/O'Mega |  |
| Spheno | - 1-loop dedicated |  |
| Suspect | AF's SLEPTONS |  |
|  | Prospino, hprod |  |
| Flavour Calc | - 1-loop/General |  |
| Dedicated Codes | GRACE-SUSY |  |
| - SusybSG | FormCalc,SloopS | Fitters |
| - SuperIso | Decay Codes |  |

Dark Matter

| NP Models | Spectrum Calc |
| :---: | :---: |
| - SUSY | - FeynHiggs |
| MSSm |  |
| mSUGRA | - NMHDECAY* |
| GMSB, AMSB | - RGE Codes |
| NMSSm | Isasusy |
| RPV, CPV, $\ldots$ | SoftSusy |
| - TeXColour | Spheno |
| - Extra-dim | Suspect |
| - Little Higgs | Flavour Calc |
| - $f^{\star}, V^{\prime}$ | Dark Matter |
| 2 Black Holes (!) |  |

- Tree-level, any

CalcHEP, CompHEP
GRACE, FORMCalc
Madgraph
Event Generators
SHERPA/Amegic+
Whizard/O'Mega

- 1-loop dedicated

AF's SLEPTONS
Prospino, hprod

- 1-loop/General

GRACE-SUSY
Fitters

Decay Codes

BRIDGE
HDECAY
NMHDECAY*
SDECAY



MSSM
mSUGRA
GMSB, AMSB
NMSSM
RPV, CPV,...

- TeXColour
- Extra-dim
- Little Higgs
- $f^{\star}, V^{\prime}$
- Black Holes (!)


## Spectrum Calc

- FeynHiggs

NMHDECAY*
RGE Codes
Isasusy
SoftSusy
Spheno
Suspect

## Flavour Calc

## Dark Matter

- SIsoRelic
micrOMEGAs SloopS*
- DARKSUSY

0
IsaRED/RES

- Tree-level,any

CalcHEP, CompHEP
GRACE, FORMCalc

- 1-loop dedicated

AF's SLEPTONS
Prospino, hprod

- 1-loop/General

GRACE-SUSY
FormCalc, SloopS

## Fitters

## Decay Codes

- BRIDGE
〇 HDECAY
- NMHDECAY*
?
SDECAY





## Cross sections Calc, MEG Event Generators




## Cross sections Calc, MEG Event Generators




## NLO and better SM (and BSM) Tools

- Most of what was discussed was based on Feynman graphs
- I have not said much about MC at NLO
- NLO is essential
- Intense activity these last few years in NLO multi-leg
- many new techniques, string inspired to SYM/Wilson Loops and integrability connection though most of it conformal
- plans for $2 \rightarrow 3,4$ and benchmark cross sections

Yuri Dokhsitzer: "virtual SUSY is helping QCD ( twistor techniques!), QCD will pay back discovering "real" SUSY

## BSM Tools Repository

- http://www.ippp.dur.ac.uk/montecarlo/BSM

Please submit your code or get a code from there
otherwise google the codes I have described
If you contribute a code make it SLHA/LHEF compliant, if SLHA exists for the model please give a description of the code: what physics there is inside not just how to run it!!
at the moment about 50 BSM tools listed so far...

- other repositories, e.g. http://mcelrath.org/Notes/Software (see also open directory project)
- For codes that do the same things (or supposed to do the same thing) Comparison page like what is done with RGE (see Sabine Kraml's page)


## Organise round-tables involving model builders, calculation theorists, experimentalists

- More work on New Physics which is not SUSY
- for some SUSY models, probably need "background tools": contact with SM/QCD tools
- experimentalists need to speak up and ask what is needed most urgently : priority list (similar to what has been done for SM in Les Houches)
- how should codes be interfaced and written: modules, C++, SLHA,LHEF
- go to the Monte Carlo Schools and or the SUSY-BSM tools


## Progress/Conclusions

- A lot of progress and a lot of tools
- more and more on modularity and exchange of modules
- much easier now to contribute a new model
- Flexibility is the key
[-] Need to be ready to implement a model quickly
[-] Check output with different ME Calc./MC/MG
- This is now possible, while earlier even parameters of simple models hard wired, model implementation needed experts
- Now many tools automatize the different steps and as long as
[-] particles has spin $\leq 2$
[-] Standard couplings through known Lorentz structures, this precludes higher order operators in some MEG but ALOHA is on the way and CalcHEP/CompHEP are ready...
[-] decay chain does not end up in higher order or unusual colour


## End



## and send typos to

## boudjema@lapp.in2p3.fr

