
1

Foundations of statistics (4)

Andreas Hoecker (CERN)
CERN Summer Student Lecture, 26–29 July 2018

If you have questions, please do not hesitate to contact me: andreas.hoecker@cern.ch

2

Outline (4 lectures)

1st lecture:
• Introduction
• Probability

2nd lecture:
• Probability axioms and hypothesis testing
• Parameter estimation
• Confidence levels

3rd lecture:
• Maximum likelihood fits
• Monte Carlo methods
• Data unfolding

4th lecture:
• Multivariate techniques and machine learning

Multivariate techniques and machine learning

3

Event classification

Suppose data sample with two types of events: !", !#

• We have found discriminating input variables $#, $%, …

• What decision boundary should we use to select events of type !#?

4

Linear boundary? A nonlinear one?Rectangular cuts?

!#

!"

$#

$% !#

!"

$#

$% !#

!"

$#

$%

Low variance (stable), high bias methods High variance, small bias methods

Parameter regression

How to estimate a functional behaviour from a set of measurements? HEP examples:

• Energy deposit in a the calorimeter, distance between overlapping photons, …

• Entry location of a particle in the calorimeter or on a silicon pad, …

5

! !

"(!)

!

"(!)

Linear function ? A non-linear one ?Constant ?

Looks trivial? What if we have many input variables?
Note: the goal is not to fit given data, but to learn "(!) vs. ! to predict target "(!) for new measurements !

"(!)

6

These are the simplest applications of statistical machine learning (ML).
Most particle physics utilisations so far fall into this category

However, there is no limit of use cases for complex machine learning…

…as long as the ML algorithms are smart and efficient enough, there is sufficient
computing power and a complete set of training data

Also in particle physics we can apply ML to more complex problems. Among
these: track reconstruction, energy calibration, …

Table tennis (KUKA advertisement) Autonomous driving (Google)Image recognition

+ speech recognition, language understanding, syntax parsing, translation, face recognition, road hazard detection, …
and: PHYSICS !

7

Machine learning is giving computers the ability to learn without explicitly
programming them (Arthur Samuel, 1959)

It is fundamentally different from applying a set of fixed rules (a “program”) to
solve a problem

Chess computers in the 1980’s and 90’s Alpha Go in 2016

Rule-based programming Machine learning
(Deep reinforcement learning)

8

Not so long ago, real-life artificial intelligence used to be like this:

Such things still happen, but the improvements have nevertheless been astounding

!" → ! classification

!"
feature
space

Most general form:
$ = $ & ; & ∈ !"
& = &), … , &" : input variables

$ &

Plotting the resulting
$ & is test statistic:

Each event, Signal or Background, has 9 measured variables

® Find function that maximises the separation of the two classes

!

MLP
0.2 0.4 0.6 0.8 1

No
rm

al
iz

ed

0

1

2

3

4

5

6

7
Signal
Background

MLP
0.2 0.4 0.6 0.8 1

No
rm

al
iz

ed

0

1

2

3

4

5

6

7

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

TMVA output for classifier: MLP

9

$ &

PDF: $= &
PDF: $> &

?@ = 1
2C

$> − $= @

$> + $=
F$

Separation power:

var1+var2
-6 -4 -2 0 2 4 6

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3 Signal
Background

var1+var2
-6 -4 -2 0 2 4 6

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

Input variables (training sample): var1+var2

var1-var2
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

var1-var2
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

Input variables (training sample): var1-var2

var3
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0

0.05

0.1

0.15
0.2

0.25

0.3

0.35

0.4
0.45

var3
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0

0.05

0.1

0.15
0.2

0.25

0.3

0.35

0.4
0.45

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

Input variables (training sample): var3

var4
-4 -3 -2 -1 0 1 2 3 4 5

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

var4
-4 -3 -2 -1 0 1 2 3 4 5

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

Input variables (training sample): var4

var1+var2
-6 -4 -2 0 2 4 6

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3 Signal
Background

var1+var2
-6 -4 -2 0 2 4 6

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

Input variables (training sample): var1+var2

var1-var2
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

var1-var2
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

Input variables (training sample): var1-var2

var3
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0

0.05

0.1

0.15
0.2

0.25

0.3

0.35

0.4
0.45

var3
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0

0.05

0.1

0.15
0.2

0.25

0.3

0.35

0.4
0.45

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

Input variables (training sample): var3

var4
-4 -3 -2 -1 0 1 2 3 4 5

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

var4
-4 -3 -2 -1 0 1 2 3 4 5

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

Input variables (training sample): var4

var1+var2
-6 -4 -2 0 2 4 6

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3 Signal
Background

var1+var2
-6 -4 -2 0 2 4 6

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

Input variables (training sample): var1+var2

var1-var2
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

var1-var2
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

Input variables (training sample): var1-var2

var3
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0

0.05

0.1

0.15
0.2

0.25

0.3

0.35

0.4
0.45

var3
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0

0.05

0.1

0.15
0.2

0.25

0.3

0.35

0.4
0.45

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

Input variables (training sample): var3

var4
-4 -3 -2 -1 0 1 2 3 4 5

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

var4
-4 -3 -2 -1 0 1 2 3 4 5

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

Input variables (training sample): var4

…

!" → ! classification

Most general form:
$ = $ & ; & ∈ !"

& = &), … , &" : input variables
$ &

Each event, Signal or Background, has 9 measured variables

® Find function that maximises the separation of the two classes

!

MLP
0.2 0.4 0.6 0.8 1

No
rm

al
iz

ed

0

1

2

3

4

5

6

7
Signal
Background

MLP
0.2 0.4 0.6 0.8 1

No
rm

al
iz

ed

0

1

2

3

4

5

6

7

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

TMVA output for classifier: MLP

10

$ &

PDF: $= &
PDF: $> &

accept events
Plotting the resulting
$ & is test statistic:

?@ =
1
2
C

$> − $= @

$> + $=
F$

Separation power:

$GHI

!"
feature
space

var1+var2
-6 -4 -2 0 2 4 6

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3 Signal
Background

var1+var2
-6 -4 -2 0 2 4 6

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

Input variables (training sample): var1+var2

var1-var2
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

var1-var2
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

Input variables (training sample): var1-var2

var3
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0

0.05

0.1

0.15
0.2

0.25

0.3

0.35

0.4
0.45

var3
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0

0.05

0.1

0.15
0.2

0.25

0.3

0.35

0.4
0.45

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

Input variables (training sample): var3

var4
-4 -3 -2 -1 0 1 2 3 4 5

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

var4
-4 -3 -2 -1 0 1 2 3 4 5

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

Input variables (training sample): var4

var1+var2
-6 -4 -2 0 2 4 6

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3 Signal
Background

var1+var2
-6 -4 -2 0 2 4 6

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

Input variables (training sample): var1+var2

var1-var2
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

var1-var2
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

Input variables (training sample): var1-var2

var3
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0

0.05

0.1

0.15
0.2

0.25

0.3

0.35

0.4
0.45

var3
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0

0.05

0.1

0.15
0.2

0.25

0.3

0.35

0.4
0.45

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

Input variables (training sample): var3

var4
-4 -3 -2 -1 0 1 2 3 4 5

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

var4
-4 -3 -2 -1 0 1 2 3 4 5

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

Input variables (training sample): var4

var1+var2
-6 -4 -2 0 2 4 6

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3 Signal
Background

var1+var2
-6 -4 -2 0 2 4 6

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

Input variables (training sample): var1+var2

var1-var2
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

var1-var2
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

Input variables (training sample): var1-var2

var3
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0

0.05

0.1

0.15
0.2

0.25

0.3

0.35

0.4
0.45

var3
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0

0.05

0.1

0.15
0.2

0.25

0.3

0.35

0.4
0.45

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

Input variables (training sample): var3

var4
-4 -3 -2 -1 0 1 2 3 4 5

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

var4
-4 -3 -2 -1 0 1 2 3 4 5

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

Input variables (training sample): var4

…

!" → ! classification

MLP
0.2 0.4 0.6 0.8 1

No
rm

al
iz

ed

0

1

2

3

4

5

6

7
Signal
Background

MLP
0.2 0.4 0.6 0.8 1

No
rm

al
iz

ed

0

1

2

3

4

5

6

7

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

TMVA output for classifier: MLP

11

$ %

PDF: $* %
PDF: $+ %

accept events

0 1

1

0

Best ROC curve
given by likelihood ratio

Type-1 error small
Type-2 error large

Type-1 error large
Type-2 error small

Remember the ROC curve ?

• Varying cut value ,-./ moves working point (efficiency and purity) along the ROC curve

• Best ROC curve given by likelihood ratio (Neyman-Pearson lemma)

$0121 − 5*

5+

[*Receiver Operation Characteristic] *

$012

!" → ! classification

MLP
0.2 0.4 0.6 0.8 1

No
rm

al
iz

ed

0

1

2

3

4

5

6

7
Signal
Background

MLP
0.2 0.4 0.6 0.8 1

No
rm

al
iz

ed

0

1

2

3

4

5

6

7

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

TMVA output for classifier: MLP

12

$ %

PDF: $* %
PDF: $+ %

accept events

0 1

1

0

Remember the ROC curve ?

• Varying cut value ,-./ moves working point (efficiency and purity) along the ROC curve

• Best ROC curve given by likelihood ratio (Neyman-Pearson lemma)

$0121 − 5*

5+

random guessing

good classification

better classification

Best ROC curve
given by likelihood ratio

!" → ! classification

MLP
0.2 0.4 0.6 0.8 1

No
rm

al
iz

ed

0

1

2

3

4

5

6

7
Signal
Background

MLP
0.2 0.4 0.6 0.8 1

No
rm

al
iz

ed

0

1

2

3

4

5

6

7

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

TMVA output for classifier: MLP

13

$ %

PDF: $* %
PDF: $+ %

accept events

Remember the ROC curve ?

• Varying cut value ,-./ moves working point (efficiency and purity) along the ROC curve

• Best ROC curve given by likelihood ratio (Neyman-Pearson lemma)

$012

Once the ROC curve is known, how to choose
the optimal ,-./ value? This depends on
expected abundance of 3 and 4

• For measurement of signal cross section:
maximise 3/ 3 + 4

• Discovery of a signal: maximum of 3/ 4
• Precision measurement: high signal purity

• Trigger selection: high efficiency (7+)
(sometimes high background rejection)

Note that in realistic cases systematic uncertainties
also need to be considered in optimisation procedure!

!" → !$ multi-class classification

14

Signal Background

Binary classification: two classes,
signal versus background

!" → !$ multi-class classification

15

Multi-class classification: natural extension
for many classifiers (similar for multi-target
regression)

Class 1
Class 2

Class 3

Class 5

Class 6

Class 4

!" → !$ multi-class classification

16

Multi-class classification: very useful to
simultaneously separate signal and different
background classes

ttH
tt+Z

tt+W

WZ

tt

Some sample Feynman diagrams made by axodraw

Note:
– Use axodraw.sty consistently and everywhere!
– Colours are for illustration only, please use black-and-white diagrams by default!
– Please use shorthands for particle names and parameters as specified in the style files
of the Yellow Report!

Couplings:

∝ MWH

W,Z

W,Z

∝ mfH

f̄

f

Production channels:

H

t

t

t

H

W,Z

W,Z

H

q

q

W,Z

W,Z

H

t

t̄

t

t

Decay channels:

b, τ−

H

b̄, τ+

t
g

H t

t
g

γ

H t,W

γ

W,Z

H

W,Z

1

Realistic event classification / parameter regression

17

Unfortunately, the true probability density functions are typically unknown: Neyman-
Pearson’s lemma doesn’t really help us…

Use MC simulation, or more generally a set of known “events” as a training sample
for the classification / regression (machine learning) problem

• Try to estimate the functional form of the PDFs from which the classification likelihood
ratio or regression target can be obtained

� e.g. D-dimensional histogram, Kernel densitiy estimators, MC-based matrix-element methods, …

• Find a discrimination function ! " and corresponding decision boundary (i.e. a hyperplane
in the feature space: ! " = const) for optimal separation or optimal target fitting

� e.g. Linear Discriminator, Neural Networks, Boosted Decision, …

® Supervised machine learning

No magic here, still need to: choose the discriminating variables, choose the class of models (linear,
non-linear, flexible or less flexible), tune the “learning parameters” (bias vs. variance trade off), check
generalization properties (avoid overtraining), consider trade off between statistical and systematic
uncertainties

Machine learning categories

18

Supervised learning: training with “events” for which outcome (“signal”, “background”,
“regression target”, …) is known, eg, from Monte Carlo simulation

Unsupervised learning: no prior knowledge about specific event classes or targets.
One could then try, for example, in the given dataset to perform a

• Cluster analysis: if different “groups” are found ® assign class labels

• Principal component analysis (PCA): find basis in observable space with biggest
hierarchical differences in the variance ® infer underlying data structure

• Example: correlation analysis for medical survey: group people and perhaps find
common causes for certain diseases (similar for market surveys)

Reinforcement-learning: learn from “success” or “failure” of some “action policy” via
feedback loop (example: a robot falls / does not fall, or wins / looses a game, …)

So far, most applications in particle physics (HEP) use supervised learning owing to the
good theoretical understanding and power of Monte Carlo simulation ® only form of
machine learning discussed in this lecture

Classification techniques

19

Discuss also regression
where applies

Projective likelihood estimator

20

Traditionally much liked in HEP (less recently): normalised 1D probability density estimators
for each input variable combined by multiplying the marginal PDFs of all input variables

PDE introduces fuzziness
in feature space separation

Ignores correlations between input variables

• Optimal approach if correlations are zero
(or can be eliminated by variable redefinition)

• Otherwise (most realistic cases): significant performance loss

where the products are over all ! = 1…%&'(input variables

)*(+,-./ =
∏1 21

3/45'6 (81)
∏1 21

3/45'6 (81) + ∏1 21
;'<=4(+>5? (81)

Projective likelihood estimator

21

May use:

• parametric fitting by function
® Difficult to automate for arbitrary PDFs

• nonparametric fitting
® Easy to automate, can create artefacts

• event counting / histogram
® Automatic, unbiased, but sub-optimal (fluctuations)

Technical challenge: how to estimate the PDF shapes of the input variables to build the
projective likelihood estimator ?

Multidimensional likelihood estimator

22

Overcome limitations of projective method by mapping full feature space: single PDF per
event class (eg, signal, background) which spans ! dimensions

H1

H0

x1

x2

test
event

Estimate density of signal / background events using training data sample in “vicinity” of
to be classified (“test”) event

Multidimensional likelihood estimator

23

Overcome limitations of projective method by mapping full feature space: single PDF per
event class (eg, signal, background) which spans ! dimensions

Estimate density of signal / background events using training data sample in “vicinity” of
to be classified (“test”) event

For example: count number of
signal and background events in
rectangular volume (V) around
test event

Volume size can be adaptive to allow
for varying training point density

H1

H0

x1

x2

test
event

• Improved estimate within V by using !-dimensional kernel estimators (eg, Gauss)
• Enhance speed of event counting in volume with use of sorted binary tree search
• Regression is similar: take average training target values in vicinity of test event

V

• Improved estimate within V by using !-dimensional kernel estimators (eg, Gauss)
• Enhance speed of event counting in volume with use of sorted binary tree search
• Regression is similar: take average training target values in vicinity of test event

Multidimensional likelihood estimator

24

Overcome limitations of projective method by mapping full feature space: single PDF per
event class (eg, signal, background), which spans ! dimensions

Estimate density of signal / background events using training data sample in “vicinity” of
to be classified (“test”) event

For example: count number of
signal and background events in
rectangular volume (V) around
test event

Volume size can be adaptive to allow
for varying training point density

H1

H0

x1

x2

test
event

V

k-Nearest Neighbor Method

Better than searching within a volume (fixed or floating), count adjacent reference
events until statistically significant number reached

• Method is intrinsically adaptive

Curse of dimensionality

25

Filling a !-dimensional histogram to get a mapping of the
PDF is typically unfeasible due to lack of training events

Shortcoming of nearest-neighbour methods:

In higher dimensional cases the idea of looking at “training events” in a reasonably local
“vicinity” of the space point to be tested becomes difficult

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

test

Fraction of volume

Ed
ge

 le
ng

th

! = 10

! = 5

! = 2

! = 1

1% of '
Consider total phase space volume ' = 1(:

• For a cube of a particular fraction of the
volume: Edge length = (Fraction of volume)=/(

• In 10 dimensions: to capture 1% of the
volume, 63% of range in each variable needed
® that’s not “local” anymore !

® Need techniques with better curse of
dimensionality

Fisher’s linear discriminant analysis (LDA)

26

Simple and elegant classifier

• Determine axis in the feature space such that a projection of events
onto this axis pushes signal and background as far away from each
other as possible, while confining events of same class in close
vicinity to each other

H1

H0

x1

x2 H1

H0

x1

x2

Projection
axis

!" = Fisher coefficients

• Fisher coefficients are computed using the signal and background
covariance matrices

• Distinct sample means between signal and background are required

• Optimal classifier for linearly correlated Gaussian-distributed variables

#$%&'() = !+ + -
"./0)%012(&

3" 4 !" Fisher projection

Fisher’s linear discriminant analysis

27

By definition, a linear discriminant can only solve linear problems. Most real-life problems
have however some degree of non-linearity

Consider the following two-variable toy examples:

Linear correlations
(same for signal and background)

Cross-linear correlations
(opposite for signal and background)

Circular correlations
(same for signal and background)

Fisher’s linear discriminant analysis

28

By definition, a linear discriminant can only solve linear problems. Most real-life problems
have however some degree of non-linearity

The events are weighted by the signal-likeness of the classifier output (red = most signal-line)

Linear correlations
(same for signal and background)

Cross-linear correlations
(opposite for signal and background)

Circular correlations
(same for signal and background)

Optimal performance
(in Neyman-Pearson sense)

Almost zero separation Poor performance

Non-linear analysis: Artificial Neural Network (NN)

29

Modification of Fisher discriminant to form arbitrary non-linear decision boundaries

! " = sigmoid *
+,-

.
/+ℎ+(")

! " built from set of “basis” functions ℎ+ "
ℎ+ " is sufficiently general (i.e. non linear)
® can model any function (mathematically proven)

Now we form the following:

! " = 3 *
+,-

.
/+ 3 /+4 +*

6,-

7
/+6"6

ℎ+
3 = 1

1 − :;<
sigmoid ”activation”
function (other options:
tanh, …)

= > is:
a non linear (sigmoid) function of

a linear combination of
non linear function(s) of

linear combination(s) of
the input data

Ready is the Neural Network. We “only”
need to find the appropriate “weights” ?@A

Non-linear analysis: Artificial Neural Network

30

Architecture of feed-forward multilayer perceptron (MLP):

50!Rare B-decays WS, 14 Apr 2011! Andreas Hoecker – Limits setting with c & c and multivariate analysis!

Nonlinear Analysis: Artificial Neural Networks!

•  Achieve nonlinear classifier response by “activating”
output nodes using nonlinear weights !

1

i

...
N

 1 input layer k hidden layers 1 ouput layer

1

j

M1

...

. . . 1

...
Mk

2 output classes
(signal and background)

Nvar discriminating
input variables

...
...

(“Activation” function)

with:

Fe
ed

-fo
rw

ar
d

M
ul

til
ay

er
 P

er
ce

pt
ro

n

Weight adjustment using
analytical back-propagation !

Use MLP: TMVA’s own MLP implementation for increased performance and flexibility!

•  Three different implementations in TMVA (all are Multilayer Perceptrons) !
• Nodes in hidden layer represent the “activation functions” whose arguments are linear

combinations of input variables ® non-linear response to the input

• Output is a linear combination of outputs from the activation functions at the internal nodes

• Input to the layers from preceding nodes only ® feed forward network (no backward loops)

• It is straightforward to extend this to several input layers

Neural network training

31

NN training (= fit of weights !"#) ® minimisation of loss function $ % . Examples:

Regression:

& ! = (

")*

+,-,./0

&"(2"; !) =
1

2
(

")*

+,-,./0

7"
89:;< − 7 2"; !

>

true value (training data)
predicted value (NN output)

Classification:

& ! = (

")*

+,-,./0

&"(2"; !) = − (

")*

+,-,./0

7"
89:;< ? ln 7 2"; ! + 1 − 7"

89:;< ? ln(1 − 7 2";!)

7"
89:;< = C

1, if G signal

0, if G background
where:

Weight fitting, eg, via steepest gradient descent: !S# → !S# − U (

")*

+,-,./0
V&"(2"; !)

V!S#

Neural network training

32

Weight fitting is the art of NN: ! " and #$ "$; & are highly non-parabolic functions,
with narrow valleys and numerous local minima

• Methods to accelerate descent when gradient direction unchanged

• Local minima are mostly not a serious problem in large networks
(finding global minimum represents overtraining)

• Bad critical points are often saddle points

Fi
gu

re
 fr

om
:

ht
tp

s:
//e

n.
w

ik
ip

ed
ia

.o
rg

/w
ik

i/M
ax

im
a_

an
d_

m
in

im
a

NNs with many hidden layers used to be impossible to train due to vanishing gradient
problem '#$("$; &)/'&+, ≈ 0 for all but last layers. Enormous recent progress:

• Layer-wise pre-training using for example auto-encoding

• Activation functions whose gradient do not vanish

• Smarter random weight initialisation

• Stochastic gradient decent with ‘momentum’

• Weight regularisation to reduce network complexity (eg, weight decay, dropout)

Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

its posterior probability given the training data. This can sometimes be approximated quite
well for simple or small models (Xiong et al., 2011; Salakhutdinov and Mnih, 2008), but we
would like to approach the performance of the Bayesian gold standard using considerably
less computation. We propose to do this by approximating an equally weighted geometric
mean of the predictions of an exponential number of learned models that share parameters.

Model combination nearly always improves the performance of machine learning meth-
ods. With large neural networks, however, the obvious idea of averaging the outputs of
many separately trained nets is prohibitively expensive. Combining several models is most
helpful when the individual models are di↵erent from each other and in order to make
neural net models di↵erent, they should either have di↵erent architectures or be trained
on di↵erent data. Training many di↵erent architectures is hard because finding optimal
hyperparameters for each architecture is a daunting task and training each large network
requires a lot of computation. Moreover, large networks normally require large amounts of
training data and there may not be enough data available to train di↵erent networks on
di↵erent subsets of the data. Even if one was able to train many di↵erent large networks,
using them all at test time is infeasible in applications where it is important to respond
quickly.

Dropout is a technique that addresses both these issues. It prevents overfitting and
provides a way of approximately combining exponentially many di↵erent neural network
architectures e�ciently. The term “dropout” refers to dropping out units (hidden and
visible) in a neural network. By dropping a unit out, we mean temporarily removing it from
the network, along with all its incoming and outgoing connections, as shown in Figure 1.
The choice of which units to drop is random. In the simplest case, each unit is retained with
a fixed probability p independent of other units, where p can be chosen using a validation
set or can simply be set at 0.5, which seems to be close to optimal for a wide range of
networks and tasks. For the input units, however, the optimal probability of retention is
usually closer to 1 than to 0.5.

1930

Deep neural networks

33

Deep neural network = Artificial neural network with many hidden layers

That’s all it means, but it has important consequences

Deep & convolutional neural networks

34

Many hidden layers (& usage of convolution kernels) allows NN to learn hierarchy of features

https://developer.nvidia.com/deep-learning-course

Raw data Low-level features Mid-level features High-level features

Getting rid of “hand-crafted features” revolutionised:

• Image recognition, speech recognition, natural language processing

• Complex automation (eg, self-driving car)

And particle physics ?

• Track fitting (helix pattern recognition)? Event reconstruction from 4-vectors?

• While most high-level MVAs applications are yet simple, more and more interesting
applications for deep NNs appear

Deep Learning

35

Deep learning is the idea that an artificial intelligence system should learn
abstract / high-level / hierarchical representations of the world

Yann Lecun (head of FAIR, Facebook AI research), in a Quora session, July 2016

https://www.quora.com/session/Yann-LeCun/1

Non-linear analysis: Artificial Neural Network

36

Let’s see how well a simple NN deals with the previous two-variable toy examples:

Linear correlations
(same for signal and background)

Cross-linear correlations
(opposite for signal and background)

Circular correlations
(same for signal and background)

Optimal performance
(in Neyman-Pearson sense)

Optimal performance Optimal performance

Recall, linear Fisher
discriminant case:

Non-linear analysis: Artificial Neural Network

37

Let’s see how well a simple NN deals with the previous two-variable toy examples:

Linear correlations
(same for signal and background)

Cross-linear correlations
(opposite for signal and background)

Circular correlations
(same for signal and background)

Optimal performance
(in Neyman-Pearson sense)

Optimal performance Optimal performance

Recall, linear Fisher
discriminant case:

Boosted decision trees (BDT)

38

Decision tree: sequential application of cuts splits the data into nodes, where
the final nodes (leafs) classify an event as signal or background by majority vote

Growing a tree:

• Start with Root node

• Split training sample according to cut
on best variable at this node

• Splitting criterion: e.g., maximum “Gini-
index”: purity ' (1 − purity)

• Continue splitting until min. number of
events or max. depth/purity reached

• Classify leaf node according to majority
of events, or give weight; unknown test
events are classified accordingly

Boosted decision trees (1996): combine many decision trees in forest, with differently
weighted events in each tree (trees themselves can also be weighted)

Shortcoming: instability, sensitivity to overtraining

(Adaptive) Boosting

39

Idea: emphasise different features in data sample (eg, hard to classify events)

• AdaBoost re-weights events mis-
classified by previous classifier by:

!"#$
(&) = 1 − +"#$

(&)

+"#$
(&)

Training sample , - (.)

Weighted sample

re-weight by !"#$
(-)

Weighted sample

re-weight by !"#$
(/)

re-weight by !"#$
(0)

Weighted sample

…

, / (.)

, 0 (.)

, 1 (.)

Decision trees:

+"#$ =
No. of misclassi<ied events

No. of all eventswith

• Final BDT obtained from (weighted)
sum over all decision trees:

B . =C
&D/

1
ln !"#$

(&) E , & (.)

re-weight by !"#$
(1F/)

• Different boosting algorithms:
bagging (bootstrap), randomised
trees, gradient boost, …. mostly
similar performance

Boosted decision trees (BDT)

Let’s see how well a BDT deals with the previous two-variable toy examples:

Linear correlations
(same for signal and background)

Cross-linear correlations
(opposite for signal and background)

Circular correlations
(same for signal and background)

Good performance Good performance Good performance

C
la

ss
ifi

ca
tio

n
er

ro
r

Training cycles

Overtraining

41

Algorithms with many tuning parameters (large flexibility) can be subject to overtraining,
ie, they tune to statistically insignificant information in the training sample

Remedies against overtraining

• Regularisation (pruning, smearing (eg, bagging), weight decay, …)

• Cross-validation (resample training data, see next slide)

S

B

x1

x2S

B

x1

x2

or ?
True performance
(independent sample)

Training performance

Classifier too flexible
® overtraining

Overtraining produces bias if performance is estimated from training sample (which is not
allowed!). If independent performance evaluation is guaranteed, “some” overtraining is
not a problem as usually little performance loss (in particular for BDTs)

large ← Regularisation → small

Cross validation

42

Overtraining can be reduced (and algorithm performance improved) by increasing size
of training data sample

Also: division of dataset into independent “training”, “test” and “validation” sample?
® Not optimal!

Cross validation: divide full data sample into ! independent subsamples, eg, " = 3

• Train algorithm by using all but the %-th sample

• Use %-th sample as “test”

• Iterate % through all ! samples

® Allows to use fraction of (" − 1)/" of available events for training, and all " for testing

Train-A

Train-A

Test-A

Example
for " = 3:

Training A

Train-B

Test-B

Train-B

Training B

Test-C

Train-C

Train-C

Training C

Fu
ll d

at
a

sa
m

pl
e

To “test” the performance, iterate over
all events and use corresponding
trainings and test samples
® all data used for testing!
For application: use, eg, average of all
3 trainings

Digression — Categories

43

Multivariate training samples often have distinct sub-populations of data

• A detector element may only exist in the barrel, but not in the endcaps

• A variable may have different properties in barrel, overlap, endcap regions

Ignoring this dependence generates correlations between variables that must be learned

• Algorithms such as the projective likelihood, which do not account for correlations,
significantly loose performance if the sub-populations are not separated

Categorisation means splitting the data sample into categories
defining disjoint ensembles with the (idealised) properties:

• Events belonging to the same category are statistically
indistinguishable

• Events belonging to different categories have different
properties

• A machine learning algorithm is trained in each category

44

Multivariate classification has a long tradition in particle physics to improve the detector
performance and to increase the statistical sensitivity of data analyses

The use of multivariate regression in particle physics is relatively new, mainly for
calibration purposes, and can certainly be further developed

Multivariate multi-class classification & regression have a large field of application in LHC
analyses due to the widely used simultaneous control-region / signal-region fit approach

Boosted decision trees are a particularly popular multivariate method in particle physics
due to their overall good performance, simple optimisation and robustness

Machine learning with deep neural networks are the future of the field due to their
capability of hierarchical feature organisation allowing to attack complex problems

Summary

