



Workshop: Low-x gluon structure of nuclei and signals of saturation at LHC CERN, March 27th 2018

# Lessons from EIC: how to determine the gluon density

Néstor Armesto Departamento de Física de Partículas and IGFAE Universidade de Santiago de Compostela

nestor.armesto@usc.es











### Contents:

#### I. Introduction.

#### 2. Present status of nPDFs:

- $\rightarrow$  Available sets.
- → Further constrains from the LHC.

#### 3. Nuclear PDFs from EICs:

- → Kinematics.
- → The method.
- → Constraints on nPDFs.

#### 4. Summary.

See the talks by Vadim Guzey, Juan Rojo and Ilkka Helenius.



Bound nucleon 

 free nucleon: search for process independent
 nPDFs that realise this condition, assuming collinear factorisation.

$$\sigma_{\mathrm{DIS}}^{\ell+A\to\ell+X} = \sum_{i=q,\overline{q},g} f_i^A(\mu^2) \otimes \hat{\sigma}_{\mathrm{DIS}}^{\ell+i\to\ell+X}(\mu^2)$$
Nuclear PDFs, obeying Usual perturbative coefficient functions
$$^A(x,Q^2) = R_i^A(x,Q^2) f_i^p(x,Q^2) \quad R = \frac{f_i/A}{Af_{i/p}} \approx \frac{\text{measured}}{\text{expected if no nuclear effects}}$$

N.Armesto, 27.03.2018 - Lessons from EIC: 1. Introduction.

 $f_i^{p,i}$ 

# Collinear approach:

Anti-shadowing

• At an ep/eA collider:

→ PDF of a single nucleus possible, no need of ratios that would be obtained a posteriori.

 $\rightarrow$  Same method of extraction in both ep and eA.

→ Physics beyond standard collinear factorisation can be studied in a single setup, with size effects disentangled from energy effects and a large lever arm in x at perturbative  $Q^2$ .

$$\sigma_{\mathrm{DIS}}^{\ell+A\to\ell+X} = \sum_{i=q,\overline{q},g} f_i^A(\mu^2) \otimes \hat{\sigma}_{\mathrm{DIS}}^{\ell+i\to\ell+X}(\mu^2)$$
Nuclear PDFs, obeying Usual perturbative coefficient functions
$$p,A(x,Q^2) = R_i^A(x,Q^2) f_i^p(x,Q^2) \quad R = \frac{f_i/A}{Af_{i/p}} \approx \frac{\text{measured}}{\text{expected if no nuclear effects}}$$

N.Armesto, 27.03.2018 - Lessons from EIC: 1. Introduction.

## Summary of machines:

#### Lepton-proton/nucleus scattering facilities



N.Armesto, 27.03.2018 - Lessons from EIC: 1. Introduction.

### Contents:

I. Introduction.

#### 2. Present status of nPDFs:

- $\rightarrow$  Available sets.
- → Further constrains from the LHC.

#### 3. Nuclear PDFs from EICs:

- → Kinematics.
- → The method.
- → Constraints on nPDFs.
- 4. Summary.

See the talks by Vadim Guzey, Juan Rojo and Ilkka Helenius.

### Available sets:

| SET            |      | HKN07<br>PRC76<br>(2007)<br>065207                                             | <b>EPS09</b><br>JHEP 0904<br>(2009) 065                                                  | <b>DSSZ</b><br>PRD85 (2012)<br>074028                                                  | <b>nCTEQ15</b><br>PRD93 (2016)<br>085037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>KAI5</b><br>PRD93 (2016)<br>014036         | <b>EPPS I 6</b><br>EPJC C77<br>(2017) I 63                    |  |
|----------------|------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------|--|
|                | eDIS | ~                                                                              | ~                                                                                        | ✓                                                                                      | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ~                                             | ~                                                             |  |
|                | DY   | <ul> <li>✓</li> </ul>                                                          | ✓                                                                                        | ✓                                                                                      | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ✓                                             | ~                                                             |  |
| data           | π0   | ×                                                                              | >                                                                                        | >                                                                                      | <ul> <li>Image: A set of the set of the</li></ul> | ×                                             | <ul> <li>✓</li> </ul>                                         |  |
|                | vDIS | ×                                                                              | ×                                                                                        | ✓                                                                                      | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×                                             | <ul> <li>✓</li> </ul>                                         |  |
|                | pPb  | ×                                                                              | ×                                                                                        | ×                                                                                      | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×                                             | ✓                                                             |  |
| # data         |      | 1241                                                                           | 929                                                                                      | 1579                                                                                   | 740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1479                                          | 1811                                                          |  |
| order          |      | NLO                                                                            | NLO                                                                                      | NLO                                                                                    | NLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NNLO                                          | NLO                                                           |  |
| proton<br>PDF  |      | MRST98                                                                         | CTEQ6. I                                                                                 | MSTW2008                                                                               | ~CTEQ6.I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | JR09                                          | CT14NLO                                                       |  |
| mass<br>scheme |      | ZM-VFNS                                                                        | ZM-VFNS                                                                                  | GM-VFNS                                                                                | GM-VFNS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ZM-VFNS                                       | GM-VFNS                                                       |  |
| comments       |      | Δχ <sup>2</sup> =13.7,<br>ratios, <u>no</u><br><u>EMC for</u><br><u>gluons</u> | Δχ <sup>2</sup> =50, ratios,<br><u>huge</u><br><u>shadowing-</u><br><u>antishadowing</u> | Δχ <sup>2</sup> =30, ratios,<br><u>medium-modified</u><br><u>FFs for π<sup>0</sup></u> | Δχ <sup>2</sup> =35, PDFs,<br>valence <u>flavour</u><br><u>sep., not enough</u><br><u>sensitivity</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PDFs, <u>deuteron</u><br><u>data included</u> | $\Delta \chi^2 = 52$ flavour<br>sep., ratios,<br>LHC pPb data |  |

### Available sets:

|                     | SET                                                                             | HKN07<br>PRC76<br>(2007)                                                                                                                                                                                       | <b>EPS09</b><br>JHEP 0904 | <b>DSSZ</b><br>PRD85 (2012)<br>074028                                                  | <b>nCTEQ15</b><br>PRD93 (2016)<br>085037                                                              | <b>KAI5</b><br>PRD93 (2016)<br>014036         | <b>EPPS I 6</b><br>EPJC C77<br>(2017) 163                           |
|---------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------|
|                     | <ul> <li>Cent</li> </ul>                                                        | rality                                                                                                                                                                                                         |                           | · · · · · · · · · · · · · · · · · · ·                                                  | 005057<br>✓                                                                                           |                                               | (2017)105                                                           |
|                     | depend                                                                          | ndence (EPS09s)<br>rom data but from<br>dependence of                                                                                                                                                          |                           | <ul> <li></li> <li></li> </ul>                                                         | · ·                                                                                                   | <ul> <li></li> <li></li> </ul>                | · ·                                                                 |
|                     | not fro                                                                         |                                                                                                                                                                                                                |                           | ✓                                                                                      | ✓                                                                                                     | ×                                             | ✓                                                                   |
|                     | <ul> <li>the A-dependence of the parameters.</li> <li>Several models</li> </ul> |                                                                                                                                                                                                                | ✓                         | ×                                                                                      | ×                                                                                                     | ✓                                             |                                                                     |
|                     |                                                                                 |                                                                                                                                                                                                                | ×                         | ×                                                                                      | ×                                                                                                     | ✓                                             |                                                                     |
| - provid            |                                                                                 | e it:Vogt et al                                                                                                                                                                                                |                           | 1579                                                                                   | 740                                                                                                   | 1479                                          | 1811                                                                |
|                     | FGS. Ferreiro et al                                                             |                                                                                                                                                                                                                | et al.,                   | NLO                                                                                    | NLO                                                                                                   | NNLO                                          | NLO                                                                 |
| PDF MIRS198 CTEQ6.1 |                                                                                 | MSTW2008                                                                                                                                                                                                       | ~CTEQ6.I                  | JR09                                                                                   | CT14NLO                                                                                               |                                               |                                                                     |
| mass<br>scheme      |                                                                                 | ZM-VFNS                                                                                                                                                                                                        | ZM-VFNS                   | GM-VFNS                                                                                | GM-VFNS                                                                                               | ZM-VFNS                                       | GM-VFNS                                                             |
| comments            |                                                                                 | $\begin{array}{c c} & \Delta\chi^2 = 13.7, & \Delta\chi^2 = 50, \mbox{ ratios}, \mbox{ no } & \mbox{ huge} \\ \hline & EMC \ for & \mbox{ shadowing-} \\ & \mbox{ gluons} & \mbox{ antishadowing} \end{array}$ |                           | Δχ <sup>2</sup> =30, ratios,<br><u>medium-modified</u><br><u>FFs for π<sup>0</sup></u> | Δχ <sup>2</sup> =35, PDFs,<br>valence <u>flavour</u><br><u>sep., not enough</u><br><u>sensitivity</u> | PDFs, <u>deuteron</u><br><u>data included</u> | Δχ <sup>2</sup> =52 flavour<br>sep., ratios,<br><u>LHC pPb data</u> |

### EPPS16:



 Most Pb data from CHORUS, 30 Pb points from pPb@LHC: fit for a single nucleus not possible.

| Experiment              | Observable | Collisions                               | Data points | $\chi^2$ | Ref.         |
|-------------------------|------------|------------------------------------------|-------------|----------|--------------|
| SLAC E139               | DIS        | $e^{-}$ He(4), $e^{-}$ D                 | 21          | 12.2     | [69]         |
| CERN NMC 95, re.        | DIS        | $\mu^{-}$ He(4), $\mu^{-}$ D             | 16          | 18.0     | [70]         |
| ,                       |            |                                          |             |          |              |
| CERN NMC 95             | DIS        | $\mu^{-}$ Li(6), $\mu^{-}$ D             | 15          | 18.4     | [71]         |
| CERN NMC 95, $Q^2$ dep. | DIS        | $\mu^{-}$ Li(6), $\mu^{-}$ D             | 153         | 161.2    | [71]         |
|                         |            |                                          |             |          |              |
| SLAC E139               | DIS        | $e^{-}$ Be(9), $e^{-}$ D                 | 20          | 12.9     | [69]         |
| CERN NMC 96             | DIS        | $\mu^{-}Be(9), \mu^{-}C$                 | 15          | 4.4      | [72]         |
|                         |            |                                          |             |          | 6 <b>1</b>   |
| SLAC E139               | DIS        | $e^{-C(12)}, e^{-D}$                     | 7           | 6.4      | [69]         |
| CERN NMC 95             | DIS        | $\mu^{-}C(12), \mu^{-}D$                 | 15          | 9.0      | [71]         |
| CERN NMC 95, $Q^2$ dep. | DIS        | $\mu^{-}C(12), \mu^{-}D$                 | 165         | 133.6    | [71]         |
| CERN NMC 95, re.        | DIS        | $\mu^{-}C(12), \mu^{-}D$                 | 16          | 16.7     | [70]         |
| CERN NMC 95, re.        | DIS        | $\mu^{-}C(12), \mu^{-}Li(6)$             | 20          | 27.9     | [70]         |
| FNAL E772               | DY         | pC(12), pD                               | 9           | 11.3     | [73]         |
| SLAC F120               | DIS        | a = A1(97) $a = D$                       | 20          | 12 7     | [60]         |
| CEDN NMC 06             | DIS        | $e^{-\Lambda l(27)}, e^{-D}$             | 15          | 56       | [09]<br>[79] |
| CERN NMC 90             | DIS        | $\mu$ AI(27), $\mu$ C(12)                | 15          | 5.0      | [12]         |
| SLAC E139               | DIS        | $e^{-}$ Ca(40), $e^{-}$ D                | 7           | 4.8      | [69]         |
| FNAL E772               | DY         | pCa(40), $pD$                            | 9           | 3.33     | 73           |
| CERN NMC 95, re.        | DIS        | $\mu^{-}Ca(40), \mu^{-}D$                | 15          | 27.6     | [70]         |
| CERN NMC 95, re.        | DIS        | $\mu^{-}$ Ca(40), $\mu^{-}$ Li(6)        | 20          | 19.5     | 70           |
| CERN NMC 96             | DIS        | $\mu^{-}Ca(40), \mu^{-}C(12)$            | 15          | 6.4      | [72]         |
|                         |            |                                          |             |          |              |
| SLAC E139               | DIS        | $e^{-}$ Fe(56), $e^{-}$ D                | 26          | 22.6     | [69]         |
| FNAL E772               | DY         | $e^{-}$ Fe(56), $e^{-}$ D                | 9           | 3.0      | [73]         |
| CERN NMC 96             | DIS        | $\mu^{-}$ Fe(56), $\mu^{-}$ C(12)        | 15          | 10.8     | [72]         |
| FNAL E866               | DY         | pFe(56), pBe(9)                          | 28          | 20.1     | [74]         |
| CEDN EMC                | DIG        | $u^{-}Cu(64) = u^{-}D$                   | 10          | 15.4     | [75]         |
| CERN EMC                | DIS        | $\mu \ \operatorname{Cu}(04), \mu \ D$   | 19          | 10.4     | [10]         |
| SLAC E139               | DIS        | $e^{-}$ Ag(108), $e^{-}$ D               | 7           | 8.0      | [69]         |
|                         |            | 3( )/                                    |             |          |              |
| CERN NMC 96             | DIS        | $\mu^{-}$ Sn(117), $\mu^{-}$ C(12)       | 15          | 12.5     | [72]         |
| CERN NMC 96, $Q^2$ dep. | DIS        | $\mu^{-}$ Sn(117), $\mu^{-}$ C(12)       | 144         | 87.6     | [76]         |
|                         |            |                                          |             |          |              |
| FNAL E772               | DY         | pW(184), pD                              | 9           | 7.2      | [73]         |
| FNAL E866               | DY         | pW(184), pBe(9)                          | 28          | 26.1     | [74]         |
| CERN NA10*              | DY         | $\pi^-W(184), \pi^-D$                    | 10          | 11.6     | [49]         |
| FNAL E615*              | DY         | $\pi^+W(184), \pi^-W(184)$               | 11          | 10.2     | [50]         |
| CEDN NA 2*              | DV         | -D+(105) -H                              | 7           | 16       | [49]         |
| CERN NA3*               | DI         | $\pi$ Ft(195), $\pi$ H                   | '           | 4.0      | [40]         |
| SLAC E139               | DIS        | e <sup>-</sup> Au(197), e <sup>-</sup> D | 21          | 8.4      | [69]         |
| RHIC PHENIX             | $\pi^0$    | dAu(197), pp                             | 20          | 6.9      | [28]         |
|                         |            | , , , , , , , , , , , , , , , , , , , ,  |             |          |              |
| CERN NMC 96             | DIS        | $\mu^{-}$ Pb(207), $\mu^{-}$ C(12)       | 15          | 4.1      | [72]         |
| CERN CMS*               | W±         | pPb(208)                                 | 10          | 8.8      | [43]         |
| CERN CMS*               | Z          | pPb(208)                                 | 6           | 5.8      | [45]         |
| CERN ATLAS*             | Z          | pPb(208)                                 | 7           | 9.6      | [46]         |
| CERN CMS*               | dijet      | pPb(208)                                 | 7           | 5.5      | [34]         |
| CERN CHORUS★            | DIS        | $\nu Pb(208), \overline{\nu} Pb(208)$    | 824         | 998.6    | [47]         |
|                         |            |                                          | 1011        | 1500     |              |
| Total                   |            |                                          | 1811        | 1789     |              |

# EPPS16:

nCTEQ15 vs.
 EPPS16: note
 the
 parametrisation
 bias.



# EPPS16:

nCTEQ15 vs.
 EPPS16: note
 the
 parametrisation
 bias.

 Presently available LHC data seem not to have a large effect: large-x glue (baseline=no V, no LHC data).





LTA+CTEQ6L

10<sup>-2</sup>

EPS09

HKN07

nDS

х

 $10^{-1}$ 



307.4526

10<sup>-3</sup>

1.1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

 $10^{-4}$ 

 $^{\gamma}Pb$ 

 $S_{\rm Pb}(W_{\gamma {\rm Pb}})$ 

γPb

1

• UPCs offer possibilities for constraining both nPDFs: they were the first indication of nuclear shadowing.

• Uncertainties on the precision and applicability of standard collinear factorisation exist for many of the processes currently studied e.g. exclusive VM production: work still required for this data to be included in global fits.

### Open charm and $J/\psi$ :





# Open charm and $J/\psi$ :



• Theoretical control in PT over forward D or J/ $\psi$  under debate, even in pp: scales, DPS, non-linear dynamics, ..., see 1610.09373 vs. 1710.05935.

• E.g. quarkonium: superposition of nPDFs + eloss/absorption + comovers for  $\psi$ ' + ...

• Collectivity (flow for D in pPb as for charged hadrons in pPb and PbPb?) would limit the use of low  $p_T$  data for extraction of nPDFs.



# Tops at HL-LHC:

#### pPb→ttbar+X (8.8 TeV): Gluon density constraints



### **Resummation:**

• Resummation has been suggested (1710.05935) to cure the problem seen in HERA data of a worsening of the PDF fit quality with decreasing x and Q<sup>2</sup>: the problem lies in  $F_L$ .





I. Introduction.

- 2. Present status of nPDFs:
  - $\rightarrow$  Available sets.
  - → Further constrains from the LHC.

#### 3. Nuclear PDFs from EICs:

- → Kinematics.
- → The method.
- → Constraints on nPDFs.

4. Summary.

See the talks by Vadim Guzey, Juan Rojo and Ilkka Helenius.

# EICs versus pA:



#### • DIS offers:

→ A clean experimental environment: low multiplicity, no pileup, fully constrained kinematics  $x,Q^2$  by reconstructing the outgoing lepton;  $\rightarrow$  A more controlled theoretical setup: many 1st-

principles calculations.

N.Armesto, 27.03.2018 - Lessons from EIC: 3. nPDFs from EICs.

RHIC J/ $\Psi$  (lyl < 2)

1605.01389

10<sup>5</sup>

10<sup>4</sup>

10<sup>3</sup>

 $10^{2}$ 

10

10-

. (b=0 fn

FNAL-E772 (DY)

10<sup>-4</sup> 10<sup>-3</sup> 10<sup>-2</sup>

10-

### LHeC/FCC-eh vs. EIC:







EPPS16@LHeC (I):

#### The LHeC pseudodata

- Assume  $\mathcal{L}_{ep} = 10 \, \text{fb}$ ,  $\mathcal{L}_{ePb} = 1 \, \text{fb}$  (per nucleon)
- The assumed energy configs:  $\sqrt{s_{\rm p}} = 7 \,\mathrm{TeV}$ ,  $\sqrt{s_{\rm Pb}} = 2.75 \,\mathrm{TeV}$  (per nucleon) on  $E_e = 60 \,\mathrm{GeV}$  electrons.
- The pseudodata are here obtained from ratios of reduced cross sections σ<sup>i</sup> and relative point-to-point (δ<sup>i</sup><sub>uncor.</sub>) and normalization (δ<sup>i</sup><sub>uncor.</sub>) uncertainties as

$$R_i = R_i(EPS09) \times \left[1 + \delta_{\text{uncor.}}^i r^i + \delta_{\text{norm.}} r^{\text{norm.}}\right]$$

where

$$R_i(EPS09) = \frac{\sigma_{ePb}^i(CTEQ6.6 + EPS09)}{\sigma_{ep}^i(CTEQ6.6)},$$

and  $r^{i}$  and  $r^{norm}$  are Gaussian random numbers.

• In EPS09  $R_{u_V} \approx R_{d_V}$ ,  $R_{\overline{u}} \approx R_{\overline{d}} \approx R_{\overline{s}}$  (free in EPPS16, but would not expect large deviations from this)

《曰》《曰》《臣》《臣》

콭.

900

# EPPSI6@LHeC (I):

#### The analysis framework

- The fit framework same as in the EPPS16 analysis  $[\mathrm{EPJ}\ \mathrm{C77},\ 163]$
- Include the same data as in EPPS16 plus LHeC (NC and CC) pseudo data.
- Hessian uncertainty analysis with  $\Delta \chi^2 = 52$  (as in EPPS16)



#### - ▲ ロ ▶ ▲ 雪 ▶ ▲ 画 ▶ ▲ 画 ▶ ▲ 回 ▶ ▲

H. Paukkunen for the LHeC study group An update on nuclear PDFs at the LHeC

# EPPSI6@LHeC (I):

#### The effect of LHeC pseudodata

• The improvement after adding the LHeC data ( $Q^2 = 1.69 \, {
m GeV}^2$ )



H. Paukkunen for the LHeC study group An update on nuclear PDFs at the LHeC

# nPDFs@LHeC (II):

#### The effect of LHeC pseudodata

- Why it's so hard to pin down the flavor dependence?
- Take the valence up-quark distribution  $u_V^A$  as an example:

$$u_{V}^{A} = \frac{Z}{A} R_{u_{V}} u_{V}^{\text{proton}} + \frac{A - Z}{A} R_{d_{V}} d_{V}^{\text{proton}}$$

• Write this in terms of average modification  $R_V$  and the difference  $\delta R_V$ 

$$R_{\rm V} \equiv \frac{R_{u_{\rm V}} u_{\rm V}^{\rm proton} + R_{d_{\rm V}} d_{\rm V}^{\rm proton}}{u_{\rm V}^{\rm proton} + d_{\rm V}^{\rm proton}}, \qquad \delta R_{\rm V} \equiv R_{u_{\rm V}} - R_{d_{\rm V}}$$



• The effects of flavour separation (i.e.  $\delta R_V$  here) are suppressed in cross sections — but also so in most of the nPDF applications.

H. Paukkunen for the LHeC study group An update on nuclear PDFs at the LHeC

《圖》 《臣》 《臣》

æ.

996

# nPDFs@LHeC (II):



- Would need Monte-Carlo methods to more reliably map the uncertainties
   Further work needed
- Despite all the shortcomings, a typical result using a more flexible form for the gluons:



### xFitter:

• Extraction of Pb-only PDFs by fitting pseudodata, using xFitter (1410.4412)1.2.2 to estimate the 'ultimate' precision that could be achieved (P.Agostini, NA):

→ HERAPDF2.0-type parametrisation (1506.06042,14 parameters), NNLO evolution, RTOPT mass scheme,  $\alpha_s$ =0.118.

$$\begin{aligned} xg(x) &= A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B_g} (1-x)^{C_g}, \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} \left(1+E_{u_v} x^2\right), \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}}, \\ x\bar{U}(x) &= A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} \left(1+D_{\bar{U}} x\right), \\ x\bar{D}(x) &= A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}}. \end{aligned}$$

xU = xu + xc,  $x\overline{U} = x\overline{u} + x\overline{c}$ , xD = xd + xs,  $x\overline{D} = x\overline{d} + x\overline{s}$ 

→ Central pseudodata values from HERAPDF2.0: no parametrisation bias.

Standard xFitter/HERAPDF treatment of correlated/ uncorrelated systematics.

→ Only data with  $Q^2 \ge 3.5$  GeV<sup>2</sup>, initial evolution scale 1.9 GeV<sup>2</sup>. → Proton PDFs extracted in the same setup for consistency. N.Armesto, 27.03.2018 - Lessons from EIC: 3. nPDFs from EICs.

## Results: gluon



# EPPSI6@EIC:

• Following a very similar approach to that shown for the LHeC (1708.05654):

→ Pseudodata generated with EPS09, uncertainties as achieved at HERA.

→ Impact of low (5 GeV) and high (20 GeV) electron energies, and of charm.

10<sup>2</sup>

10

√s = 31.6 GeV

√s = 44.7 GeV √s = 89.4 GeV CT14NLO+EPPS16  $\int Ldt = 10 \text{ fb}^{-1}/A$ 

10<sup>3</sup>

0.5

0.45

0.35

0.3

0.25

0.2

0.15

0.05

0.1

0

e+Au

 $\mathsf{D}^{\mathrm{cc}}_{\mathsf{red}}(\mathsf{x}, \mathsf{Q}^2) \mathsf{-log}_{\mathsf{10}}(\mathsf{x})/\mathsf{10}$ 



Х

Q<sup>2</sup>(GeV<sup>2</sup>) N.Armesto, 27.03.2018 - Lesson's from EIC: 3. nPDFs from EICs.

10<sup>4</sup>

 $O_{+}^{0.7}$   $O_{-}^{0.7}$   $O_{-}^{0.7}$   $O_{-}^{0.5}$   $O_{-}^{0.5}$   $O_{-}^{0.5}$ 

0.7

0.4

0.3

0.2

0.1

0

 $10^{-4}$ 

e+Au

Х

# EPPSI6@EIC:

• Very similar approach to that shown for the LHeC (1708.05654): → Pseudodata generated with EPS09, uncertainties as at HERA.  $\rightarrow$  Impact of low (5 GeV) and high (20 GeV) E<sub>e</sub>, and of charm.



N.Armesto, 27.03.2018 - Lessons from EIC: 3. nPDFs from EICs.

baseline

incl

10

 $10^{-1}$ 

# Summary:

- EICs are the ideal places to determine the nPDFs: fully constrained kinematics, well controlled th. & exp. setup.
- Limitation: do not cover as much as hadronic colliders, and luminosity may be important for quantitative studies e.g. impact of high x on low x.
- The EIC will not cover the kinematic region for the LHC or for future pA/AA machines.



- pA cannot be challenged in terms of kinematic reach: tests of collinear factorisation and its eventual breaking.
- Establishing the existence of a new regime of QCD will most probably be a quantitative issue demanding both ep/eA and pp/pA.

# Summary:

- EICs are the ideal places to determine the nPDFs: fully constrained kinematics, well controlled th. & exp. setup.
- Limitation: do not cover as much as hadronic colliders, and luminosity may be important for quantitative studies e.g. impact of high x on low x.
- The EIC will not cover the kinematic region for the LHC or for future pA/AA machines.



- pA cannot be challenged in terms of kinematic reach: tests of collinear factorisation and its eventual breaking.
- Establishing the existence of a new regime of QCD will most probably be a quantitative issue demanding both ep/eA and pp/pA.

# Summary:

- EICs are the ideal places to determine the nPDFs: fully constrained kinematics, well controlled th. & exp. setup.
- Limitation: do not cover as much as hadronic colliders, and luminosity may be important for quantitative studies e.g. impact of high x on low x.
- The EIC will not cover the kinematic region for the LHC or for future pA/AA machines.



- pA cannot be challenged in terms of kinematic reach: tests of collinear factorisation and its eventual breaking.
- Establishing the existence of a new regime of QCD will most probably be a quantitative issue demanding both ep/eA and pp/pA.



### h/A wave function:

- Standard fixed-order perturbation theory (DGLAP, linear evolution) must eventually fail:
- → Large logs e.g.  $\alpha_s \ln(1/x) \sim 1$ : resummation (BFKL,CCFM,ABF,CCSS).
- → High-density:  $\times \downarrow$ ,  $A^{\uparrow} \Rightarrow$  non-linear regime, recombination

balancing splitting: saturation, perturbative (CGC) or non.  $\frac{xG_A(x,Q_s^2)}{\pi R_A^2 Q_s^2} \sim 1 \Longrightarrow Q_s^2 \propto A^{1/3} x^{\sim -0.3}$ 



N.Armesto, 27.03.2018 - Lessons from EIC: 1. Introduction.

### Relevance for HIC:



N.Armesto, 27.03.2018 - Lessons from EIC: 1. Introduction.

# nPDFs for HIC:

• Lack of data  $\Rightarrow$  large



uncertainties for the nuclear glue at small scales and x: problem for benchmarking in HIC in order to extract 'medium' parameters.



N.Armesto, 27.03.2018 - Lessons from EIC: 1. Introduction.

# FCC-eh (I):



ne. To Stanvard & Matthew Stuart (SMB-SE-EAS

• eA could run either concurrently with pA/AA or in dedicated mode.

| parameter [unit]                                 | LHeC (HL-LHC)    | eA at HE-LHC | FCC-he |   |
|--------------------------------------------------|------------------|--------------|--------|---|
| $E_{\rm Pb}$ [PeV]                               | 0.574            | 1.03         | 4.1    |   |
| $E_e  [\text{GeV}]$ CERN-ACC-2017-00             | <sup>19</sup> 60 | 60           | 60     |   |
| $\sqrt{s_{eN}}$ electron-nucleon [TeV]           | 0.8              | 1.1          | 2.2    |   |
| bunch spacing [ns]                               | 50               | 50           | 100    |   |
| no. of bunches                                   | 1200             | 1200         | 2072   |   |
| ions per bunch $[10^8]$                          | 1.8              | 1.8          | 1.8    |   |
| $\gamma \epsilon_A \ [\mu m]$                    | 1.5              | 1.0          | 0.9    |   |
| electrons per bunch $[10^9]$                     | 4.67             | 6.2          | 12.5   |   |
| electron current [mA]                            | 15               | 20           | 20     |   |
| IP beta function $\beta_A^*$ [cm]                | 7                | 10           | 15     |   |
| hourglass factor $H_{geom}$                      | 0.9              | 0.9          | 0.9    |   |
| pinch factor $H_{b-b}$                           | 1.3              | 1.3          | 1.3    | / |
| bunch filling $H_{coll}$                         | 0.8              | 0.8          | 0.8    |   |
| luminosity $[10^{32} cm^{-2} s^{-1}]$            | 7                | 18           | 54     |   |
| Integrated lumi. in 10 y. (fb <sup>-1</sup> ) ~~ | 6                | 15           | 45     |   |

HeC and ECC-eh Workshop 201

eD at LHEC:  $L_{eN}=AL_{eA}>\sim 3\times 10^{31} \text{ cm}^{-2}\text{s}^{-1}$ 

(old CDR number)

 100 times larger luminosity than HERA,
 / full HERA integrated luminosity in less than a month.

N.Armesto, 27.03.2018 - Lessons from EIC: 1. Introduction.



### Pseudodata:





- Pseudodata generated using a code (Max Klein) validated with the H1 MC.
  Cuts: |η<sub>max</sub>|=5, 0.95< y< 0.001.</li>
  Error assumptions ~ factor 2 better than at HERA (luminosity uncertainty kept aside).
- Stat./syst. errors (ePb@FCC-eh) from
- 0.1/1.2% (small x, NC) to 37/6% (large x & Q<sup>2</sup>, CC).
- Source of uncertainty Error on the source or cross section scattered electron energy scale 0.1% scattered electron polar angle 0.1 mrad hadronic energy scale 0.5 % calorimeter noise (y < 0.01) 1-3% radiative corrections 1-2% photoproduction background 1% 0.7 % global efficiency error
- N.Armesto, 27.03.2018 Lessons from EIC: 3. nPDFs from EICs.

### Pseudodata:

|                                      | E <sub>e</sub> (GeV)   | E <sub>h</sub> (TeV/nucleon) | Polarisation | Luminosity (fb <sup>-</sup> ) | NC/CC | # data |
|--------------------------------------|------------------------|------------------------------|--------------|-------------------------------|-------|--------|
|                                      | 60 (e-)                | l (p)                        | 0            | 100                           | CC    | 93     |
|                                      | 60 (e-)                | l (p)                        | 0            | 100                           | NC    | 136    |
|                                      | 60 (e-)                | 7 (р)                        | -0.8         | 1000                          | CC    | 114    |
| ep@LHeC, 1005 data points for        | 60 (e-)                | 7 (р)                        | 0.8          | 300                           | СС    | 113    |
| Q <sup>2</sup> ≥3.5 GeV <sup>2</sup> | 60 (e+)                | 7 (р)                        | 0            | 100                           | СС    | 109    |
|                                      | 60 (e <sup>_</sup> )   | 7 (р)                        | -0.8         | 1000                          | NC    | 159    |
|                                      | 60 (e-)                | 7 (р)                        | 0.8          | 300                           | NC    | 159    |
|                                      | 60 (e+)                | 7 (р)                        | 0            | 100                           | NC    | 157    |
|                                      | 20 (e-)                | 2.75 (Pb)                    | -0.8         | 0.03                          | СС    | 51     |
|                                      | 20 (e <sup>_</sup> )   | 2.75 (Pb)                    | -0.8         | 0.03                          | NC    | 93     |
| ePb@LHeC, 484 data points for        | 26.9 (e <sup>_</sup> ) | 2.75 (Pb)                    | -0.8         | 0.02                          | CC    | 55     |
| Q <sup>2</sup> ≥3.5 GeV <sup>2</sup> | 26.9 (e <sup>_</sup> ) | 2.75 (Pb)                    | -0.8         | 0.02                          | NC    | 98     |
|                                      | 60 (e-)                | 2.75 (Pb)                    | -0.8         | I                             | CC    | 85     |
|                                      | 60 (e <sup>_</sup> )   | 2.75 (Pb)                    | -0.8         | Ι                             | NC    | 129    |
|                                      | 20 (e-)                | 7 (р)                        | 0            | 100                           | CC    | 46     |
|                                      | 20 (e <sup>_</sup> )   | 7 (р)                        | 0            | 100                           | NC    | 89     |
|                                      | 60 (e-)                | 50 (р)                       | -0.8         | 1000                          | CC    | 67     |
| ep@FCC-eh, 619 data points           | 60 (e-)                | 50 (р)                       | 0.8          | 300                           | CC    | 65     |
| for $Q^2 \ge 3.5 \text{ GeV}^2$      | 60 (e+)                | 50 (р)                       | 0            | 100                           | CC    | 60     |
|                                      | 60 (e <sup>_</sup> )   | 50 (р)                       | -0.8         | 1000                          | NC    |        |
|                                      | 60 (e-)                | 50 (р)                       | 0.8          | 300                           | NC    | 110    |
|                                      | 60 (e+)                | 50 (р)                       | 0            | 100                           | NC    | 107    |
| ePb@FCC-eh, 150 data points          | 60 (e <sup>_</sup> )   | 20 (Pb)                      | -0.8         | 10                            | CC    | 58     |
| for $Q^2 \ge 3.5 \text{ GeV}^2$      | 60 (e-)                | 20 (Pb)                      | -0.8         | 10                            | NC    | 101    |

### Results: sea



### **Results: valence**



N.Armesto, 27.03.2018 - Lessons from EIC: 3. nPDFs from EICs.

#### Diffraction in ep and shadowing:



• Diffraction in ep is linked to nuclear shadowing through basic QFT (Gribov): eD to test and set the 'benchmark' for new effects.



N.Armesto, 27.03.2018 - Lessons from EIC: 3. nPDFs from EICs.

### **Exclusive VMs:**



N.Armesto, 27.03.2018 - Lessons from EIC: 3. nPDFs from EICs.