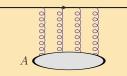
Photon and charm production in the CGC framework

T. Lappi

University of Jyväskylä, Finland

Workshop: Low-x gluon structure of nuclei and signals of saturation at LHC


1/12 - 아이어 비를 세를 세를 세를 세를

Outline

- Dilute-dense processes in CGC
- Charm
- Photons
- π^0 (light hadrons)
- Speculation about NLO

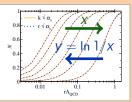
Calculations: Bertrand Ducloué, Heikki Mäntysaari

Eikonal scattering off target of glue

How to measure small-x glue?

- Dilute probe through target color field
- At high energy interaction is eikonal

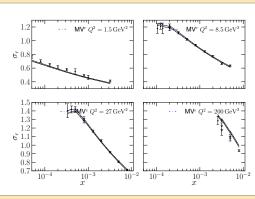
Eikonal scattering amplitude: Wilson line V


$$V = \mathbb{P} \exp \left\{ -ig \int^{x^+} dy^+ A^-(y^+, x^-, \mathbf{x}_T) \right\} \underset{x^+ \to \infty}{\approx} V(\mathbf{x}_T) \in SU(N_c)$$

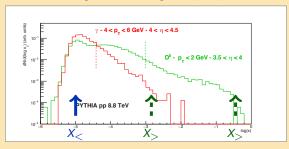
Amplitude for color dipole

$$\mathcal{N}(|\mathbf{x}_{T} - \mathbf{y}_{T}|) = 1 - \left\langle \frac{1}{N_{c}} \operatorname{Tr} V^{\dagger}(\mathbf{x}_{T}) V(\mathbf{y}_{T}) \right\rangle$$

from color transparency to saturation

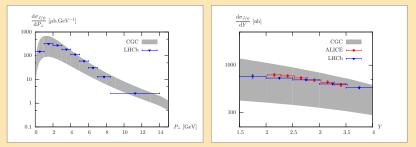

► $1/Q_s$ is Wilson line correlation length, Q_s is gluon intrinsic k_T

Where to get Wilson lines?

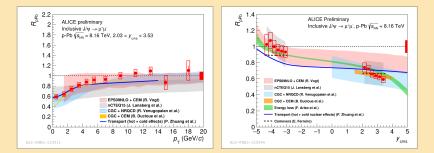

Use here MV^e parametrization, T.L., Mäntysaari, arXiv:1309.6963

- Initial condition for protons at $x_0 = 0.01$, 3 fit parameters
- $x < x_0$ prediction of rcBK evolution (1 fit parameter: scale in α_s)
- Fit to HERA F₂ data (same that determines collinear pdf's)
- Nuclei: optical Glauber at x₀: no additional parameters

Note on power counting and kinematics


Collinear 2 \rightarrow 2 process, measure only 1 particle: integral over large rapidity interval $\Delta y = \ln \frac{x_{>}}{x_{>}}$

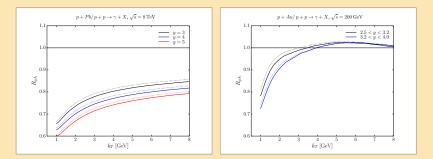
- In the CGC the power counting assumes α_s ln Δy ~ 1 ⇒ integrated gluon absorbed into BFKL/BK/JIMWKL-evolved renormalized target at x_<
- ► The gluon recoil also gives intrinsic $\mathbf{k}_T \implies$ e.g. J/Ψ has p_T distribution at LO in CGC (vs. only at NLO in collinear)


Inclusive J/ψ in LHCb/ALICE kinematics

Cross sections for pPb Ducloué, T.L. Mäntysaari 1503.02789

Most of normalization uncertainty from scale in collinear PDF, and in $\alpha_{\rm s}$

$R_{ m pA}$ for inclusive J/ψ

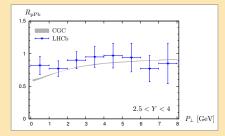


 R_{pA} : scale uncertainty cancels \implies determined by optical Glauber & value of Q_s (HERA)

> **7/12** 《 □ 〉 《 @ 〉 《 볼 〉 《 볼 〉 원 볼 · ' 의 역 · ·

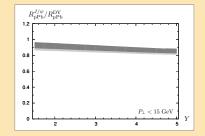
Isolated photon R_{pA}

Ducloué, T.L. Mäntysaari, arXiv: 1710.02206



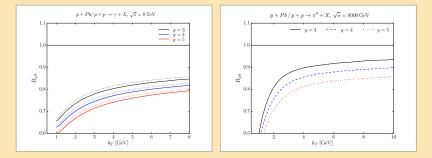
LHC energy

RHIC energy


To see saturation effects at weak coupling p_T : need LHC energy and preferrably fwd kinematics.

More R_{pA} 's: DY, D: very much same story

R_{pA} for D-mesons

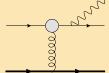

Ducloué, T.L. Mäntysaari, arXiv: 1612.04585

Double ratio of J/ψ to DY Ducloué 1701.08730 (Cf. J/ψ energy loss models)

> 9/12 《 ロ > 《 큔 > 《 콘 > 《 콘 > 토) = '이 Q (~

For comparison: light hadrons

Photons


 π^0 : suppression not as large

10/12 미 > 《문 > 《토 > 《토 > 토네 ' 이익()

Why is π^0 different?

Largely artefact of CGC power counting. LO CGC processes are

Photons

 $1 \rightarrow 2$ kinematics: even large photon k_T can have target $k_T \sim Q_s$ \implies suppression (Eventually need to resum Sudakov) Pions

 $1 \rightarrow 1$ kinematics: large pion p_T always from target $k_T \gg Q_s$ Becomes $1 \rightarrow 2$ at NLO

Conclusions

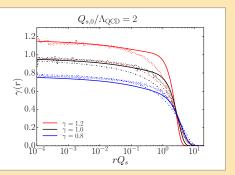
- By now quite large set of predictions for forward pA in same framework: light hadrons (with fragmentation functions), real, virtual photons, heavy quarks
- Overall: predictions not that different from collinear QCD
 - PDF's are fit to same HERA data that CGC describes well
 - Intrinsically LO BK gives faster rapidity dependence: predict fwd nuclear suppression
- Caveats: calculations so far LO
 - Kinematics different for q, g vs. Q, γ processes
 - NLO BK evolution seems to freeze "anomalous dimension": expect y-dependence of R_{pA} will become closer to nuclear PDF's, but still no calculation ...

(Fourier-positivity + HERA data + NLO BK collinear resummation)

Working on understanding these effects (but predicting difficult, particularly in advance)

Big picture: also correlations, see Cyrille's talk!

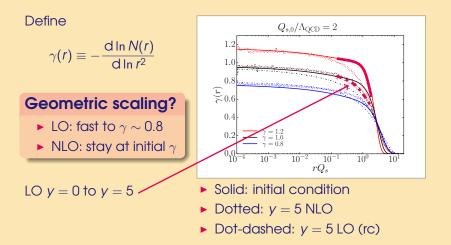
Anomalous dimension


Recall initial condition:
$$N(t) = 1 - e^{-\frac{(t^2 G_{Q}^2)^{\gamma}}{4} \ln\left(\frac{1}{t^{N_{QCD}}} + e\right)}$$

Define

 $\gamma(r) \equiv -\frac{\mathrm{d}\ln N(r)}{\mathrm{d}\ln r^2}$

Geometric scaling?


- LO: fast to $\gamma \sim 0.8$
- \blacktriangleright NLO: stay at initial γ

- Solid: initial condition
- Dotted: y = 5 NLO
- Dot-dashed: y = 5 LO (rc)

Anomalous dimension

Recall initial condition:
$$N(t) = 1 - e^{-\frac{(t^2 G_Q^2)^{\gamma}}{4} \ln\left(\frac{1}{t \Lambda_{QCD}} + e\right)}$$

