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Photon and charm production in the
CGC framework

T. Lappi

University of Jyväskylä, Finland

Workshop: Low-x gluon structure of nuclei and signals of
saturation at LHC
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Outline

I Dilute-dense processes in CGC
I Charm
I Photons
I π0 (light hadrons)
I Speculation about NLO

Calculations: Bertrand Ducloué, Heikki Mäntysaari
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Eikonal scattering off target of glue

A

How to measure small-x glue?
I Dilute probe through target color field
I At high energy interaction is eikonal

Eikonal scattering amplitude: Wilson line V

V = P exp

{
−ig

∫ x+

dy+A−(y+, x−,xT )

}
≈

x+→∞
V (xT ) ∈ SU(Nc)

I Amplitude for color dipole

N (|xT − yT |) = 1−
〈

1
Nc

Tr V †(xT )V (yT )

〉
from color transparency to saturation

I 1/Qs is Wilson line correlation length,
Qs is gluon intrinsic kT
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Where to get Wilson lines?

Use here MV e parametrization, T.L., Mäntysaari, arXiv:1309.6963

I Initial condition for protons at x0 = 0.01, 3 fit parameters
I x < x0 prediction of rcBK evolution (1 fit parameter: scale in αs)

I Fit to HERA F2 data (same that determines collinear pdf’s)

I Nuclei: optical Glauber at x0: no additional parameters
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Note on power counting and kinematics

Collinear 2→ 2 process, measure only 1 particle:
integral over large rapidity interval ∆y = ln x>

x<

log(x)
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I In the CGC the power counting assumes αs ln ∆y ∼ 1
=⇒ integrated gluon absorbed into
BFKL/BK/JIMWKL-evolved renormalized target at x<

I The gluon recoil also gives intrinsic kT =⇒ e.g. J/Ψ has pT
distribution at LO in CGC (vs. only at NLO in collinear)
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Inclusive J/ψ in LHCb/ALICE kinematics

Cross sections for pPb Ducloué, T.L. Mäntysaari 1503.02789
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RpA for inclusive J/ψ

RpA: scale uncertainty cancels
=⇒ determined by optical Glauber & value of Qs (HERA)
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Isolated photon RpA
Ducloué, T.L. Mäntysaari, arXiv:1710.02206
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To see saturation effects at weak coupling pT :
need LHC energy and preferrably fwd kinematics.
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More RpA’s: DY, D: very much same story
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For comparison: light hadrons
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Why is π0 different?

Largely artefact of CGC power counting.
LO CGC processes are

Photons

1→ 2 kinematics:
even large photon kT
can have target kT ∼ Qs

=⇒ suppression
(Eventually need to resum Sudakov)

Pions

1→ 1 kinematics:
large pion pT always from
target kT � Qs
Becomes 1→ 2 at NLO
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Conclusions

I By now quite large set of predictions for forward pA in same
framework: light hadrons (with fragmentation functions) , real,
virtual photons, heavy quarks

I Overall: predictions not that different from collinear QCD
I PDF’s are fit to same HERA data that CGC describes well
I Intrinsically LO BK gives faster rapidity dependence:

predict fwd nuclear suppression
I Caveats: calculations so far LO

I Kinematics different for q,g vs. Q, γ processes
I NLO BK evolution seems to freeze “anomalous dimension”:

expect y-dependence of RpA will become closer to nuclear
PDF’s, but still no calculation . . .
(Fourier-positivity + HERA data + NLO BK collinear resummation)

Working on understanding these effects
(but predicting difficult, particularly in advance)

I Big picture: also correlations, see Cyrille’s talk!
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Anomalous dimension

Recall initial condition: N(r) = 1− e−
(r2Q2

s0)γ

4 ln
(

1
rΛQCD

+e
)
,

Define

γ(r) ≡ − d ln N(r)

d ln r2

Geometric scaling?
I LO: fast to γ ∼ 0.8
I NLO: stay at initial γ

LO y = 0 to y = 5
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I Solid: initial condition
I Dotted: y = 5 NLO
I Dot-dashed: y = 5 LO (rc)
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