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The FOCAL proposal
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3.2 < η < 5.3

Observables: 
•  π0 

• Direct (isolated) photons 
• Jets

FoCal-E: high-granularity Si-W calorimeter 
for photons and π0 

FoCal-H: hadronic calorimeter for photon 
isolation and jets

FoCal-H

FoCal-E

Advantage in ALICE: 
forward region not instrumented;
‘unobstructed’ view of interaction point

Under discussion within ALICE for LS3 (2024-)

Acceptance
3 < η < 5 for isolated photons



FoCal-E design concept: Si-W calorimeter
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low granularity
pad-layers ≈1cm2,
longitudinally summed 
in segments

read-out boards 
for pad segments

pad-segments

high granularity pixel-layers 
effectively ≈1mm2,
likely using MAPS

tungsten layers
≈3.5mm thickness

Combination of
• Silicon pad readout 1x1 cm
• 2 pixel layers after 5 and 10 X0

PAD layers: 
analog readout for energy resolution

Pixel layers: 
high granularity for two-shower separation

Two-shower 
event

electron test beam



How to probe the gluon density
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Deep-Inelastic Scattering (DIS) 
Classical PDF method 

Not sensitive to gluons at LO

Gluons from NLO/evolution 
and/or FL

Photon production  
in hadronic collisions: 
Sensitive to gluons at LO
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How to probe the gluon density

4

Deep-Inelastic Scattering (DIS) 
Classical PDF method 

Not sensitive to gluons at LO

Gluons from NLO/evolution 
and/or FL

Photon production  
in hadronic collisions: 
Sensitive to gluons at LO

Directly related to DIS:  
real instead of virtual photon

Heavy hadron:  
tag hard scattering,  

but includes fragmentation



x-Q plane DIS+FoCal
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Constraints on gluon PDFs: 

DIS (indirect): 
x > 10-4 for p
x > 10-3 for A

𝛾 in FoCal extend this range to 10-5

Photons are free from final state effects
Important test for mechanisms 

behind flow-like effects

x-Q acceptance for electromagnetic probes



Direct 𝛾 analysis strategy

• Direct rejection: pair mass cut + shower shape cut 
enabled by high granularity


• Isolation cut: reject decay (+fragmentation) 
photons based on energy in cone
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𝛾/𝜋0 ratio is small,  
need to reject decay photons

Combined rejection of background:
factor ~10
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Projected uncertainty for direct 𝛾 RpPb

FoCal can measure direct photons  
at forward rapidity with 

better than 10% uncertainty
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 B Ducloue et al, arXiv:1710.02206 

CGC calculation

nPDF calculation
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http://arxiv.org/abs/arXiv:1710.02206
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Projected uncertainty for direct 𝛾 RpPb

FoCal can measure direct photons  
at forward rapidity with 

better than 10% uncertainty
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CGC calculation

nPDF calculation
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Goal of this workshop: quantify impact of this  
measurement on gluon nPDF, saturation models

http://arxiv.org/abs/arXiv:1710.02206


Two-particle correlations
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QCD 2 → 2 scattering

Produces a back-to-back jet

CGC: recoil taken by multiple gluons

Soft gluon recoil

Recoil jet broadened/disappears

Kharzeev et al, hep-ph/0403271

Measure rapidity of the away-side jet 
to constrain x further

𝛾-hadron correlations?



Other FoCal measurements

• 𝜋0 in Pb-Pb collisions 
RAA at forward rapidity


• Two-particle correlations:

• 𝜋0-𝜋0 in forward direction

• mid-forward h-𝜋0


• 𝜋0-𝛾 h-𝛾 (TBC)
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For PDF/CGC studies, 
flow-like effects in photons?
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Main Physics Motivation for FoCal (A Hierarchy)

1. prove or refute gluon saturation 
• compare saturation models with linear QCD
• depends on saturation model implementation and flexibility of PDF analytical shape

2. show invalidity of linear QCD at low x 
• can all potential measurement outcomes be absorbed  

in a modified PDF?
3. constrain the PDFs at low x 

• nuclei, also protons

observables of choice: 
• nuclear modification factor RpA of direct photons

• saturation stronger in nuclei 
• possibly non-existent in protons (calculation of reference in models?)

• two-particle correlations: 𝜋0 -𝜋0   y-𝜋0 and jet-jet being explored
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Pb-Pb program: nuclear modification at forward rapidity and high pT



Thank you for listening



Gluon Densities at small x
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Gluon density in proton

Even in the proton, (very) limited  
information about  
gluons at x < 10-4
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Ratio Pb/p has large uncertainties  
over broad x range
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Theoretical uncertainties
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Current publications reduce this  
by looking at rapidity-dependence  

(taking ratios wrt to a specific point)

Direct 𝛾



Di-hadron correlations at RHIC
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Scan ‘x’ with pT1 and forward, mid rapidity
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More systematic study shows similar effects, trends as a function of x

Performance studies in Maya’s talk



Di-jet distributions
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van Hameren et al, arXiv:1607.0312

New calculations show similar effects in high-pT dijets

Using TMD factorisation framework
Technical problem in CGC framework: need four-point functions

See also Toma’s talk later



Forward RAA to probe longitudinal medium evolution
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Main observable: RAA at forward rapidity
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Forward RAA: MUSIC
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Preliminary result

C Park, S Jeon etc al

First look in MUSIC  
shows strong increase  
of RAA at forward rapidity


