LSST:UK and UKTO

Bob Mann & George Beckett University of Edinburgh

00

- The Large Synoptic Survey Telescope
- LSST:UK
- LSST:UK computing requirements
- LSST:UK and UKTO

Large Synoptic Survey Telescope

Large optical survey telescope under construction in Chile

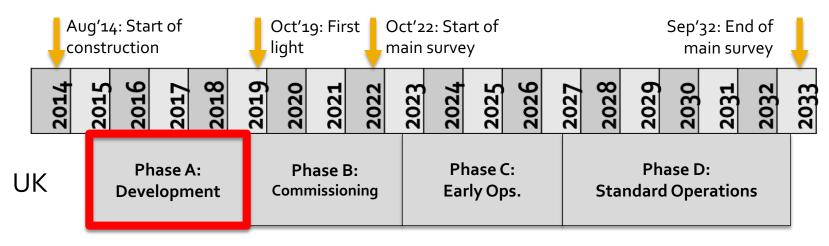
- Ten year sky survey from 2022
- US-led: NSF + DoE, plus foreign partners (UK & France largest)
- 6.5m effective primary; 9.6 sq. deg FOV
- Étendue = mirror area x camera field of view
- If étendue is large enough, can go wide, deep and fast at same time

- Different kinds of analysis from the same dataset
- LSST will have a great impact across almost all of astronomy

The LSST Science Book

- Contents:
 - Introduction
 - LSST System Design
 - System Performance
 - Education and Public Outreach
 - The Solar System
 - Stellar Populations
 - Milky Way and Local Volume Structure
 - The Transient and Variable Universe
 - Galaxies
 - Active Galactic Nuclei
 - Supernovae
 - Strong Lenses
 - Large-Scale Structure
 - Weak Lensing
 - Cosmological Physics

arXiv:0912.0201



LSST:UK Consortium

Every astronomy group in the UK

LSST:UK Science Centre Programme

- Four-phase programme
 - Forecast budget of ~£32M (not incl. capital for Data Access Centre)
- 2015: STFC awarded first tranche (£17.7M)
 - £15M operations contributions data rights for 100 PIs
 - £2.7M for Phase A R&D
- 2018: Phase B proposal due next month

Computing centres

Archive Site

- Level 1: Nightly difference imaging: → alert stream
- Level 2: Annual direct image pipeline: → data releases
- Data Access Centre
 - Ingest data releases
 - Provide user access to data
 - Run Level 3 data analysis code

Archive Sites

- NCSA
- CC-IN2p3 (Lyon) [L2 only]

- Data Access Centres
 - NCSA
 - Chile
 - Lyon
 - UK
 - Others?

LSST:UK Computing Requirements

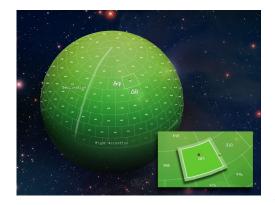
- Following examples all inexact by factors of several
 - Difficult to get quantitative estimates from many users while still planning their science
 - Unclear which science analyses will be international
 - Unclear how different Data Access Centres will coordinate activities and share workload

Development Activities [Phase A]

- Largest requirements likely to be supporting Dark Energy Science Collaboration
 - Data Challenge 2: Summer 2018—Spring 2019: UK contribution of ~20M core hours
 - Data Challenge 3: ~50M core hours

Contribution to Commissioning [Phase B]

- Modest volume of images generated: ~few PB
- Repeated analysis with different parameters
- Expect ~700 cores over ~2 years
- Storage of 2PB increasing to ~12PB


Transient Alerts [Phases B-D]

- Each night, LSST will issue millions of potentially interesting transient alerts
- LSST:UK proposes to analyse full stream in real-time, providing alert classifier
- Dedicated Transient Alert service
 - Starting with precursor survey (ZTF)
- Storage
 - IOO TB/year (some as buffer, some persistent)

Hosting survey data [Phases C and D]

Sky Survey produced as 11 Data Releases

- Catalogues and image files
- In 2022, DR1 will be ~10PB
- • •
- In 2032, DR11 will be ~70PB
- Will need to have two most recent online
- Database cluster (Qserv)
 - 130 Tflops in 2022
 - • •
 - 330 Tflops in 2032

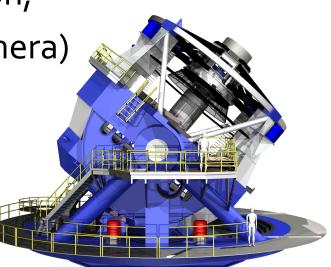
Data Analysis [Phases C and D]

- UK astronomers will have range of storage & compute requirements
 - Estimate 10% of Archive Site capacity
 - 20 Tflops in 2022, ..., 140 Tflops in 2032
- Some Level 3 analyses produce significant data products
 - 5 PB in 2022, ..., 35 PB in 2032
- Not including Science Collaboration requirements, such as DESC (50M core hours/year from 2019—2022, then ???)

Summary (used in BEIS bid)

CPU Power	2018/ 2019	2019/ 2020	2020/ 2021	2021/ 2022	
Required (k core-years)	2.4 (DESC) + 0.1 (DEV)	5.7 (DESC) + 0.7 (COMM) + 0.7 (DEV)	5.7 (DESC) + 0.7 (COMM) + 0.7 (DEV)	4.5 (DB) + 5.7 (DESC) + 0.7 (GEN)	
Storage Capacity	2018/ 2019	2019/ 2020	2020/ 2021	2021/ 2022	
Required (PB)	o.5 (DESC) + o.5 (DEV)	4 (COM) + 2 (DEV) + 0.5 (DESC)	12PB (COM)+ 2PB (DEV)	10 (DR1, 2) + 5 (GEN) + 0.1 (TRANS)	
				,	
				Should become clearer over next year or so	

^[1] Where estimates are in TFlops, a conversion of 35 core years/ Teraflops has been used.


LSST:UK and UKTO

- LSST:UK is very supportive of goals of UKTO
 - Expect UK DAC to be implemented within UKTO
 - Can see lots of expertise we can benefit from
 - Can contribute expertise in some areas e.g. DBs
- Have run test projects on GridPP and looking forward to working with database testbed
- But...contribution we can make to generic UKTO work really limited by available staff effort

Large Synoptic Survey Telescope

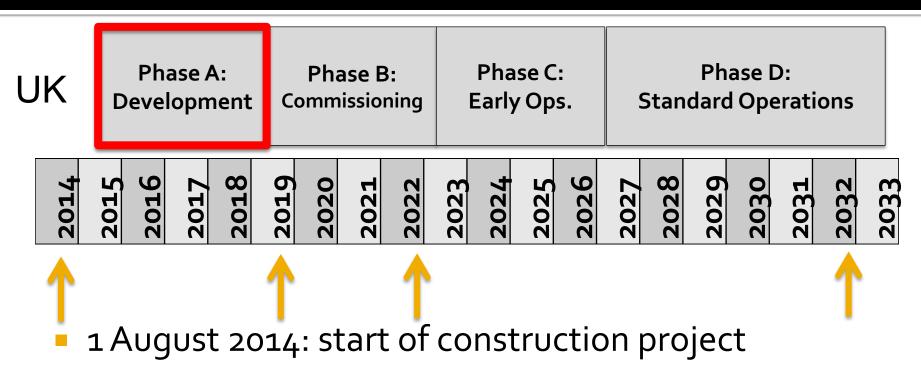
Costs

- Construction budget of \$640M
- Operational budget of \$370M
- Funding
 - US National Science Foundation;
 - US Department of Energy (camera)
 - International investment (\$100M of operational costs)

Large Synoptic Survey Telescope

- Will run 10-year survey, starting in 2022
- Will image 30k sq. deg. of sky every three nights
 - Observe each 'patch' more than 800 times
- Stacked images help identify very faint images
 - Expect 24Bn new galaxies and 14Bn new stars
- Frequent, regular visits allow creation of time-series for dynamic objects
 - Near-earth objects
 - Supernovae (explosive death of star)

Data Management


- Data is proprietary for two years restricted to LSST PIs
- Survey data hosted in Data Access Centres
 - in Chile hosting and local computing
 - at NSCA, USA processing, hosting, and local computing
 - at IN2P3, in France processing and hosting
- UK will host regional Data Access Centre
 - Hosting and local computing
 - possibly supporting more than UK astronomy

Data Classification

Four classifications of data

- Raw data images taken by camera
- Level 1 Products difference imaging data w.r.t. reference
 - Released nightly, detail objects that have unexpectedly changed brightness or position
 - ~10⁶ events published each night (metadata and postage-stamp image)
- Level 2 Products image products (reduced and calibrated) plus catalogues
 - Released annually, as incremental Data Releases
 - D/R grows from 1.6PB in Yr 1 to 31PB in Yr 10
- Level 3 Products datasets derived from Levels 1 and 2 products
 - Not part of survey output: created by community
 - Estimate 10% of computing and storage requirements for Level 3 products

Timeline for LSST

- October 2019: telescope First Light
- October 2022: start of main survey operations
- September 2032: end of main survey

LSST:UK Phase A

- £2.7M for Phase A programme (July 2015—Mar 2019)
 Edipburgh is coordinator
- Edinburgh is coordinator
 - Bob Mann is PI; MGB is project manager and technical lead
- LUSC-DAC: Data Access Centre (6 staff years, Edinburgh)
 - DAC design DAC testbed, Data Challenges, support for LUSC-DEV
- LUSC-DEV: (16 staff years, Man, Cam, QUB, Soton, UCL, Oxf)
 - Weak lensing analysis of galaxy intrinsic alignment, shape classification
 - Milky Way star/galaxy separation, tidal stream detection
 - Transients alert handling, classification
 - Solar System NEO, light-curve analysis
 - Sensor characterization image analysis systematics

LSST Data Volume and Products

- ISST
- Two 6.4-gigabyte images (one visit) every 39 seconds
- ~1000 visits each night, ~300 nights a year
- Up to 450 calibration exposures per day
- >15 terabytes of raw data in each 24 hour period
- Can detect >2 million real time events per night, for 10 years
- Changes detected, transmitted, within 60 seconds of each observation
- A catalog of ~38 billion observed objects (24B galaxies, 14B stars)*
- A catalog of ~5 trillion detections ("sources") and ~32 trillion measurements ("forced sources") *

(*) current baseline estimate

Raw Data

For more see Section 3.5 of LSST SRD (http://ls.st/srd)