What Science can do with AI and Machine Learning

Dr Mark Basham

Data Analysis Group Diamond Light Source

Focus: Imaging

- Of interest to the ALC as it is cross disciplinary (3D+ imaging)
 - DLS
 - ISIS
 - CLF

The complexity – this is now a big data problem for DLS++

A tomography pipeline called Savu.

Full-field tomography processing with Savu at DLS

Tomographic reconstruction of a bone dataset using Savu (3D-rendered using Vislt). Courtesy of Gianluca Tozzi, Marta Pena-Fernandez, Rachna Parwani, and Asa H. Barber (2016) from Portsmouth University. Data collected on the Diamond Manchester Imaging Branchline (I13-2) with support from Andrew J. Bodey.

Full-field tomography processing of 4D data with Savu at DLS

Current processing and resource requirements

- During the experiment possible
- Post processing complex

Now What? – Segmentation...

Challenges posed by data:

tai

- Noisy data, missing wedge artifacts, missing boundaries
- Large amounts of data; many organelles/complexes per dataset – complex
- Tedious to manually annotate so few training annotations available
- Each cell type/condition can look different – not generalizable
 Automated techniques usually

CryoSXT of neuron-like mammalian cell line; single slice

Can we apply modern machine vision methods?

- Collaborate with a Machine Vision Group
 - Nottingham university
 - 1 PhD Post to investigate the methods 2014-2017
- Conclusions
 - Yes, but not fully automatic, semi automatic
 - SuRVoS

Super-Region Volume Segmentation (SuRVoS) Workbench for Segmentation

SuRVoS – <u>Super Region Volume Segmentation</u> Workbench

Luengo I., et al. 2017, J Struct Biol; Darrow, M., et al, 2017, JoVE

SuRVoS – <u>Super Region Volume Segmentation</u> Workbench

Supervoxels and megavoxels are...

- groups of similar, adjacent voxels in 3D.
- edge preserving, and three-dimensional.
- reduce problem complexity by several orders of magnitude.

Luengo I., et al. 2017, J Struct Biol; Darrow, M., et al, 2017, JoVE

SuRVoS – <u>Super Region Volume Segmentation</u> Workbench

Predictions

Refinement

Features are extracted from voxels to represent their appearance:

- Intensity and textural features/filters
- A machine learning classifier is trained to discriminate between different classes and predict the class of each supervoxel in the volume.
- A Markov Random Field (MRF) is then used to refine the predictions.

Segmented PC-12 mHTT-Ex1 (97Q)

- Nucleus
- Nucleolus
- Lipid Droplets
- Mitochondria
- Empty Vesicles
- Other Organelles

My Vision of ALC

- A place to bring together the facilities data analysis communities to make use of common software and expertise.
- A common pool of HPC which is capapble of dealing with this data and processing requirements. Which is available to all our facility users for post processing and analysis.

Thank You

mark.basham@diamond.ac.uk

