Dark Photon Interpretation of LHCb search

Wei Xue

May 16, 2018

with P. IIten, Y. Soreq, M. Williams 1801.04847

WIMP

weakly interacting massive particles

Dark Matter

WIMP

weakly interacting massive particles

WIMP

weakly interacting massive particles

Dark Sector?

- analogous to the Standard Model dark sector can have rich structures

Dark Sector?

- analogous to the Standard Model dark sector can have rich structures

Dark Photons

- $\mathrm{U}(1)$ ' dark photon can kinetically mix with photon

Dark Photons

- $\mathrm{U}(1)$ ' dark photon can kinetically mix with photon

Dark Photons

- $\mathrm{U}(1)$ ' dark photon can kinetically mix with photon

Photon

Dark Photons

- $\mathrm{U}(1)$ ' dark photon can kinetically mix with photon

New Results from LHCb real data

2016 data, 1.6 fb-1 $^{-1}$

LHCb collaboration (2017), arXiv:1710.02867
produce dark photons
produce dark photons

- Bremsstrahlung

produce dark photons
- Bremsstrahlung

- Drell-Yan

produce dark photons
- Bremsstrahlung

- Drell-Yan

- Annihilation

produce dark photons
- Bremsstrahlung

- Annihilation

- Drell-Yan
- Meson decay

produce dark photons
- Bremsstrahlung

- Annihilation

- Meson decay

- V/A' Mixing

dark photons decay

- Searches

- others

> hadronic decays $3 \pi, 4 \pi, K K, K K \pi, \pi \gamma$
dark photons decay

dark photons decay

Beyond Dark Photons

$$
\mathcal{L} \subset g_{X} \sum_{f} x_{f} \bar{f}^{\mu} \gamma^{\mu} f X_{\mu}+\sum_{\chi} \mathcal{L}_{X \chi \bar{x}}
$$

Beyond Dark Photons

$$
\mathcal{L} \subset g_{X} \sum_{f} x_{f} \bar{f} \gamma^{\mu} f X_{\mu}+\sum_{\chi} \mathcal{L}_{X \chi \bar{\chi}}
$$

Coupling	A^{\prime}	$B-L$	B	Protophobic
g_{X}	εe	g_{B-L}	g_{B}	$g_{尹}$
$x_{u, c, t}$	$\frac{2}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{3}$
$x_{d, s, b}$	$-\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{2}{3}$
$x_{e, \mu, \tau}$	-1	-1	$-\frac{e^{2}}{(4 \pi)^{2}}$	-1
$x_{\nu_{e}, \nu_{\mu}, \nu_{\tau}}$	0	-1	0	0

Recast

Dark Photon \rightarrow Others

Production

$$
\begin{aligned}
& \sigma\left(\mathrm{A}^{\prime}\right) \mathrm{BR}\left(\mathrm{~A}^{\prime} \rightarrow \mathcal{F}\right) \text { Efficiency }\left(\mathrm{T}_{\mathrm{A}^{\prime}}\right) \\
= & \sigma(\mathrm{X}) \mathrm{BR}(\mathrm{X} \rightarrow \mathcal{F}) \text { Efficiciency }\left(\mathrm{T}_{\mathrm{x}}\right)
\end{aligned}
$$

- Bremsstrahlung

- Annihilation

$$
\frac{\sigma_{e Z \rightarrow e Z X}}{\sigma_{e Z \rightarrow e Z A^{\prime}}}=\frac{\sigma_{e^{+} e^{-} \rightarrow X \gamma}}{\sigma_{e^{+} e^{-} \rightarrow A^{\prime} \gamma}}=\frac{\left(g_{X} x_{e}\right)^{2}}{(\varepsilon e)^{2}}
$$

Production

$$
\begin{aligned}
& \sigma\left(\mathrm{A}^{\prime}\right) \mathrm{BR}\left(\mathrm{~A}^{\prime} \rightarrow \mathcal{F}\right) \text { Efficiency }\left(\mathrm{T}_{\mathrm{A}^{\prime}}\right) \\
= & \sigma(\mathrm{X}) \mathrm{BR}(\mathrm{X} \rightarrow \mathcal{F}) \text { Efficiciey }\left(\mathrm{T}_{\mathrm{x}}\right)
\end{aligned}
$$

- Meson decay

$$
\frac{\Gamma_{V \rightarrow X P}}{\Gamma_{V \rightarrow A^{\prime} P}}=\left(\frac{g_{X}}{\varepsilon e}\right)^{2} \frac{\left\{\operatorname{Tr}\left[T_{V^{\prime}} Q_{X}\right]\right\}^{2}}{\left\{\operatorname{Tr}\left[T_{V^{\prime}} Q\right]\right\}^{2}}
$$

$\mathrm{U}(3)$ meson generator
No mixing between ρ and $U(1)_{B}$

$$
\operatorname{Tr}\left[T_{\rho} Q_{B-L}\right]=0
$$

$$
T_{\rho}=\frac{1}{2} \operatorname{diag}\{1,-1,0\} \quad Q=\frac{1}{3} \operatorname{diag}\{2,-1,-1\} \quad Q_{B-L}=Q_{B}=\frac{1}{3} \operatorname{diag}\{1,1,1\}
$$

decay

$$
\begin{aligned}
& \sigma\left(A^{\prime}\right) \mathrm{BR}\left(\mathrm{~A}^{\prime} \rightarrow \mathcal{F}\right) \text { Efficiency }\left(\mathrm{T}^{\prime}\right) \\
= & \sigma(\mathrm{X}) \mathrm{BR}(\mathrm{X} \rightarrow \mathcal{F}) \text { Efficiency }\left(\mathrm{T}_{\mathrm{x}}\right)
\end{aligned}
$$

Perturbative Computation

R value

hadronic decays
$2 \pi, 3 \pi, 4 \pi, K K, K K \pi, \pi \gamma$

dark photons decay

vector mesons

decay

Efficiency

$$
\begin{aligned}
& \sigma\left(\mathrm{A}^{\prime}\right) \mathrm{BR}\left(\mathrm{~A}^{\prime} \rightarrow \mathcal{F}\right) \text { Efficiency }\left(\mathrm{T}_{A^{\prime}}\right) \\
= & \sigma(\mathrm{X}) \mathrm{BR}(\mathrm{X} \rightarrow \mathcal{F}) \text { Efficiency }\left(\mathrm{T}_{\mathrm{x}}\right)
\end{aligned}
$$

$$
r_{\mathrm{ex}}^{\mathrm{ul}}\left(m_{A^{\prime}}, \varepsilon^{2}\right)
$$

The upper limit on observed A' relative to the expected number of observed A^{\prime} decay

$$
\left[r_{\mathrm{ex}}^{\mathrm{ul}}\left(m_{A^{\prime}}, \varepsilon^{2}\right) \frac{\sigma_{A^{\prime}} \mathcal{B}_{A^{\prime} \rightarrow \mathcal{F}}}{\sigma_{X} \mathcal{B}_{X \rightarrow \mathcal{F}}}\right]_{\tau_{X}=\tau_{A^{\prime}}}<1
$$

Dark Photon

Beyond Dark Photon

Beyond Dark Photon

[P. Ilten, Y. Soreq, M. Williams, WX (2018)]

Beyond Dark Photon

[P. Ilten, Y. Soreq, M. Williams, WX (2018)]

Invisible decay

[P. Ilten, Y. Soreq, M. Williams, WX (2018)]

Summary

- photon \rightarrow dark photon
- dark photon \rightarrow general theories (vector coupling)
- production and decay date-driven method for the hadronic decay rates

Thank you

