Dark Photon Interpretation of LHCb search

Wei Xue

May 16, 2018

with P. Ilten, Y. Soreq, M. Williams 1801.04847

WIMP weakly interacting massive particles

WIMP weakly interacting massive particles

WIMP weakly interacting massive particles

Dark Sector?

• analogous to the Standard Model dark sector can have rich structures

Dark Sector?

• analogous to the Standard Model dark sector can have rich structures

New Results from LHCb real data

2016 data, 1.6 fb⁻¹

90% CL exclusion regions on $[m(A'), \varepsilon^2]$

LHCb collaboration (2017), arXiv:1710.02867

• Bremsstrahlung

Bremsstrahlung

• Drell-Yan

• Bremsstrahlung

• Drell-Yan

• Annihilation

Bremsstrahlung

• Drell-Yan

• Annihilation

• Meson decay

Bremsstrahlung

• Drell-Yan

Annihilation

- Meson decay
- V/A' Mixing

dark photons decay

• others

hadronic decays 3π , 4π , KK, KK π , $\pi\gamma$

PDG

e, μ

9

Beyond Dark Photons

 $\mathcal{L} \subset g_X \sum_f x_f \bar{f} \gamma^\mu f X_\mu + \sum_{\chi} \mathcal{L}_{X\chi\bar{\chi}}$

Beyond Dark Photons

$$\mathcal{L} \subset g_X \sum_f x_f \bar{f} \gamma^\mu f X_\mu + \sum_{\chi} \mathcal{L}_{X\chi\bar{\chi}}$$

Coupling	A'	B-L	B	Protophobic
g_X	arepsilon e	9 _{B-L}	g_B	$g_{\mathcal{P}}$
$x_{u,c,t}$	$\frac{2}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{3}$
$x_{d,s,b}$	$-\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{2}{3}$
$x_{e,\mu, au}$	-1	-1	$-\frac{e^2}{(4\pi)^2}$	-1
$x_{\nu_e,\nu_\mu,\nu_ au}$	0	—1	0	0

Recast Dark Photon → Others

Production

$σ (A') BR(A' → F) Efficiency(τ_{A'})$ = σ (X) BR(X→F) Efficiency(τ_x)

• Bremsstrahlung

• Annihilation

 $\frac{\sigma_{eZ \to eZX}}{\sigma_{eZ \to eZA'}} = \frac{\sigma_{e^+e^- \to X\gamma}}{\sigma_{e^+e^- \to A'\gamma}} = \frac{(g_X x_e)^2}{(\varepsilon e)^2}$

Production

$σ (A') BR(A' → F) Efficiency(τ_{A'})$ = σ (X) BR(X→F) Efficiency(τ_x)

Meson decay
V V'
V V'
P

$$\frac{\Gamma_{V \to XP}}{\Gamma_{V \to A'P}} = \left(\frac{g_X}{\varepsilon e}\right)^2 \frac{\{\mathrm{Tr}[T_{V'}Q_X]\}^2}{\{\mathrm{Tr}[T_{V'}Q]\}^2}$$

 $\mathrm{Tr}\left[T_{\rho}Q_{B-L}\right] = 0$

U(3) meson generator No mixing between ρ and U(1)_B

$$T_{\rho} = \frac{1}{2} \operatorname{diag}\{1, -1, 0\} \qquad Q = \frac{1}{3} \operatorname{diag}\{2, -1, -1\} \qquad Q_{B-L} = Q_B = \frac{1}{3} \operatorname{diag}\{1, 1, 1\}$$

dark photons decay

vector mesons

decay

$\sigma(A') BR(A' \rightarrow \mathcal{F}) Efficiency(\tau_{A'})$ = $\sigma(X) BR(X \rightarrow \mathcal{F}) Efficiency(\tau_x)$

$$r_{\mathrm{ex}}^{\mathrm{ul}}(m_{A'},\varepsilon^2)$$

The upper limit on observed A' relative to the expected number of observed A' decay

$$\left[r_{\mathrm{ex}}^{\mathrm{ul}}(m_{A'},\varepsilon^2)\frac{\sigma_{A'}\mathcal{B}_{A'\to\mathcal{F}}}{\sigma_X\mathcal{B}_{X\to\mathcal{F}}}\right]_{\tau_X=\tau_{A'}} < 1$$

Beyond Dark Photon

Beyond Dark Photon

Beyond Dark Photon

Invisible decay

• photon \rightarrow dark photon

• dark photon \rightarrow general theories (vector coupling)

 production and decay date-driven method for the hadronic decay rates

Thank you