

Timing BSM signals

Zhen Liu (Fermilab) Searching for long-lived particles at the LHC: Third workshop of the LHC LLP Community May. 18th, 2018

Precision timing--a new dimension

Precision timing information now compliments spatial information, and its bears great potential to fully realize LHC's physics reach in LLP.

For long-lived particles (whose lifetime is macroscopic >~ mm), they generically move slower and their long-lived nature substantiates their slowness in motion at colliders.

- 30 picosecond timing resolution at CMS after phase2 upgrade (in front of ECal, 1.2 m from beam);
- Proposed to enable 4d construction of vertices:
 - reducing the pile up level;
 - Reducing pile-up track misassociation in to the primary interaction;

Timing BSM

$$\Delta t = \frac{\ell_X}{\beta_X} + \frac{\ell_a}{\beta_a} - \frac{\ell_{\rm SM}}{\beta_{\rm SM}}$$
 signal arrival time L_{T_2}

particles

arrival time

For CMS timing layer (1.2 m, t0=4 nanoseconds)*, 30 picosecond timing resolution indicates sensitivity to BSM signal having >1% velocity (boost factor $\gamma < 7$) /path difference w.r.t. SM particles!

LLP (with mass > 10s of GeV) typically all have much slower motion!

*for pseudorapidity 0; higher rapidity enlarges the timing difference;

*SM particles essentially all travel at speed of light;

Time delay at the LHC

LLPs arrive (very) late

$$\Delta t = \frac{\ell_X}{\beta_X} + \frac{\ell_a}{\beta_a} - \frac{\ell_{\rm SM}}{\beta_{\rm SM}} \underbrace{\mathbb{E}}_{10^{-2}}^{10^{-1}}$$

We also consider a possible timing layer outside Muon spectrometer, making use of the large LHC detector volume.

Signals:

- Red: Higgs decaying into glueballs (neutral naturalness)
 Representative as particles produced with typical pT;
- Blue: Higgsinos (GMSB SUSY)
 Representative as particles pair produced at the LHC;

3rd LHC LLP

Zhen Liu Timing BSM LLP

LLPs arrive (very) late

$$\Delta t = \frac{\ell_X}{\beta_X} + \frac{\ell_a}{\beta_a} - \frac{\ell_{\rm SM}}{\beta_{\rm SM}} \underbrace{\hat{\Xi}}_{10^{-2}}^{10^{-1}}$$

We also consider a possible timing layer outside Muon spectrometer, making use of the large LHC detector volume.

Time delay at the LHC

Signals:

- Red: Higgs decaying into glueballs (neutral naturalness) Representative as particles produced with typical pT;
- Blue: Higgsinos (GMSB SUSY) Representative as particles pair produced at the LHC;

Backgrounds:

- Gray (Dashed): Pile-up with natural spread of 190 ps (beam property)
- Gray (Solid): Hard collision spread due to uncertainties in timing

Zhen Liu Timing BSM LLP 3rd LHC LLP

LLPs arrive (very) late
$$\Delta t = \frac{\ell_X}{\beta_X} + \frac{\ell_a}{\beta_a} - \frac{\ell_{\rm SM}}{\beta_{\rm SM}}$$
 (signal of the large LHC detector) late $\frac{10^0}{\beta_{\rm SM}}$ (signal of the large LHC detector) $\frac{10^{-1}}{\beta_{\rm SM}}$

making use of the large LHC detector volume.

Time delay at the LHC

Other backgrounds:

- Interaction with material
- Cosmic rays
- Beam halo

All have mature veto mechanism; need to revisit to see the impact of timing

		L_{T_2}	L_{T_1}	Trigger	$\epsilon_{ m trig}$	$\epsilon_{ m sig}$	$\epsilon_{\mathrm{fake}}^{j}$	Ref.	
	EC	1.17 m	0.2 m	DelayJet	0.5	0.5	10^{-3}	[11]	CMS timing module
	MS	10.6 m	4.2 m	MS RoI	0.25, 0.5	0.25	10^{-7}	[20]	ATLAS MS LLP search
Ī									(without timing)

Designed 2 generic search: no restriction on the signal, as long as they can deposit energy (30 GeV pT min)*

Multijet and pile-up background can be effectively rejected use timing*

	L_{T_2}	L_{T_1}	Trigger	$\epsilon_{ m trig}$	$\epsilon_{ m sig}$	$\epsilon_{\mathrm{fake}}^{j}$	Ref.	
EC	1.17 m	$0.2 \mathrm{m}$	DelayJet					CMS timing module
MS	10.6 m	4.2 m	MS RoI	0.25, 0.5	0.25	10^{-7}	[20]	ATLAS MS LLP search
								(without timing)

Designed 2 generic search: no restriction on the signal, as long as they can deposit energy (30 GeV pT min)*

Multijet and pile-up background can be effectively rejected use timing*

Same-vertex hard scattering background, time spread 30 ps (precision timing)

EC:
$$N_{\rm bkg}^{\rm SV} = \sigma_{\rm i}^{\rm multi} \mathcal{L}_{\rm int} \epsilon_{\rm trig} \epsilon_{\rm fake}^{j} \approx 5.6 \times 10^{9}$$

MS:
$$N_{\rm bkg}^{\rm SV} = \sigma_{\rm i}^{\rm multi} \mathcal{L}_{\rm int} \epsilon_{\rm trig} \epsilon_{\rm fake}^{j} \approx 2.8 \times 10^{5}$$

Pile-Up background, time spread 190 ps (beam property)

EC:
$$N_{\rm bkg}^{\rm PU} = \sigma_{\rm j} \mathcal{L}_{\rm int} \epsilon_{\rm trig} \left(\bar{n}_{\rm PU} \frac{\sigma_{\rm j}}{\sigma_{\rm inc}} \epsilon_{\rm fake} f_{\rm nt}^{j} \right) \approx 2.6 \times 10^{4},$$

MS:
$$N_{\text{bkg}}^{\text{PU}} = \sigma_{\text{j}} \mathcal{L}_{\text{int}} \epsilon_{\text{trig}} \left(\bar{n}_{\text{PU}} \frac{\sigma_{\text{j}}}{\sigma_{\text{inc}}} \epsilon_{\text{fake}} f_{\text{nt}}^{j} \right) \approx 1.3,$$
 (5)

*challenges will be discussed later, let's first see the potential

	L_{T_2}	L_{T_1}	Trigger	$\epsilon_{ m trig}$	$\epsilon_{ m sig}$	$\epsilon_{\mathrm{fake}}^{j}$	Ref.	
EC	1.17 m	$0.2 \mathrm{m}$	DelayJet	0.5	0.5	10^{-3}	[11]	CMS timing module
MS	10.6 m	4.2 m	MS RoI	0.25, 0.5	0.25	10^{-7}	[20]	ATLAS MS LLP search
								(without timing)

- EC: >0.8 ns or >1.2 ns timing cut (<25 ns always there)
- MS: 1 ns or 10 ns timing cut (0.2 ns or 2 ns resolution sufficient)
- Significant improvement!
- Little difference for signal as they are very slow
- large tolerance room if background non-gaussian;

For comprehensive 8 TeV analysis, see **ZL**, B. 3rd LHC LLP Tweedie 1503.05923

		L_{T_2}	L_{T_1}	Trigger	$\epsilon_{ m trig}$	$\epsilon_{ m sig}$	$\epsilon_{\mathrm{fake}}^{j}$	Ref.	
I	ΞC	1.17 m	0.2 m	DelayJet	0.5	0.5	10^{-3}	[11]	CMS timing module
N	MS	10.6 m	4.2 m	MS RoI	0.25, 0.5	0.25	10^{-7}	[20]	ATLAS MS LLP search
									(without timing)

- EC: >0.8 ns timing cut (<25 ns always there)
- MS: 0.2 ns or 1 ns timing cut (30 ps or 0.2 ns resolution sufficient)
- Significant improvement!
- 10 GeV benchmark point sensitive to the timing cut, as they are more boosted and having less time delay.

Challenges (opportunities)

- Timing reducing background to 10^-10 level. Early measurement for HSCP (non-pointing photon) indicates the SM background behavior agree well with Gaussian up to 10^-6 (10^-4) level (experimental Monte Carlo went to 10^-9), where the plot ends (data insufficient); Would be an interesting SM property measurement;
- For EC search, timing layer will be there. Delayed jet (anything) trigger would require non-trivial effort to realize, low+high level with jet ROI; Once realized, could be universal boost to LLPs at the LHC!
- For MS search, a feasibility study on new timing layer options like this, balancing technology, design, cost, and physics goals would be a natural future step. As we have shown, except for the light LLP (~10 GeV), the large delay does not require 10s ps timing precision. Sub (even) nanosecond for the MS is sufficient;
- There are many more handles on the signal selection and background rejection can be used;

Summary and outlook

- LHC great detector for LLP searches, a rich program is still under development;
- All traditional LLP searches could be augmented by the timing information (re-optimization);
- We consider two benchmark new searches: one is ECal based with delayed jet trigger, one is MS based with new timing layer;
- New searches can capture general features of the LLP in a very robust way by exploiting their delayed feature;
- Precision timing is a new dimension of particle physics information available for BSM searches

5/18/18

Backup

LLPs decaying to hadrons:

- signature could be displaced multi-track vertex
 - + resolved jets (CMS, LHCb), or single boosted jet (ATLAS)
- a jet with no tracks & low EMF
 - ATLAS can trigger on this signature
- multi-track vertex in the muon system

Emerging jets

- multiple displaced vertices

(very) late decays in the calorimeter

 ATLAS and CMS look for jets in empty bunch crossings (neither beam in the detector)

3rd LHC LLP

ATLAS non-pointing photon

Zhen Liu Timing BSM LLP

CMS Heavy stable charged particle (HSCP) track+ToF

3rd LHC LLP

MS Volume

FIG. 7. Barrel MS vertex reconstruction efficiency as a function of the radial decay position of the long-lived particle for scalar boson, Stealth SUSY, and Z' benchmark samples.

- Effective decay volume 4-7 m 4-10 m.
- New layer and upgrades might relax/extend the MS Vertexing length.
- We took the full volume in our study.
- If stick to 4-7 m, the efficiency will reduce by roughly a factor of 2.

Long-lived particles

current status and challenges also mentioned in many other talks in this workshop

These nonconventional and rich BSM signatures receives a lot of

attention as:

Theoretically well motivated: SUSY (RPV, GMSB, Split, compressed, etc.), neutral naturalness, hidden valley, dark shower... etc;

 Experimentally challenging but bearing great potential for discovery:

> New signatures could have been missed by conventional searches;

Low (zero) background
 analysis once carried out);

