

MATHUSLA

Ultra-Long-Lived Particles: The Lifetime Frontier

Mason Proffitt
on behalf of the MATHUSLA collaboration

Motivation

- High intensity, high energy collisions (ATLAS/CMS at the (HL-)LHC) offer a great potential source of LLPs, with the highest available mass reach
- ...but neutral LLPs are very challenging to detect: only signatures are MET or a displaced vertex
- Only limit on lifetime ($c\tau \le 10^7 10^8$ m) is from impact on Big Bang nucleosynthesis
- If $c\tau$ is much greater than the radial detector length L, the probability to decay inside the detector is proportional to $L/(c\tau)$
- For these ultra-long-lived particles (ULLP), the likelihood of the displaced vertex ending up within a ~10 m detector can be very small
- With such low rates, the huge amount of activity in the main LHC detectors makes it nearly impossible to distinguish ULLP signals from very rare background events

Motivation

- Solution to this ULLP problem:
 - New detector that minimizes background as much as possible, while maintaining reasonably large radial detector size and solid angle coverage relative to the main interaction point (IP)
- Any underground experiment limited by available space and excavation/installation cost
- Going to the surface is (relatively) cheap and easy
- ~100 m of rock provides excellent shielding from collision/beam backgrounds
- Signal rate isn't affected by the distance since $c\tau \gg 100$ m
- Only extra background is increased cosmic ray muon rate
 - Rarely pointed towards IP and is coming from the opposite direction (from above instead of below)

Motivation

For exotic Higgs decays, number of ULLPs decaying within a detector given the production of N_h Higgs bosons is:

$$N_{\rm obs} \sim N_h \cdot {\rm Br}(h \to {\rm ULLP} \to {\rm SM}) \cdot \epsilon_{\rm geometric} \cdot \frac{L}{bc\tau}$$

where b = Lorentz boost of ULLP (|p|/m)

For ULLP masses \gtrsim 20 GeV, setting L ~ 20 m and geometric efficiency

 $arepsilon_{
m qeometric}$ ~ 10% allows detection of a few events with the HL-LHC even at the

BBN lifetime limit

MATHUSLA detector proposal

MAssive Timing Hodoscope for Ultra-Stable neutraL pArticles

Building dimensions: 200 m × 200 m × 20 m

Location: Next to the surface buildings of ATLAS (point 1) or CMS (point 5)

Timeline: HL-LHC (~2025)

MATHUSLA detector proposal

Would nearly span from here (council chamber) to the globe...

and be almost as tall!

Detector design

Simple concept: effectively just a large (mostly empty) box to enclose displaced vertices

Detector design

- Using two robust, well-understood technologies:
 - Scintillator planes:
 - Covering entire boundary of detector volume
 - Used for triggering and rejecting incoming SM particles
 - 5 RPC layers placed horizontally near top of the volume:
 - Tracking, vertex reconstruction, rejection of downward-traveling particles (cosmic ray muons)
 - The ~1 ns and ~1 cm resolutions expected to be needed for tracking and background rejection are very attainable, have been proven with the above in existing detectors
 - Could replace scintillators with all RPCs ⇒ single technology detector
- Can be built as several smaller modules (e.g., 20 m × 20 m × 20 m)
 - Would streamline deployment, improve flexibility to funding availability, allow placing modules above both ATLAS and CMS

Signal and background signatures

Example signals for MATHUSLA:

Main backgrounds:

- Veto from bottom scintillator plane and requiring upward-going tracks gets rid of everything but neutrinos
- Atmospheric neutrino scattering rejected by vetoing narrow cones of tracks pointing away from IP
- Can also reject most neutrino scattering final states (which include non-relativistic protons) from timing

Estimated sensitivity

Aiming to reduce background events over the entire HL-LHC run to O(1)

 \Rightarrow Sensitive to O(1) signal events!

Plot shows predicted MATHUSLA sensitivity to exotic Higgs decays to ULLPs from requiring 4 signal events

Chou, Curtain, Lubatti 1606.06298

Cosmic ray physics potential

- Along with such a large surface detector, valuable cosmic ray data comes "for free"
- Probe the spectrum of primary cosmic rays
- Unprecedented measurements of muon bundles—hundreds of parallel muons produced in extensive air showers
 - Possible to capture a huge section of an individual shower simultaneously
- Able to make new measurements of nearly horizontal cosmic ray muons

Simulation

- Ongoing work on simulating signal and background for MATHUSLA
 - MadGraph/Pythia for generating signal events and incoming muons from LHC collisions
 - GENIE for simulating neutrino scattering
 - CORSIKA for cosmic ray simulation
 - Simulating detector response in Geant4
- Because geometric coverage is not 100%, idea is to get spectrum of particles (muons, neutrinos) coming from LHC collisions in MadGraph/Pythia, then create a "particle gun" directly in G4 to send into detector simulation
- Image on title slide comes from initial simulation tests

MATHUSLA test stand

Relatively small detector to validate the basic design concept and improve understanding of backgrounds for MATHUSLA

Main goals:

- Detect upward-going particles at the surface from ATLAS collisions and characterize these signatures and rates
- Test timing resolution needed to distinguish these from downward-going cosmic ray particles

MARKA

MATHUSLA test stand

Scintillators

Using 59 borrowed scintillators (from DØ) and 12 RPCs (from ARGO)... all well beyond their originally designed use!

Active surface area: 2.5 m × 2.5 m

Height: 6.7 m

Data readout:

TDC + ADC readout for scintillators, TDC + strip address for RPCs

Shown here in the buffer zone of SX1, ~100 m directly above ATLAS

Scintillators

Test stand TDAQ

- 4 types of triggers, defined by TOP and BOTTOM scintillator planes + timing logic
- All scintillator + RPC data is recorded by VME modules
- VME readout by a controller connected to the DAQ PC
- Data is stored on disk (in a custom format) and sent to an online monitoring application

Test stand operation

- Tested scintillators and constructed test stand last summer through autumn
- Installed at point 1 in November, collected data for about a week
- Moved to Prévessin for year-end LHC shutdown
- Started running again there in March, about a month of data
 - Coincidentally ended up in front of the H8 beamline from SPS
 - Have data corresponding to periods with and without horizontal muon flux from the beam
 - Fixed a major RPC efficiency problem (LV setting)
 - All scintillators and RPCs seem to be behaving reasonably well (pending more thorough testing)
- Currently back at point 1, waiting for installation area to be ready again

Next few slides: simple demonstration of spatial mapping of all RPC hits in one event with one track through each plane of RPCs, starting from the top

Schematic key for test stand:

(Actual) Tracking

Very preliminary!

Need to work out some bugs, verify mapping data to coordinates, allow for multiple tracks

Current status and outlook

- MATHUSLA physics case whitepaper (nearly) ready (next couple weeks)
- Ongoing analysis of test stand data:
 - Writing analysis framework
 - Starting tracking
 - Optimizing RPC voltage settings
 - Timing calibration
- Simulation work in progress
- Preparing letter of intent (next few months)
- Lots of work to do!
 - Limited by number of people and time availability; anyone interested is encouraged to join!
 - Contact: mathusla.experiment@cern.ch