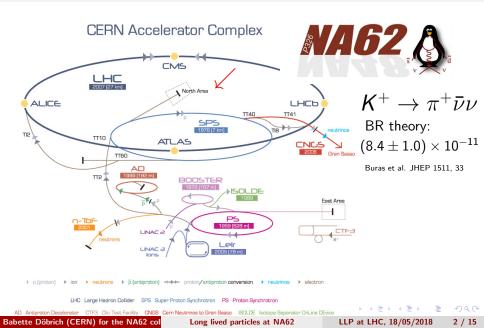

Long lived particles at NA62 (disclaimer: NA62 is not a 'dedicated LLP experiment')

Babette Döbrich (CERN) for the NA62 collaboration

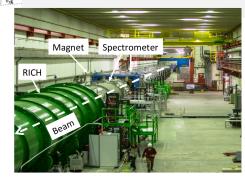
LLP at LHC, 18/05/2018



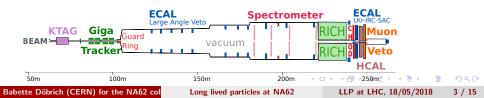
Journey to the "inner circle" :-)

Babette Döbrich (CERN) for the NA62 col

Journey to the "inner circle" :-)

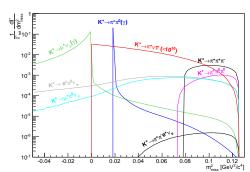

NA62 rationale

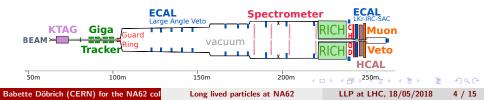
A Kaon's life:


- BR($K^+
 ightarrow \pi^+ \pi^0$) $\simeq 0.21$
- BR($K^+
 ightarrow \mu^+
 u$) \simeq 0.64
- BR($K^+ \rightarrow \pi^+\pi^-\pi^+$) $\simeq 0.06$

Detector system

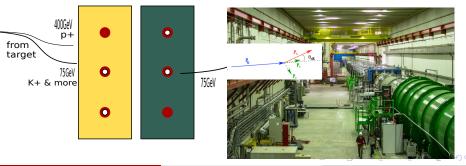
- Kaon: KTAG, GTK, CHANTI
- Pion: STRAW, CHOD, RICH
- $\bullet~\gamma$ Vetoes: LAV, IRC, SAC, LKr
- MUV system: μ & Hadron


unseparated 750 MHz beam at GTK3 (6.6 % Kaons at 75 GeV, 1 % bite)



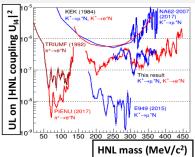
NA62 rationale II

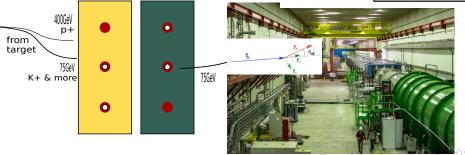
•
$$m_{\rm miss}^2 = (P_K - P_\pi)^2$$


- 10¹² background rejection!
- kinematic $\mathcal{O}(10^4)$
- high-efficiency veto: $\mathcal{O}(10^8)$ rejection of π^0 for $E(\pi^0) > 40 {\rm GeV}$
- particle ID μ vs π : rejection of $\mathcal{O}(10^7)$ for $15 < p_{\pi^+} < 35 \text{GeV}$
- \bullet timing subdetectors $\mathcal{O}(100 \mathrm{ps})$

 \downarrow 2 signal regions

main measurement: $K^+ \rightarrow \pi^+ \bar{\nu} \nu$ Run 2016: presented at this year's Moriond, and also here: https://indico.cern.ch/event/714178/ Run 2017: $\sim 3 \times 10^{12}$ Kaon decays collected :-) Run 2018: since mid April-November then long shutdown expected

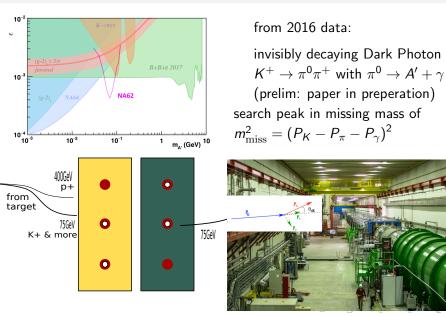

Babette Döbrich (CERN) for the NA62 col


Long lived particles at NA62

LLP at LHC, 18/05/2018 5 / 15

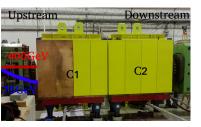
Trigger band width shared by $\pi^+ \bar{\nu} \nu$ + other Kaon & non-Kaon modes example Kaon: $K^+ \rightarrow N + I^+$,

N: 'stable' Heavy Neutrino 2015 data: PLB 778 137 (2018) based on $\sim 3 \times 10^8$ Kaon decays



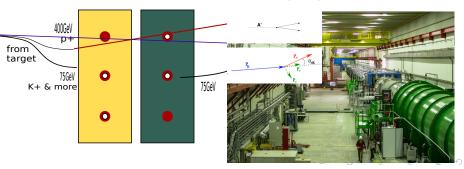
Babette Döbrich (CERN) for the NA62 col

Long lived particles at NA62


LLP at LHC, 18/05/2018 5 / 15

Babette Döbrich (CERN) for the NA62 col

Long lived particles at NA62

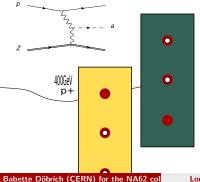

LLP at LHC, 18/05/2018 5 / 15

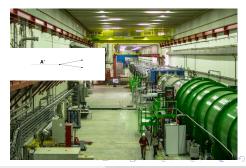
heavier BSM? other prod channels? decay of long-lived?

\Rightarrow upstream production

60 % meson decays & 40 % direct p prod. trigger 2017: $\mu\mu$ and μ + track **not** requiring initial Kaon both $\mathcal{O}(10^{17})$ POT in 2017

Babette Döbrich (CERN) for the NA62 col


Long lived particles at NA62

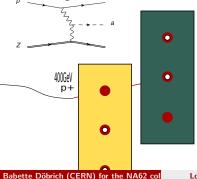

NA62 'pure' dump mode (no Kaon physics!)

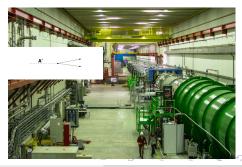
from 2016/2017 data:

 $\mathcal{O}(10^{16})$ POT from pure dump critical for e.g. $\gamma\gamma$ final state

Long lived particles at NA62

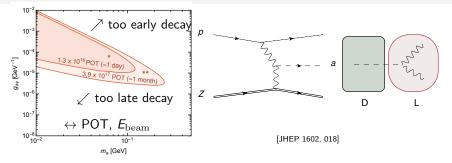
NA62 'pure' dump mode (no Kaon physics!)




from 2016/2017 data:

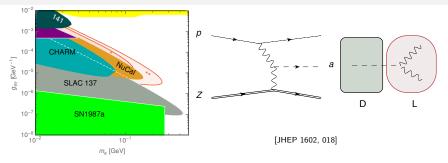
 $\mathcal{O}(10^{16})$ POT from pure dump critical for e.g. $\gamma\gamma$ final state

in future \leq 2023 $\rightarrow \mathcal{O}(10^{18})$ POT sensi to HNL, Dark Photon, ALP...


more, e.g.: indico.cern.ch/event/608491/contributions/2457796/

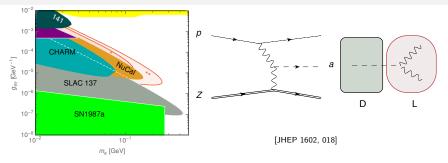
Long lived particles at NA62

Detailed example: understanding ALP contours



production is not exactly forward (but not relevant for the moment)

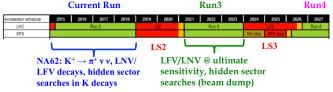
• NA62: $\mathit{d}_{\mathrm{target}} \sim 105$ m, $\mathit{d}_{\mathrm{TAX}} \sim 80$ m, $\mathit{L}_{\mathrm{tracker}} \sim 65$ m


Babette Döbrich (CERN) for the NA62 col

Detailed example: understanding ALP contours

- production is not exactly forward (but not relevant for the moment)
- NA62: $\mathit{d}_{\mathrm{target}} \sim 105$ m, $\mathit{d}_{\mathrm{TAX}} \sim 80$ m, $\mathit{L}_{\mathrm{tracker}} \sim 65$ m
- CHARM: $d_{\text{dump}} \sim 480$ m, $L_{\text{tracker}} \sim 35$ m **but** offset 5m from beam-axis $\rightarrow A_{\text{effective}} = 0.09 \rightarrow N_{\text{POT,effective}} \sim 2 \times 10^{17}$
- NuCal: $d_{
 m dump}\sim 64$ m, $L_{
 m tr.}\sim 23$ m, $N_{
 m POT}\sim 2 imes 10^{18}$ but $E=70{
 m GeV}$

Detailed example: understanding ALP contours

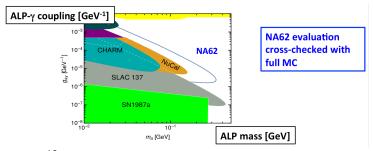


- production is not exactly forward (but not relevant for the moment)
- NA62: $\mathit{d}_{\mathrm{target}} \sim 105$ m, $\mathit{d}_{\mathrm{TAX}} \sim 80$ m, $\mathit{L}_{\mathrm{tracker}} \sim 65$ m
- CHARM: $d_{\rm dump} \sim 480$ m, $L_{\rm tracker} \sim 35$ m **but** offset 5m from beam-axis $\rightarrow A_{\rm effective} = 0.09 \rightarrow N_{\rm POT, effective} \sim 2 \times 10^{17}$
- NuCal: $d_{
 m dump}\sim$ 64m, $L_{
 m tr.}\sim$ 23m, $N_{
 m POT}\sim 2 imes 10^{18}$ but E= 70GeV
- general picture persists for two tracks \rightarrow reason for parasitic triggers: complementary sensitivity also, e.g. for ALPs to $\mu\mu$ + others

Babette Döbrich (CERN) for the NA62 col

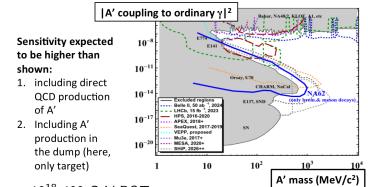
LLPs at NA62 in a nut-shell

- **1** Parasitic to $\pi\nu\bar{\nu}$: invisible Dark Photons, heavy Neutrinos...
- **2** Trigger Parasitic to $\pi\nu\bar{\nu}$: $\mu\pi + \mu\mu$ away from beamline: sizable statistics $\mathcal{O}(10^{18})$ possible this year
- Image: dump-mode: sizable statistics $\mathcal{O}(10^{18})$ reserved for future, but some channels discovery potential with moderate statistics (e.g. ALP $\mathcal{O}(10^{16})$)
 Current Run
 Run3

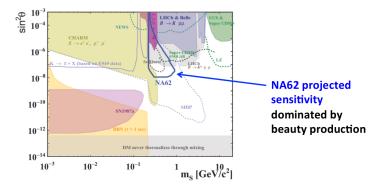

Under study / definition, interaction/synergy with the Physics Beyond Collider CERN initiative

 \Rightarrow In the following: "long-lived" prospects at $\mathcal{O}(10^{18})$ POT

8 / 15

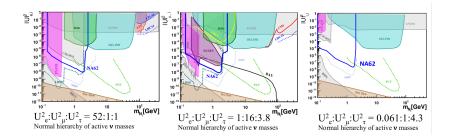

・ 同 ト ・ ヨ ト ・ ヨ ト

ALPs coupled to photons

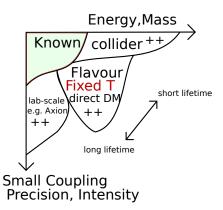

- Assume 10¹⁸ 400-GeV POT
- As in the detailed example given before: based on Primakov production and 0 background

Dark Photons

- Assume 10¹⁸ 400-GeV POT
- Study DP production (meson decays, bremsstrahlung) from interaction on target, search for *ee*, $\mu\mu$
- assume zero background, expected 90%-CL exclusion plot


Dark Scalars

- Assume 10¹⁸ 400-GeV POT
- sensivity to hidden scalars charged decays search for *ee*, $\mu\mu$, $\pi\pi$, *KK* two-track final states originating at the TAX
- assume zero background, expected 90%-CL exclusion plot


- - E

HNLs

- Assume 10¹⁸ 400-GeV POT: search for two-track final states originang at the TAX sensivity includes open channels, assuming 0 background
- separately address 3 extreme coupling scenarios [Shaposhnikov, Gorbunov arXiv:0705.1729v2]
- assume zero background, evaluate expected 90%-CL exclusion plot

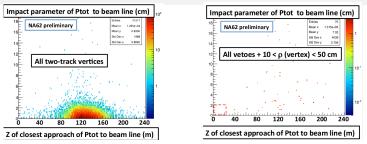
Let's explore the unknown together :-)

NA62: 2016 data analyzed for $K^+ \rightarrow \pi^+ \bar{\nu} \nu$, 2017 analysis on the way, 2018 data taking ongoing.

In addition,

- before LS2: πνν-parasitic triggers/searches + short dedicated beam-dump runs
- after LS2, a year-long data taking would provide sensitivity to various LLPs

Thank you for your attention!


Backup

Babette Döbrich (CERN) for the NA62 col

Long lived particles at NA62

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Background rejection: 2016 data $\mathcal{O}(10^{15})$ POT

- Track quality (association with CHOD, LKr hits in time) + acceptance (CHOD, LKr, MUV3)
- Vertex quality: two-track-distance $<1{\rm cm},$ vertex-position 105< z <165 m
- further veto (rhs): $E_{\rm LKr, additional} < 2$ GeV; IRC, SAC, LAV no hits with \pm 5ns, CHANTI no candidate within \pm 5ns
- no events in signal region at TAX even with standard K^+ beam at $\mathcal{O}(10^{15})$ POT, background rejection OK for $\mathcal{O}(10^{15})$ POT in standard conditions and $4 \times \mathcal{O}(10^{15})$ in dump

Babette Döbrich (CERN) for the NA62 col