Dark Sectors at the Fermilab SeaQuest Experiment

Stefania Gori University of Cincinnati

Searching for long-lived particles at the LHC: 3rd workshop of the LHC LLP Community

> CERN May 17, 2018

The SeaQuest experiment 2012 - now

Fermilab Accelerator Complex

Very high intensity proton beam

Proton Improvement Plan to get very high intensity (PIP, PIP II, PIP III) <u>Final goal:</u> ~2 MW of proton beam power (now ~700 KW)

The SeaQuest experiment 2012 - now

Fermilab Accelerator Complex

Very high intensity proton beam

Proton Improvement Plan to get very high intensity (PIP, PIP II, PIP III) <u>Final goal:</u> ~2 MW of proton beam power (now ~700 KW)

SeaQuest in a nutshell

SeaQuest in a nutshell

1. Compact geometry
Sensitivity to (slightly) displaced dark particles with d > 5m

SeaQuest in a nutshell

1. Compact geometry

Sensitivity to (slightly) displaced dark particles with **d > 5m**

2. KMAG separating even very forward muons $(\Delta p_T \sim 0.4 \text{ GeV})$

Identification of very light dark particles/squeezed spectra

3. A bit of history

 * Previous runs (since 2012) dedicated to prompt μ. Nuclear physics program. Drell-Yan measurements
 * April 2017:

installation of displaced di-muon trigger $\sim 10^{16}$ POT collected in 5 days run

* Approved: physics run for ~10¹⁸ POT (2018 - 2021)

 Work in progress: proposal for installation of ECAL (from the Phenix experiment)

Visible displaced signatures

Fiducial regions

Signatures

* Di-electrons (resolved & not resolved)

- * Di-Muons
- * Di-photons

₩...

Visible displaced signatures

Fiducial regions

Backgrounds for electron signatures

* The (5-6)m region has negligible $K_L \rightarrow \pi^{\pm} e^{\mp} \nu$ background * The largest decay region will probably have backgrounds. Experimental studies needed! We will show the reach corresponding to 10 signal events

Signatures

- * Di-Muons
- * Di-photons
- * . . .

Luminosity

- * 10¹⁸ POT (approved luminosity)
- * 10²⁰ POT (futuristic)

Dark photon models

- 1. Minimal dark photon model
- 2. Inelastic Dark Matter (IDM) Berlin, SG, Schuster, Toro, 1804.00661
- 3. Strongly interacting DM Berlin, Blinov, SG, Schuster, Toro, 1801.05805

A huge dark photon production

 $\epsilon Z^{\mu
u} A'_{\mu
u}$

1. The reach for the minimal A' model

Berlin, SG, Schuster, Toro, 1804.00661

1. The reach for the minimal A' model

2. Inelastic DM & displaced decays

Spectrum of Inelastic DM (IDM) models: χ_1 (DM), χ_2 (DM excited state), A' (mediator)

2. Inelastic DM & displaced decays

Spectrum of Inelastic DM (IDM) models: χ_1 (DM), χ_2 (DM excited state), A' (mediator)

Copiously produced at fixed target experiments

with

A'

2. Inelastic DM & displaced decays A'Spectrum of Inelastic DM (IDM) models: χ_1 (DM), χ_2 (DM excited state), A' (mediator) χ_2 Δm_1 χ_1 (small) **X** 2 $\chi_2 \rightarrow \chi_1 f \overline{f}$, $m_{A'} = 3 m_1$ 10^{-2} Copiously produced at fixed target experiments A=0.03 A 4D - DOM 10^{-3} with χ_1 10^3 m ε 10^3 m 10^{-4} 10⁵ m 10⁵ m 10⁷ m 10⁷ m 10^{-5} 10-2 10-1 $\Gamma(\chi_2 \to \chi_1 e^+ e^-) \simeq rac{4\epsilon^2 \ lpha_{ m em} \ lpha_D \ \Delta^5 m_1^5}{15\pi m_M^4}$ m_1 [GeV] **Displaced decays Non-resonant decays** S.Gori

2. The reach for IDM

The SeaQuest acceptance remains relatively high even for smaller mass splittings ((5-12)m fiducial region!)

3. SIMPs & displaced decays

Strongly interacting DM (SIMP): QCD-like theories with: DM = lightest pions (π_D) ; dark vectors (V_D) ...

3. SIMPs & displaced decays

Strongly interacting DM (SIMP): QCD-like theories with: DM = lightest pions (π_D) ; dark vectors (V_D) ...

3. SIMPs & displaced decays

Strongly interacting DM (SIMP): QCD-like theories with: DM = lightest pions (π_D) ; dark vectors (V_D) ...

3. The reach for SIMPs

Berlin, Blinov, SG, Schuster, Toro, 1801.05805

Beyond dark photon models

Scalars, axions, ...many additional signatures

Conclusions & Outlook

 Fermilab will cover a very important role in the search for displaced dark sectors: the SeaQuest experiment obvious advantage: <u>existing experiment</u>

Minimal dark photon & dark scalar; Inelastic DM; axions; strongly-interacting DM models can be broadly explored

Complementarity with other fixed target experiments

Additional models that SeaQuest can explore? Particle physics case? Larger luminosities? Upgrades?

2. Inelastic DM

Inelastic DM (IDM) models were initially proposed to explain the DAMA anomaly, while being consistent with Dark Matter direct detection bounds from CDMS Tucker-Smith, Weiner, 0101138

$$-\mathcal{L} \supset m_D \eta \xi + \frac{1}{2} \delta_\eta \eta^2 + \frac{1}{2} \delta_\xi \xi^2 + \text{h.c.}$$

The only relevant interaction is inelastic:

$$\mathcal{L} \supset \frac{ie_D \ m_D}{\sqrt{m_D^2 + (\delta_{\xi} - \delta_{\eta})^2/4}} \ A'_{\mu} \ (\bar{\chi}_1 \gamma^{\mu} \chi_2 - \bar{\chi}_2 \gamma^{\mu} \chi_1)$$

2-component Weyl spinors with opposite charge under U(1)'

$$\chi_1 = i(\eta - \xi)\sqrt{2} , \ \chi_2 = (\eta + \xi)\sqrt{2}$$

The elastic piece is very small $(\delta_{\eta,\xi} \ll m_D)$:

$$\mathcal{L} \supset \frac{e_D \left(\delta_{\xi} - \delta_{\eta}\right)}{\sqrt{4m_D^2 + (\delta_{\xi} - \delta_{\eta})^2}} A'_{\mu} \left(\bar{\chi}_2 \gamma^{\mu} \chi_2 - \bar{\chi}_1 \gamma^{\mu} \chi_1\right)$$

Two states close in mass: $\Delta \equiv \frac{m_2 - m_1}{m_1} \sim \frac{\delta_{\xi} + \delta_{\eta}}{m_D} \ll 1$ $(\Delta^{\text{DAMA}} \sim 10^{-6}, \ m_1^{\text{DAMA}} \sim 50 \text{ GeV})$

Easy to get it small since it is a U(1)' breaking effect

3. Strongly interacting DM (SIMP)

Realized in eg. QCD-like theories
DM candidates: U(1)_D charged pions

$$\mathcal{L}_{
m WZW} = rac{2N_c}{15\pi^2 f_\pi^5} \epsilon^{\mu
u
ho\sigma} {
m Tr}(\pi\partial_\mu\pi\partial_
u\pi\partial_
ho\pi\partial_\sigma\pi)$$

 $\begin{cases} 3\pi_D \to 2\pi_D & \text{annihilation} \\ \pi_D \pi_D \to V_D \pi_D & \text{semi-annihilation} \end{cases}$