The (proposed) FASER experiment
(ForwArd Search ExpeRiment)

LHC LLP Workshop, CERN
Jamie Boyd (CERN) for the FASER team
based on slides from: Jonathan Feng (UC Irvine)

1708.09389

FASER: ForwArd Search ExpeRiment at the LHC

Abstract
New physics has traditionally been reported in the high-pT, gauge or high-energy collider experiments. If new particles are light and weakly coupled, however, the focus may be completely unexpected. Light particles are typically highly constrained within a few millimeters of the beam line, allowing sensitive searches with minimal backgrounds. In addition, searchers of unknown particles may be produced in large numbers. Two potential experiments, Forward Search Experiment (FASER) will be placed downstream of the ATLAS or CMS interaction points (IP) in the very forward region and operated continuously. Two different search techniques are utilized: one is to be placed in the IP and the other is just below the LHC nominal particle detector. For each location, the detector has a strong and stable background. In a conceptual realization of light, weakly-coupled particles, we identify QCD jets produced through high-energy and high-hadronism. We confirm that even a relatively small and background-free, radially directed, with a thickness of 5-10 GeV and a range of 10-100 km, is promising for the FASER collaboration. For further study, we conclude with a discussion of topics for future study; this will be essential for understanding the potential implications of new physics.

18 May 2018

FASER website:
https://twiki.cern.ch/twiki/bin/view/FASER/WebHome
FASER: THE IDEA

• New physics searches at the LHC focus on high p_T. This is appropriate for heavy, strongly interacting particles
 – $\sigma \sim \text{fb to pb} \rightarrow N \sim 10^3 - 10^6$, produced ~isotropically

• However, if new particles are light and weakly interacting, this may be completely misguided. Instead should exploit
 – $\sigma_{\text{inel}} \sim 100 \text{ mb} \rightarrow N \sim 10^{17}$, $\theta \sim \Lambda_{\text{QCD}} / E \sim 250 \text{ MeV} / \text{TeV} \sim \text{mrad}$

• We propose a small, inexpensive experiment, FASER, to be placed in the very forward region of ATLAS/CMS, a few 100m downstream of the IP, and analyze its discovery potential
FASER LOCATION

- We want to place FASER along the beam *collision* axis
 - Location: ~400 m from IP, after beams curve, ~3 m from the beams

Here assume FASER is exactly on-axis

- If ATLAS/CMS beams cross at 285 (590) µrad in vertical/horizontal plane, far location shifts by 6 (12) cm
SERVICE TUNNEL TI18

SPS

Point 1

Point 1.8

ATLAS
Lucky coincidence 1:
Empty tunnel seems to exist at about the right place to put our detector.
Example physics case (dark photons)
DARK PHOTON PROPERTIES

- Produced in meson decays, e.g.,

\[B(\pi^0 \rightarrow A'\gamma) = 2\epsilon^2 \left(1 - \frac{m_{A'}^2}{m_{\pi^0}^2}\right)^3 B(\pi^0 \rightarrow \gamma\gamma), \]

and also through dark bremsstrahlung \(pp \rightarrow p A' X \) and direct QCD processes \(qq \rightarrow A' X \) (requires pdfs at low \(Q^2, x \))

- Travels long distances through matter without interacting, decays to \(e^+e^- \), \(\mu^+\mu^- \) for \(m_{A'} > 2m_\mu \), other charged pairs

\[\bar{d} = c \frac{1}{\Gamma_{A'}} \gamma_{A'} \beta_{A'} \approx (80 \text{ m}) \quad B_e \left[\frac{10^{-5}}{\epsilon}\right]^2 \left[\frac{E_{A'}}{\text{TeV}}\right] \quad E_{A'} \gg m_{A'} \gg m_e \]

- TeV energies at the LHC \(\rightarrow \) huge boost, decay lengths of \(\sim 100 \text{ m} \) are possible for viable and interesting parameters
DARK PHOTON PRODUCTION

• Consider π^0 decay, η decay, dark bremsstrahlung

• Results for 1st model point: $(m_{A'}, \varepsilon) = (20 \text{ MeV}, 10^{-4})$

 • From $\pi^0 \rightarrow \gamma A'$, $E_{A'} \sim E_{\pi}/2$ (no surprise)
 • But note rates: even after ε^2 suppression, $N_{A'} \sim 10^8$; LHC may be a dark photon factory!
DARK PHOTONS IN FASER

- Now require dark photons to decay in FASER: consider cylindrical detector with volume $\sim 1 \text{ m}^3$

- Only the highest energy A's survive, but there are still many of them, and they are highly collimated

- Studies show 20cm radius detector capture nearly all of the dark-photon signal
BACKGROUNDS

• The signal is two simultaneous, opposite-sign, highly-energetic (E > 500 GeV) charged particles that start in the detector at a vertex and point back to IP → a tracker-based technology

• The opening angle is $\theta_{ee} \sim m_A / E \sim 10 \mu$rad. After traveling ~1 m, this leads to 10 μm separation, too small to resolve, so we need a small magnetic field

$$h_B \approx \frac{e c \ell^2}{E} B = 3 \text{ mm} \left[\frac{1 \text{ TeV}}{E} \right] \left[\frac{\ell}{10 \text{ m}} \right]^2 \left[\frac{B}{0.1 \text{ T}} \right]$$

• Many backgrounds are eliminated simply by virtue of FASER’s location. Particles from IP must pass through ~50 m of matter to get to FASER. Cosmic ray background is negligible, charged particles from IP are bent away by D1 magnet

• Leading backgrounds: neutrino-induced backgrounds and beam-induced backgrounds
DARK PHOTON EVENT RATES AND REACH

- Up to 10^5 dark photons decay in FASER in 300 fb$^{-1}$ in parameter regions with $m_{A'} \sim 10 - 500$ MeV, $\epsilon \sim 10^{-6} - 10^{-3}$

- Note that at upper ϵ boundary, rates are extremely sensitive to ϵ and the reach is quite insensitive to background, provided it is known
Other interesting signal models

- Other weakly coupled new physics scenarios considered – e.g. see:

 - Dark Higgs Bosons at FASER, arxiv:1710.09387, Jonathan L. Feng, Iftah Galon, Felix Kling, Sebastian Trojanowski
 - Flavor-Specific Scalar Mediators, arxiv:1712.10022, Brian Batell, Ayres Freitas, Ahmed Ismail, David McKeen
 - Heavy Neutral Leptons at FASER, arxiv:1801.08947, Felix Kling, Sebastian Trojanowski
 - Heavy Neutral Fermions at the High-Luminosity LHC, arxiv:1803.02212, Juan Carlos Helo, Martin Hirsch, Zeren Simon Wang
 - Hunting All the Hidden Photons, arxiv:1803.05466, Martin Bauer, Patrick Foldenauer, Joerg Jaeckel

+ Axion-like-particles (produced in collision of LHC decay products with material in forward region of LHC (TAN)
 - paper in preparation

- Some differences in optimal detector for these
 - Dark higgs coming from b-hadron decays
 - Need a larger radius detector to capture most of the signal e.g. 20cm -> 50cm
 - Even bigger detector (R~1m) preferred for HNL searches
 - ALP decays to 2 photons (very close together)
 - Need calorimeter with excellent position resolution to resolve two ~500 GeV photons separated by ~1mm
Experimental status
FASER: Detector considerations

- Currently have in mind an initial veto layer, followed by ~5 tracking layers and EM calorimeter, with volume largely empty and a magnetic field.

Currently optimizing the detector layout also based on re-using parts / spare-parts of existing detectors (e.g. for tracker).

Looking at different options for calorimeter.

Considering a permanent dipole magnet (suggested by CERN experts).

Detector needs to sit very close to the floor of the tunnel to lie on the line-of-sight, and needs to fit in available length (~4m, depends on crossing angle and possible digging).
FASER: Detector considerations

- Currently have in mind an initial veto layer, followed by ~5 tracking layers and EM calorimeter, with volume largely empty and a magnetic field.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central field</td>
<td>0.52</td>
<td>T</td>
</tr>
<tr>
<td>Integrated field</td>
<td>0.67</td>
<td>T.m</td>
</tr>
<tr>
<td>Good field region</td>
<td>Ø 200</td>
<td>mm</td>
</tr>
<tr>
<td>Field homogeneity</td>
<td>+/- 2</td>
<td>%</td>
</tr>
<tr>
<td>Free aperture</td>
<td>Ø 200</td>
<td>mm</td>
</tr>
<tr>
<td>Outside diameter</td>
<td>430</td>
<td>mm</td>
</tr>
<tr>
<td>Magnet length</td>
<td>1300</td>
<td>mm</td>
</tr>
<tr>
<td>Magnet weight</td>
<td>1200</td>
<td>kg</td>
</tr>
</tbody>
</table>

Some idea of a permanent dipole magnet we could use (informal discussion with Attilio Milanese of CERN magnet group)
FASER: GEANT STUDY UNDERWAY

- Currently have in mind an initial veto layer, followed by ~5 tracking layers and EM calorimeter, with volume largely empty and a magnetic field.
FASER: FLUKA STUDY UNDERWAY

Plot from F. Cerutti’s talk at Chamonix 2018.
Comparing FLUKA and BLM data for 2015 fill (reasonable agreement).
FASER location close to Q12 – lucky low background from collision debris, background peaks at Q11/Q13 due to dispersion at these points (these are +/-~50m along ring from FASER location). (In theory this depends on the optics, but should also be valid for HL-LHC)
FASER: FLUKA STUDY UNDERWAY

Lucky coincidence 2:
Proposed FASER location has low radiation due to dispersion of machine!

Plot from F. Cerutti’s talk at Chamonix 2018.
Comparing FLUKA and BLM data for 2015 fill (reasonable agreement).
FASER location close to Q12 – lucky low background from collision debris, background peaks at Q11/Q13 due to dispersion at these points (these are +/-~50m along ring from FASER location). (In theory this depends on the optics, but should also be valid for HL-LHC)
SUMMARY AND OUTLOOK

• The LHC has seen no new physics. Adding supplementary detectors to improve discovery prospects is a good idea, and there are many proposals targeting the lifetime frontier.

• FASER targets light, weakly-coupled new particles at low p_T, runs simultaneously with ATLAS/CMS, is small, fast, and cheap.

• FASER has significant discovery potential for dark photons dark Higgs bosons, heavy neutral leptons (sterile neutrinos), ALPs, other gauge bosons, and many other new particles.

• Possible timeline: install prototype in LS2 (2019-20) for Run 3 (150 fb$^{-1}$) with R~10cm, install full detector in LS3 (2023-25) for HL-LHC (3 ab$^{-1}$).
 • Currently assessing options for detector, and studying backgrounds (FLUKA simulations, and installing monitors in FASER location in upcoming LHC technical stop (TS1))
FASER team

Current team:

FASER e-group is: faser-all@cern.ch

Active members:
- Jonathan Feng (UCI, theorist) (contact with PBC BSM group)
- Iftah Galon (Rutgers, theorist)
- Sebastian Trojanowski (UCI, theorist)
- Felix Kling (UCI, theorist)
- Dave Casper (UCI, experimentalist)
- Jamie Boyd (CERN, experimentalist) (contact with PBC accelerator group)
- Brian Petersen (CERN, experimentalist)
- Shih-Chieh Hsu (Washington, experimentalist)
- Hidetoshi Otono (Kyushu, experimentalist)
- Aaron Soffa (UCI, experimentalist)
- Akitaka Ariga (Kyushu, experimentalist)
- Tomoko Ariga (Kyushu/Bern, experimentalist)
- Osamu Sato (Nagoya, experimentalist)

With great help from various CERN teams, contact via physics beyond colliders study group (contact: Mike Lamont).
We are looking at various detector options based on existing detectors to use in FASER prototype to be installed in LS2.
Back Up
LAMPOST LANDSCAPE

Already Discovered Weakly Interacting Light Particles

Strongly Interacting Heavy Particles

Impossible to Discover

Reflecting between MeV, GeV, and TeV on the mass axis.

Coupling Strength

1

10^{-3}

10^{-6}
THE LIFETIME FRONTIER

• Very popular, many interesting experiments: LHCb, Belle-II, NA62, SHiP, SeaQuest, MilliQan, MATHUSLA, Codex-b, and many others

• FASER: ForArd Search ExpeRiment. “The acronym recalls another marvelous instrument that harnessed highly collimated particles and was used to explore strange new worlds.”
PION PRODUCTION AT THE LHC

• Forward particle production simulations and models have been greatly constrained by LHC data

• EPOS-LHC, SIBYLL 2.3, QGSJETII-04 agree very well

• Enormous event rates ($\sigma_{\text{inel}} \sim 70 \text{ mb}, N_{\text{inel}} \sim 10^{17}$), production is peaked at $p_T \sim \Lambda_{\text{QCD}}$
DARK PHOTONS

- Dark matter is our most solid evidence for new particles. In recent years, the idea of dark matter has been generalized to dark sectors.

- Dark sectors motivate light, weakly coupled particles (WIMPless miracle, SIMP miracle, small-scale structure, ..).

- A prominent example: vector portal, leading to dark photons.

\[\epsilon F_{\mu \nu} F^{\mu \nu}_{\text{hidden}} \]

- The resulting theory contains a new gauge boson A' with mass $m_{A'}$ and ϵQ_f couplings to SM fermions f.

• Low $\varepsilon \rightarrow$ fixed target constraints, high $\varepsilon \rightarrow$ collider, precision constraints

• But still lots of open parameter space with $m_{A'} > 10$ MeV
 $\varepsilon \sim 10^{-6} - 10^{-3}$

• E.g., 2 representative model points: $(m_{A'}, \varepsilon) = (20$ MeV, $10^{-4})$
 $(100$ MeV, $10^{-5})$
DARK HIGGS BOSONS

- Another renormalizable coupling: Higgs portal

- The resulting theory contains a new scalar boson ϕ with mass m_ϕ, Higgs-like couplings suppressed by $\sin \theta$, and a trilinear coupling λ

$$\mathcal{L} = -m_\phi^2 \phi^2 - \sin \theta \frac{m_f}{\nu} \phi \bar{f} f - \lambda \nu h \phi \phi + \ldots$$
DARK HIGGS PROPERTIES

- Dark Higgs couples to mass, so favors decays to heaviest possible states

\[B(B \to \phi) \gg B(K \to \phi) \gg B(\eta, \pi \to \phi) \]

- In contrast to fixed target experiments, lots of COM energy to produce \(\sim 10^{15} \) B mesons, excellent probe of new physics that couples to 3\(^{rd}\) generation

- In B decays, \(p_T \sim m_B \), dark Higgs bosons are less collimated than dark photons
SIGNAL DEPENDENCE ON DETECTOR SPECS

- For dark photons, moving the detector closer helps
- At the far location, $R = 20$ cm captures almost all the A'
• FASER probes a large swath of new parameter space and is complementary to other current and proposed experiments
BACKGROUNDs

• If \(\pi^+ \rightarrow \mu \nu \) before D1 magnet, neutrinos can propagate into FASER, produce charged tracks through CC interactions

\[\nu_\ell N \rightarrow \ell X \]

\[\nu N \rightarrow \mu^\pm \pi^\mp X \]

• Coincident single tracks that fake double tracks are negligible; second process eliminated by requiring no other activity, tracks start in the detector and have high and symmetric energies

• Beam-induced backgrounds currently being investigated by CERN FLUKA study
Emulsion detector

- Considering possibility of using an emulsion detector to help find signal
- Incredible charged particle position resolution (~50nm!), but integrates over large timescale (~3 months between TSs)
- Hoping to install a small 10cm x 10cm x 10cm prototype in TS1 (mid-June 2018) to see background level