

Reconstruction, Trigger, and Machine Learning for the HL-LHC MIT 4/27/2018

Outline

- Introduction and Motivation
 - Why compress neural networks?
- Compression of neural networks
 - Example: iterative retraining with regularization
 - Other techniques
- Examples of Compressed CNNs
 - SqueezeNet
 - Energy-Aware Pruning
 - Ternary/Binary Nets
- Summary and Outlook

Neural Network Overparametrization

- Neural Networks are generally overparametrized
- You can control overfitting (dropout, regularization, large training samples, ...) but in the end you have a model with many redundant weights
- For applications with limited memory, resources, or power want to minimize network size, complexity, and memory references

Why compress?

- If you can substitute matrix multiplication for sparse matrix multiplication, you can speed up computations especially on highly parallelized architectures like FPGAs (skip unnecessary computations)
- Reducing size and energy consumption is better for mobile applications

This item is			
Microsoft Exce until you co			
Cancel			
			F

Efficient Neural Networks

- Compression/Pruning
 - Removing redundant synapses and neurons
- Quantization
 - Restrict the weights, biases, and activations to certain quantized values
 - Fixed point, integers, ternary, binary, etc.

For further reading: arXiv:1510.00149

Simple Example: Jet Substructure

6

- 5 output multi-classifier
 - Does a jet originate from a quark, gluon, W/Z boson, top quark?
- Fully connected network
- 16 expert inputs

Javier Duarte

jet mass, multiplicity, ECFs

Distribution of Weights

https://github.com/hls-fpga-machine-learning/keras-training

- Distribution of weights after training
- Not obvious which weights to prune

Weights after Regularization

 Distribution of weights after training with L₁ regularization, lambda = 10⁻⁴

Weights after Pruning

- Prune the bottom population
- No effect on output classifier (even before retraining!)

Retraining with Constraints

- Retrain with <u>kernel constraint</u> to keep the pruned weights fixed to zero
- Keep L₁ regularization (to find additional weights to prune)

Weights after Iterative Pruning & Retraining

- After 7 iterations, pruned away 72% of the weights
- No effect on output classifier

Effect of Compression for FPGA Inference

- Big reduction in DSP usage with pruned model!
- Note: we didn't retrain using quantized weights (should get us down to ~8 bits instead of ~14 bits)

Other Compression Schemes

- Train with L_p (0≤p<1) regularization to promote sparsity (though difficult to optimize)
 - as $p \rightarrow 0$, $L_p \rightarrow L_0$
- "Optimal brain damage": use second derivatives of loss function to rank parameter saliency (rather than using parameter magnitude)
- Deep Compression
 - Trained quantization
 - Weight-sharing using k-means clustering to identify weights to share
 - Huffman coding (optimal prefix)

LeCun et al. 1989 <u>NIPS 250</u>

arXiv:1712.01312

Han et al. 2015 arXiv:1510.00149

Aggressive L_p Regularization

- Train with L_p, p= 1/10, $\lambda = 10^{-3}$ can prune away 93% of weights
- Small effect on output classifier

Big Convolutional Neural Networks

- Main task is computer vision/image recognition
- Control the number of parameters by baking in assumptions like locality and translation invariance to share weights within a layer

Pruned AlexNet Han et al. 2015 arXiv:1510.00149

 Using "Deep Compression" can prune AlexNet by factor of 35x (Han et al. 2015)

CNN architecture	Compression Approach	Data	$Original \rightarrow$	Reduction in	Top-1	Top-5
		Туре	Compressed Model	Model Size	ImageNet	ImageNet
			Size	vs. AlexNet	Accuracy	Accuracy
AlexNet	None (baseline)	32 bit	240MB	1x	57.2%	80.3%
AlexNet	Deep Compression (Han et al., 2015a)	5-8 bit	$240 \text{MB} \rightarrow 6.9 \text{MB}$	35x	57.2%	80.3%

SqueezeNet

- 6-bit SqueezeNet smaller than 32-bit AlexNet by a factor of 510 and achieves the same accuracy (Han et al. 2016)
- Not just a compressed AlexNet, but re-thinking of architecture

CNN architecture	Compression Approach	Data	$Original \rightarrow$	Reduction in	Top-1	Top-5
		Туре	Compressed Model	Model Size	ImageNet	ImageNet
			Size	vs. AlexNet	Accuracy	Accuracy
AlexNet	None (baseline)	32 bit	240MB	1x	57.2%	80.3%
AlexNet	Deep	5-8 bit	$240 \text{MB} \rightarrow 6.9 \text{MB}$	35x	57.2%	80.3%
	Compression (Han					
	et al., 2015a)					
SqueezeNet (ours)	Deep Compression	6 bit	$4.8MB \rightarrow 0.47MB$	510x	57.5%	80.3%

Strategies:

- 1. Replace 3x3 filters with 1x1 filters (9x fewer parameters)
- Decrease the number of input channels to 3x3 filters using squeeze layers
- **3.** Downsample late in the network so that convolution layers have large activation maps

SqueezeNet on FPGA

Fits on one FPGA with on board memory (Gschwend 2016)

Energy-Aware Pruning

93%

- Key insights:
 - Less operations do not necessarily mean less energy consumption
 - CONV layers dominate the overall energy consumption
 - Prune while directly optimizing for energy consumption

lavier Duarte

How much energy does your NN consume? https://energyestimation.mit.edu/

Yang et al. 2017 arXiv:1611.05128

ResNet-50

Energy-Aware Pruning

- Key insights:
 - Less operations do not necessarily mean less energy consumption
 - CONV layers dominate the overall energy consumption
 - Prune while directly optimizing for energy consumption

Yang et al. 2017

arXiv:1611.05128

Left-to-right: AlexNet, pruned AlexNet, energy-aware pruned AlexNet

Binary/Ternary Networks

- Ultimate of quantization/compression
 - BinaryConnect, BinaryNet: weights (+1, -1)
 - Binary Weight Nets: weights (+w, -w),
 - Ternary Weight Nets: weights (+w, 0, -w)
 - Trained Ternary Quantization: (+w1, 0, -w2)

Sze et al. (Survey) arXiv:1703.09039

Poduce Presision Method		bitwidth		Accuracy loss vs.			
Keu	Weights	Activations	32-bit float (%)				
Dynamic Fiyad Point	w/o fine-tuning [121]	8	10	0.4			
Dynamic Fixed Foint	w/ fine-tuning [122]	8	8	0.6			
Reduce Weight	BinaryConnect [127]	1	32 (float)	19.2			
	Binary Weight Network (BWN) [129]	1*	32 (float)	0.8			
	Ternary Weight Networks (TWN) [131]	2*	32 (float)	3.7			
	Trained Ternary Quantization (TTQ) [132]	2*	32 (float)	0.6			
Reduce Weight and Activation	XNOR-Net [129]	1*	1*	11			
	Binarized Neural Networks (BNN) [128]	1	1	29.8			
	DoReFa-Net [120]	1*	2*	7.63			
	Quantized Neural Networks (QNN) [119]	1	2*	6.5			
	HWGQ-Net [130]	1*	2*	5.2			
Non-linear Quantization	LogNet [135]	5 (conv), 4 (fc)	4	3.2			
	Incremental Network Quantization (INQ) [136]	5	32 (float)	-0.2			
	Deen Compression [118]	8 (conv), 4 (fc)	16	0			
	Deep compression [110]	4 (conv), 2 (fc)	16	2.6			
TABLE III							

METHODS TO REDUCE NUMERICAL PRECISION FOR ALEXNET. ACCURACY MEASURED FOR TOP-5 ERROR ON IMAGENET. *NOT APPLIED TO FIRST AND/OR LAST LAYERS

<u>https://github.com/MatthieuCourbariaux/BinaryNet</u> <u>https://github.com/BertMoons/QuantizedNeuralNetworks-Keras-Tensorflow</u> <u>https://github.com/DingKe/nn_playground/tree/master/ternarynet</u>

Summary and Outlook

- Network compression (pruning and quantization) is an important aspect of efficiently computing ML algorithms
 - Especially important for LHC trigger applications on FPGAs
- Many different techniques / implementations
 - Implementations are currently scattered across random GitHub repositories
 - Should become a standard "tool" in our ML toolkit

Backup

