
Javier Duarte

Fermilab

Reconstruction, Trigger, and Machine Learning for the HL-LHC

MIT

4/27/2018

1

Compression of Deep Neural Networks 
(for FPGAs & Trigger)

Javier Duarte

Outline
• Introduction and Motivation

• Why compress neural networks?

• Compression of neural networks

• Example: iterative retraining with regularization

• Other techniques

• Examples of Compressed CNNs

• SqueezeNet

• Energy-Aware Pruning

• Ternary/Binary Nets

• Summary and Outlook

2

Javier Duarte

Neural Network Overparametrization

3

AlexNet (2012)

8 layers
0.7 GFLOPs

62 million parameters

• Neural Networks are generally overparametrized

• You can control overfitting (dropout, regularization, large training
samples, …) but in the end you have a model with many
redundant weights

• For applications with limited memory, resources, or power want
to minimize network size, complexity, and memory references

Javier Duarte

Why compress?

4

Hard to distribute large models through over-the-air update

 4

The first Challenge: Model Size
• If you can substitute matrix multiplication for sparse

matrix multiplication, you can speed up computations
especially on highly parallelized architectures like FPGAs 
(skip unnecessary computations)

• Reducing size and energy consumption is better for
mobile applications

ALL FPGA ARCHITECTURE 16

FPGA
“programmable hardware”

DSPs (multiply-accumulate, etc.)
Flip Flops (registers/distributed memory)

LUTs (logic)
Block RAMs (memories)

Typical modern FPGA:

(Kintex ultrascale+)

1.3M FFs

700k LUTs

5500 DSPs

2200 BRAMs

O(50-100) optical
transceivers

running at  

~O(15) Gbs

Javier Duarte 5

Efficient Neural Networks
• Compression/Pruning

• Removing redundant synapses and neurons

• Quantization

• Restrict the weights, biases, and activations to certain quantized values

• Fixed point, integers, ternary, binary, etc.

For further reading: arXiv:1510.00149

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

https://arxiv.org/abs/1510.00149

Javier Duarte 6

Simple Example: Jet Substructure
• 5 output multi-classifier

• Does a jet originate from a
quark, gluon, W/Z boson,
top quark?

• Fully connected network

• 16 expert inputs

• jet mass, multiplicity, ECFs
16 inputs

64 nodes, ReLU

32 nodes, ReLU

32 nodes, ReLU

5 outputs, softmax

better

auc = area under ROC curve

Javier Duarte 7

Distribution of Weights
• Distribution of weights after training

• Not obvious which weights to prune

Normalized to the
max in each layer

https://github.com/hls-fpga-machine-learning/keras-training

https://github.com/hls-fpga-machine-learning/keras-training

Javier Duarte 8

Weights after Regularization

kwk1 =
P

i |wi|

Our approach is a simplified version of iterative parameter pruning and retraining [59, 70] with
L1 regularization, where the loss function L is augmented with an additional penalty term,

L�(w) = L(w) + �kwk1 . (2.3)

L1 regularization is known to produce sparse models, provide built-in feature selection [71], and
is a readily available option in many machine learning workflows. In principle, training with Lp

regularization with 0 p < 1 [62] may improve the sparsity and performance of the model, but these
regularizers are not always easy to implement. While we take this simplified approach, we note that
there are other, more sophisticated, approaches to compression in the literature which may yield even
better results.

We train the model with L1 regularization with � = 10�4. We then sort the weights based on
their absolute value relative to the maximum absolute value of the weights in a particular layer. With
L1 regularization we see two separate sub-populations of weights with one at smaller values and one
at larger values. Weights falling below a certain percentile, corresponding to the smaller-value sub-
population, are removed. Next, we retrain the model again with L1 regularization while constraining
the previously pruned weights to remain zero. We stop after seven iterations of this procedure at which
point the sum of the pruned weight sub-population is 3% of the original summed weight population
and the model is compressed by 70% (3051 weights pruned out of 4389 original weights and biases).
Fig. 6 illustrates this procedure. The top left of Fig. 6 shows the distribution of the weights before
compression. From the top left to the bottom right, the arrows indicate the following steps of the
pruning and retraining procedure and the resulting distribution of weights is shown. Finally, in the
bottom right, we present the final distribution of the weights after compression. We observe no
significant change in the pruned network performance when compared with the original.

Quantization

Quantized [59, 72–75] and even binarized [76–79] neural networks have been studied in detail as an
additional way to compress neural networks by reducing the number of bits required to represent each
weight. FPGAs provide considerable freedom in the choice of data type and precision. Both are
important to consider to prevent wasting FPGA resources and incurring additional latency. In hls4ml
we use fixed point arithmetic, which uses less resources and latency than floating point arithmetic.

The inputs, weights, biases, sums, and outputs of each layer (see Eq. 2.1) are all represented as
fixed point numbers. For each, the number of bits above and below the binary point can be configured
for the use case. It is broadly observed that precision can be reduced significantly without causing
a loss in performance [75], but this must be done with care. In Fig. 7, we show the distribution of
the absolute value of the weights after the compression described in Sec. 2.3. In this case, to avoid
underflow/overflow in the weights, at least three bits should be assigned above the binary point — two
to envelope the largest absolute value and one for the sign. The neuron values, xm, and intermediate
signals in the FPGA used to compute them may require more bits to avoid underflows/overflows. We
determine the number of bits to assign below the binary point by scanning physics performance as a
function of the bit precision.

– 11 –

• Distribution of weights after training with L1 regularization,
lambda = 10-4

• Two populations of weights

Javier Duarte 9

Weights after Pruning
• Prune the bottom population

• No effect on output classifier (even before retraining!)

No effect

Javier Duarte 10

Retraining with Constraints
• Retrain with kernel constraint to keep the pruned weights

fixed to zero

• Keep L1 regularization (to find additional weights to prune)

https://github.com/hls-fpga-machine-learning/keras-training/blob/master/models/constraints.py#L4

Javier Duarte 11

Weights after Iterative Pruning & Retraining

• After 7 iterations, pruned away 72% of the weights

• No effect on output classifier

No effect

Javier Duarte

Effect of Compression for FPGA Inference

12

• Big reduction in DSP usage with pruned model!

• Note: we didn’t retrain using quantized weights (should
get us down to ~8 bits instead of ~14 bits)

Full performance
with <14,6> fixed point

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Quantization

 29

0101.1011101010
width

fractionalinteger

Full performance
at 6 integer bits

Scan integer bits

Fractional bits fixed to 8

Scan fractional bits

Integer bits fixed to 6

Full performance
at 8 fractional bits

FP
G

A
AU

C
 /

Ex
pe

ct
ed

 A
U

C

ap_fixed<width,integer> • Quantify the performance of the classifier with the AUC

• Expected AUC = AUC achieved by 32-bit floating point
inference of the neural network

FP
G

A
AU

C
 /

Ex
pe

ct
ed

 A
U

C

Javier Duarte 13

Other Compression Schemes
• Train with Lp (0≤p<1) regularization to

promote sparsity (though difficult to
optimize)

• as p → 0, Lp → L0

• “Optimal brain damage”: use  
second derivatives of loss  
function to rank parameter  
saliency (rather than using parameter
magnitude)

• Deep Compression

• Trained quantization

• Weight-sharing using k-means

clustering to identify weights to
share

• Huffman coding (optimal prefix)

Figure 1: Lp norm penalties for a parameter ✓ according to different values of p. It is easily observed
that both weight decay and Lasso, p = 2 and p = 1 respectively, impose shrinkage for large values of
✓. By gradually allowing p < 1 we observe that the shrinkage is reduced and at the limit of p = 0 we
observe that the penalty is a constant for ✓ 6= 0.

is achieved by transforming continuous random variables (r.v.s) with a hard nonlinearity, the hard-
sigmoid. We further propose and employ a novel distribution obtained by this procedure; the hard
concrete. It is obtained by “stretching” a binary concrete random variable (Maddison et al., 2016; Jang
et al., 2016) and then passing its samples through a hard-sigmoid. We demonstrate the effectiveness
of this simple procedure in various experiments.

2 MINIMIZING THE L0 NORM OF PARAMETRIC MODELS

One way to sparsify parametric models, such as deep neural networks, with the least assumptions
about the parameters is the following; let D be a dataset consisting of N i.i.d. input output pairs
{(x1,y1), . . . , (xN ,yN)} and consider a regularized empirical risk minimization procedure with an
L0 regularization on the parameters ✓ of a hypothesis (e.g. a neural network) h(·;✓):

R(✓) =
1

N

✓ NX

i=1

L
�
h(xi;✓),yi

�◆
+ �k✓k0, k✓k0 =

|✓|X

j=1

I[✓j 6= 0], (1)

✓⇤ = argmin
✓

{R(✓)},

where |✓| is the dimensionality of the parameters, � is a weighting factor for the regularization and
L(·) corresponds to a loss function, e.g. cross-entropy loss for classification or mean-squared error for
regression. The L0 norm penalizes the number of non-zero entries of the parameter vector and thus
encourages sparsity in the final estimates ✓⇤. The Akaike Information Criterion (AIC) (Akaike, 1998)
and the Bayesian Information Criterion (BIC) (Schwarz et al., 1978), well-known model selection
criteria, correspond to specific choices of �. Notice that the L0 norm induces no shrinkage on the
actual values of the parameters ✓; this is in contrast to e.g. L1 regularization and the Lasso (Tibshirani,
1996), where the sparsity is due to shrinking the actual values of ✓. We provide a visualization of this
effect in Figure 1.

Unfortunately, optimization under this penalty is computationally intractable due to the non-
differentiability and combinatorial nature of 2|✓| possible states of the parameter vector ✓. How can
we relax the discrete nature of the L0 penalty such that we allow for efficient continuous optimization
of Eq. 1, while allowing for exact zeros in the parameters? This section will present the necessary
details of our approach.

2.1 A GENERAL RECIPE FOR EFFICIENTLY MINIMIZING L0 NORMS

Consider the L0 norm under a simple re-parametrization of ✓:

✓j = ✓̃jzj , zj 2 {0, 1}, ✓̃j 6= 0, k✓k0 =

|✓|X

j=1

zj , (2)

2

Louizos et al. 2017

 arXiv:1712.01312

LeCun et al. 1989

NIPS 250

kwkp = (
P

i |wi|p)1/p

Han et al. 2015

arXiv:1510.00149

https://arxiv.org/abs/1712.01312
https://papers.nips.cc/paper/250-optimal-brain-damage.pdf
https://arxiv.org/abs/1510.00149

Javier Duarte 14

Aggressive Lp Regularization

Small effect

• Train with Lp, p= 1/10, λ = 10-3 can prune away 93% of
weights

• Small effect on output classifier

Javier Duarte 15

Big Convolutional Neural Networks
• Main task is computer vision/image recognition

• Control the number of parameters by baking in assumptions
like locality and translation invariance to share weights
within a layer

AlexNet (2012)

Krizhevsky, et al.

NIPS 4824

8 layers
0.7 GFLOPs

62 million parameters
(94% are in FC layers)

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Javier Duarte

Han et al. 2015

arXiv:1510.00149

16

Pruned AlexNetUnder review as a conference paper at ICLR 2017

Table 2: Comparing SqueezeNet to model compression approaches. By model size, we mean the
number of bytes required to store all of the parameters in the trained model.

CNN architecture Compression Approach Data
Type

Original !
Compressed Model

Size

Reduction in
Model Size
vs. AlexNet

Top-1
ImageNet
Accuracy

Top-5
ImageNet
Accuracy

AlexNet None (baseline) 32 bit 240MB 1x 57.2% 80.3%
AlexNet SVD (Denton et al.,

2014)
32 bit 240MB ! 48MB 5x 56.0% 79.4%

AlexNet Network Pruning (Han
et al., 2015b)

32 bit 240MB ! 27MB 9x 57.2% 80.3%

AlexNet Deep
Compression (Han

et al., 2015a)

5-8 bit 240MB ! 6.9MB 35x 57.2% 80.3%

SqueezeNet (ours) None 32 bit 4.8MB 50x 57.5% 80.3%
SqueezeNet (ours) Deep Compression 8 bit 4.8MB ! 0.66MB 363x 57.5% 80.3%
SqueezeNet (ours) Deep Compression 6 bit 4.8MB ! 0.47MB 510x 57.5% 80.3%

to SqueezeNet, using 33% sparsity6 and 8-bit quantization. This yields a 0.66 MB model (363⇥
smaller than 32-bit AlexNet) with equivalent accuracy to AlexNet. Further, applying Deep Compres-
sion with 6-bit quantization and 33% sparsity on SqueezeNet, we produce a 0.47MB model (510⇥
smaller than 32-bit AlexNet) with equivalent accuracy. Our small model is indeed amenable to
compression.
In addition, these results demonstrate that Deep Compression (Han et al., 2015a) not only works
well on CNN architectures with many parameters (e.g. AlexNet and VGG), but it is also able to
compress the already compact, fully convolutional SqueezeNet architecture. Deep Compression
compressed SqueezeNet by 10⇥ while preserving the baseline accuracy. In summary: by combin-
ing CNN architectural innovation (SqueezeNet) with state-of-the-art compression techniques (Deep
Compression), we achieved a 510⇥ reduction in model size with no decrease in accuracy compared
to the baseline.

Finally, note that Deep Compression (Han et al., 2015b) uses a codebook as part of its scheme for
quantizing CNN parameters to 6- or 8-bits of precision. Therefore, on most commodity processors,
it is not trivial to achieve a speedup of 32

8 = 4x with 8-bit quantization or 32
6 = 5.3x with 6-bit

quantization using the scheme developed in Deep Compression. However, Han et al. developed
custom hardware – Efficient Inference Engine (EIE) – that can compute codebook-quantized CNNs
more efficiently (Han et al., 2016a). In addition, in the months since we released SqueezeNet,
P. Gysel developed a strategy called Ristretto for linearly quantizing SqueezeNet to 8 bits (Gysel,
2016). Specifically, Ristretto does computation in 8 bits, and it stores parameters and activations in
8-bit data types. Using the Ristretto strategy for 8-bit computation in SqueezeNet inference, Gysel
observed less than 1 percentage-point of drop in accuracy when using 8-bit instead of 32-bit data
types.

5 CNN MICROARCHITECTURE DESIGN SPACE EXPLORATION

So far, we have proposed architectural design strategies for small models, followed these principles
to create SqueezeNet, and discovered that SqueezeNet is 50x smaller than AlexNet with equivalent
accuracy. However, SqueezeNet and other models reside in a broad and largely unexplored design
space of CNN architectures. Now, in Sections 5 and 6, we explore several aspects of the design
space. We divide this architectural exploration into two main topics: microarchitectural exploration
(per-module layer dimensions and configurations) and macroarchitectural exploration (high-level
end-to-end organization of modules and other layers).

In this section, we design and execute experiments with the goal of providing intuition about the
shape of the microarchitectural design space with respect to the design strategies that we proposed
in Section 3.1. Note that our goal here is not to maximize accuracy in every experiment, but rather
to understand the impact of CNN architectural choices on model size and accuracy.

6Note that, due to the storage overhead of storing sparse matrix indices, 33% sparsity leads to somewhat
less than a 3⇥ decrease in model size.

7

Under review as a conference paper at ICLR 2017

Table 2: Comparing SqueezeNet to model compression approaches. By model size, we mean the
number of bytes required to store all of the parameters in the trained model.

CNN architecture Compression Approach Data
Type

Original !
Compressed Model

Size

Reduction in
Model Size
vs. AlexNet

Top-1
ImageNet
Accuracy

Top-5
ImageNet
Accuracy

AlexNet None (baseline) 32 bit 240MB 1x 57.2% 80.3%
AlexNet SVD (Denton et al.,

2014)
32 bit 240MB ! 48MB 5x 56.0% 79.4%

AlexNet Network Pruning (Han
et al., 2015b)

32 bit 240MB ! 27MB 9x 57.2% 80.3%

AlexNet Deep
Compression (Han

et al., 2015a)

5-8 bit 240MB ! 6.9MB 35x 57.2% 80.3%

SqueezeNet (ours) None 32 bit 4.8MB 50x 57.5% 80.3%
SqueezeNet (ours) Deep Compression 8 bit 4.8MB ! 0.66MB 363x 57.5% 80.3%
SqueezeNet (ours) Deep Compression 6 bit 4.8MB ! 0.47MB 510x 57.5% 80.3%

to SqueezeNet, using 33% sparsity6 and 8-bit quantization. This yields a 0.66 MB model (363⇥
smaller than 32-bit AlexNet) with equivalent accuracy to AlexNet. Further, applying Deep Compres-
sion with 6-bit quantization and 33% sparsity on SqueezeNet, we produce a 0.47MB model (510⇥
smaller than 32-bit AlexNet) with equivalent accuracy. Our small model is indeed amenable to
compression.
In addition, these results demonstrate that Deep Compression (Han et al., 2015a) not only works
well on CNN architectures with many parameters (e.g. AlexNet and VGG), but it is also able to
compress the already compact, fully convolutional SqueezeNet architecture. Deep Compression
compressed SqueezeNet by 10⇥ while preserving the baseline accuracy. In summary: by combin-
ing CNN architectural innovation (SqueezeNet) with state-of-the-art compression techniques (Deep
Compression), we achieved a 510⇥ reduction in model size with no decrease in accuracy compared
to the baseline.

Finally, note that Deep Compression (Han et al., 2015b) uses a codebook as part of its scheme for
quantizing CNN parameters to 6- or 8-bits of precision. Therefore, on most commodity processors,
it is not trivial to achieve a speedup of 32

8 = 4x with 8-bit quantization or 32
6 = 5.3x with 6-bit

quantization using the scheme developed in Deep Compression. However, Han et al. developed
custom hardware – Efficient Inference Engine (EIE) – that can compute codebook-quantized CNNs
more efficiently (Han et al., 2016a). In addition, in the months since we released SqueezeNet,
P. Gysel developed a strategy called Ristretto for linearly quantizing SqueezeNet to 8 bits (Gysel,
2016). Specifically, Ristretto does computation in 8 bits, and it stores parameters and activations in
8-bit data types. Using the Ristretto strategy for 8-bit computation in SqueezeNet inference, Gysel
observed less than 1 percentage-point of drop in accuracy when using 8-bit instead of 32-bit data
types.

5 CNN MICROARCHITECTURE DESIGN SPACE EXPLORATION

So far, we have proposed architectural design strategies for small models, followed these principles
to create SqueezeNet, and discovered that SqueezeNet is 50x smaller than AlexNet with equivalent
accuracy. However, SqueezeNet and other models reside in a broad and largely unexplored design
space of CNN architectures. Now, in Sections 5 and 6, we explore several aspects of the design
space. We divide this architectural exploration into two main topics: microarchitectural exploration
(per-module layer dimensions and configurations) and macroarchitectural exploration (high-level
end-to-end organization of modules and other layers).

In this section, we design and execute experiments with the goal of providing intuition about the
shape of the microarchitectural design space with respect to the design strategies that we proposed
in Section 3.1. Note that our goal here is not to maximize accuracy in every experiment, but rather
to understand the impact of CNN architectural choices on model size and accuracy.

6Note that, due to the storage overhead of storing sparse matrix indices, 33% sparsity leads to somewhat
less than a 3⇥ decrease in model size.

7

• Using “Deep Compression” can prune AlexNet by factor of 35x
(Han et al. 2015)

Pruning AlexNet

CONV Layer: 3x FC Layer: 10x

Pruning Trained Quantization Huffman Coding

[Han et al. NIPS’15]

 18

https://arxiv.org/abs/1510.00149

Javier Duarte 17

SqueezeNet
• 6-bit SqueezeNet smaller than 32-bit AlexNet by a factor of

510 and achieves the same accuracy (Han et al. 2016)

• Not just a compressed AlexNet, but re-thinking of architecture

SqueezeNet

Iandola et al, “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size”, arXiv 2016

 37Compression Acceleration Regularization

Input

1x1 Conv 
Squeeze

1x1 Conv 
Expand

3x3 Conv 
Expand

Output
Concat/Eltwise

64

16

64 64

128

Vanilla Fire module

microarchitecture:
fire module

Strategies:
1. Replace 3x3 filters with 1x1 filters

(9x fewer parameters)
2. Decrease the number of input

channels to 3x3 filters using squeeze
layers

3. Downsample late in the network so
that convolution layers have large
activation maps

Han et al. 2016

arXiv:1602.07360

Under review as a conference paper at ICLR 2017

Table 2: Comparing SqueezeNet to model compression approaches. By model size, we mean the
number of bytes required to store all of the parameters in the trained model.

CNN architecture Compression Approach Data
Type

Original !
Compressed Model

Size

Reduction in
Model Size
vs. AlexNet

Top-1
ImageNet
Accuracy

Top-5
ImageNet
Accuracy

AlexNet None (baseline) 32 bit 240MB 1x 57.2% 80.3%
AlexNet SVD (Denton et al.,

2014)
32 bit 240MB ! 48MB 5x 56.0% 79.4%

AlexNet Network Pruning (Han
et al., 2015b)

32 bit 240MB ! 27MB 9x 57.2% 80.3%

AlexNet Deep
Compression (Han

et al., 2015a)

5-8 bit 240MB ! 6.9MB 35x 57.2% 80.3%

SqueezeNet (ours) None 32 bit 4.8MB 50x 57.5% 80.3%
SqueezeNet (ours) Deep Compression 8 bit 4.8MB ! 0.66MB 363x 57.5% 80.3%
SqueezeNet (ours) Deep Compression 6 bit 4.8MB ! 0.47MB 510x 57.5% 80.3%

to SqueezeNet, using 33% sparsity6 and 8-bit quantization. This yields a 0.66 MB model (363⇥
smaller than 32-bit AlexNet) with equivalent accuracy to AlexNet. Further, applying Deep Compres-
sion with 6-bit quantization and 33% sparsity on SqueezeNet, we produce a 0.47MB model (510⇥
smaller than 32-bit AlexNet) with equivalent accuracy. Our small model is indeed amenable to
compression.
In addition, these results demonstrate that Deep Compression (Han et al., 2015a) not only works
well on CNN architectures with many parameters (e.g. AlexNet and VGG), but it is also able to
compress the already compact, fully convolutional SqueezeNet architecture. Deep Compression
compressed SqueezeNet by 10⇥ while preserving the baseline accuracy. In summary: by combin-
ing CNN architectural innovation (SqueezeNet) with state-of-the-art compression techniques (Deep
Compression), we achieved a 510⇥ reduction in model size with no decrease in accuracy compared
to the baseline.

Finally, note that Deep Compression (Han et al., 2015b) uses a codebook as part of its scheme for
quantizing CNN parameters to 6- or 8-bits of precision. Therefore, on most commodity processors,
it is not trivial to achieve a speedup of 32

8 = 4x with 8-bit quantization or 32
6 = 5.3x with 6-bit

quantization using the scheme developed in Deep Compression. However, Han et al. developed
custom hardware – Efficient Inference Engine (EIE) – that can compute codebook-quantized CNNs
more efficiently (Han et al., 2016a). In addition, in the months since we released SqueezeNet,
P. Gysel developed a strategy called Ristretto for linearly quantizing SqueezeNet to 8 bits (Gysel,
2016). Specifically, Ristretto does computation in 8 bits, and it stores parameters and activations in
8-bit data types. Using the Ristretto strategy for 8-bit computation in SqueezeNet inference, Gysel
observed less than 1 percentage-point of drop in accuracy when using 8-bit instead of 32-bit data
types.

5 CNN MICROARCHITECTURE DESIGN SPACE EXPLORATION

So far, we have proposed architectural design strategies for small models, followed these principles
to create SqueezeNet, and discovered that SqueezeNet is 50x smaller than AlexNet with equivalent
accuracy. However, SqueezeNet and other models reside in a broad and largely unexplored design
space of CNN architectures. Now, in Sections 5 and 6, we explore several aspects of the design
space. We divide this architectural exploration into two main topics: microarchitectural exploration
(per-module layer dimensions and configurations) and macroarchitectural exploration (high-level
end-to-end organization of modules and other layers).

In this section, we design and execute experiments with the goal of providing intuition about the
shape of the microarchitectural design space with respect to the design strategies that we proposed
in Section 3.1. Note that our goal here is not to maximize accuracy in every experiment, but rather
to understand the impact of CNN architectural choices on model size and accuracy.

6Note that, due to the storage overhead of storing sparse matrix indices, 33% sparsity leads to somewhat
less than a 3⇥ decrease in model size.

7

Under review as a conference paper at ICLR 2017

Table 2: Comparing SqueezeNet to model compression approaches. By model size, we mean the
number of bytes required to store all of the parameters in the trained model.

CNN architecture Compression Approach Data
Type

Original !
Compressed Model

Size

Reduction in
Model Size
vs. AlexNet

Top-1
ImageNet
Accuracy

Top-5
ImageNet
Accuracy

AlexNet None (baseline) 32 bit 240MB 1x 57.2% 80.3%
AlexNet SVD (Denton et al.,

2014)
32 bit 240MB ! 48MB 5x 56.0% 79.4%

AlexNet Network Pruning (Han
et al., 2015b)

32 bit 240MB ! 27MB 9x 57.2% 80.3%

AlexNet Deep
Compression (Han

et al., 2015a)

5-8 bit 240MB ! 6.9MB 35x 57.2% 80.3%

SqueezeNet (ours) None 32 bit 4.8MB 50x 57.5% 80.3%
SqueezeNet (ours) Deep Compression 8 bit 4.8MB ! 0.66MB 363x 57.5% 80.3%
SqueezeNet (ours) Deep Compression 6 bit 4.8MB ! 0.47MB 510x 57.5% 80.3%

to SqueezeNet, using 33% sparsity6 and 8-bit quantization. This yields a 0.66 MB model (363⇥
smaller than 32-bit AlexNet) with equivalent accuracy to AlexNet. Further, applying Deep Compres-
sion with 6-bit quantization and 33% sparsity on SqueezeNet, we produce a 0.47MB model (510⇥
smaller than 32-bit AlexNet) with equivalent accuracy. Our small model is indeed amenable to
compression.
In addition, these results demonstrate that Deep Compression (Han et al., 2015a) not only works
well on CNN architectures with many parameters (e.g. AlexNet and VGG), but it is also able to
compress the already compact, fully convolutional SqueezeNet architecture. Deep Compression
compressed SqueezeNet by 10⇥ while preserving the baseline accuracy. In summary: by combin-
ing CNN architectural innovation (SqueezeNet) with state-of-the-art compression techniques (Deep
Compression), we achieved a 510⇥ reduction in model size with no decrease in accuracy compared
to the baseline.

Finally, note that Deep Compression (Han et al., 2015b) uses a codebook as part of its scheme for
quantizing CNN parameters to 6- or 8-bits of precision. Therefore, on most commodity processors,
it is not trivial to achieve a speedup of 32

8 = 4x with 8-bit quantization or 32
6 = 5.3x with 6-bit

quantization using the scheme developed in Deep Compression. However, Han et al. developed
custom hardware – Efficient Inference Engine (EIE) – that can compute codebook-quantized CNNs
more efficiently (Han et al., 2016a). In addition, in the months since we released SqueezeNet,
P. Gysel developed a strategy called Ristretto for linearly quantizing SqueezeNet to 8 bits (Gysel,
2016). Specifically, Ristretto does computation in 8 bits, and it stores parameters and activations in
8-bit data types. Using the Ristretto strategy for 8-bit computation in SqueezeNet inference, Gysel
observed less than 1 percentage-point of drop in accuracy when using 8-bit instead of 32-bit data
types.

5 CNN MICROARCHITECTURE DESIGN SPACE EXPLORATION

So far, we have proposed architectural design strategies for small models, followed these principles
to create SqueezeNet, and discovered that SqueezeNet is 50x smaller than AlexNet with equivalent
accuracy. However, SqueezeNet and other models reside in a broad and largely unexplored design
space of CNN architectures. Now, in Sections 5 and 6, we explore several aspects of the design
space. We divide this architectural exploration into two main topics: microarchitectural exploration
(per-module layer dimensions and configurations) and macroarchitectural exploration (high-level
end-to-end organization of modules and other layers).

In this section, we design and execute experiments with the goal of providing intuition about the
shape of the microarchitectural design space with respect to the design strategies that we proposed
in Section 3.1. Note that our goal here is not to maximize accuracy in every experiment, but rather
to understand the impact of CNN architectural choices on model size and accuracy.

6Note that, due to the storage overhead of storing sparse matrix indices, 33% sparsity leads to somewhat
less than a 3⇥ decrease in model size.

7

Under review as a conference paper at ICLR 2017

Table 2: Comparing SqueezeNet to model compression approaches. By model size, we mean the
number of bytes required to store all of the parameters in the trained model.

CNN architecture Compression Approach Data
Type

Original !
Compressed Model

Size

Reduction in
Model Size
vs. AlexNet

Top-1
ImageNet
Accuracy

Top-5
ImageNet
Accuracy

AlexNet None (baseline) 32 bit 240MB 1x 57.2% 80.3%
AlexNet SVD (Denton et al.,

2014)
32 bit 240MB ! 48MB 5x 56.0% 79.4%

AlexNet Network Pruning (Han
et al., 2015b)

32 bit 240MB ! 27MB 9x 57.2% 80.3%

AlexNet Deep
Compression (Han

et al., 2015a)

5-8 bit 240MB ! 6.9MB 35x 57.2% 80.3%

SqueezeNet (ours) None 32 bit 4.8MB 50x 57.5% 80.3%
SqueezeNet (ours) Deep Compression 8 bit 4.8MB ! 0.66MB 363x 57.5% 80.3%
SqueezeNet (ours) Deep Compression 6 bit 4.8MB ! 0.47MB 510x 57.5% 80.3%

to SqueezeNet, using 33% sparsity6 and 8-bit quantization. This yields a 0.66 MB model (363⇥
smaller than 32-bit AlexNet) with equivalent accuracy to AlexNet. Further, applying Deep Compres-
sion with 6-bit quantization and 33% sparsity on SqueezeNet, we produce a 0.47MB model (510⇥
smaller than 32-bit AlexNet) with equivalent accuracy. Our small model is indeed amenable to
compression.
In addition, these results demonstrate that Deep Compression (Han et al., 2015a) not only works
well on CNN architectures with many parameters (e.g. AlexNet and VGG), but it is also able to
compress the already compact, fully convolutional SqueezeNet architecture. Deep Compression
compressed SqueezeNet by 10⇥ while preserving the baseline accuracy. In summary: by combin-
ing CNN architectural innovation (SqueezeNet) with state-of-the-art compression techniques (Deep
Compression), we achieved a 510⇥ reduction in model size with no decrease in accuracy compared
to the baseline.

Finally, note that Deep Compression (Han et al., 2015b) uses a codebook as part of its scheme for
quantizing CNN parameters to 6- or 8-bits of precision. Therefore, on most commodity processors,
it is not trivial to achieve a speedup of 32

8 = 4x with 8-bit quantization or 32
6 = 5.3x with 6-bit

quantization using the scheme developed in Deep Compression. However, Han et al. developed
custom hardware – Efficient Inference Engine (EIE) – that can compute codebook-quantized CNNs
more efficiently (Han et al., 2016a). In addition, in the months since we released SqueezeNet,
P. Gysel developed a strategy called Ristretto for linearly quantizing SqueezeNet to 8 bits (Gysel,
2016). Specifically, Ristretto does computation in 8 bits, and it stores parameters and activations in
8-bit data types. Using the Ristretto strategy for 8-bit computation in SqueezeNet inference, Gysel
observed less than 1 percentage-point of drop in accuracy when using 8-bit instead of 32-bit data
types.

5 CNN MICROARCHITECTURE DESIGN SPACE EXPLORATION

So far, we have proposed architectural design strategies for small models, followed these principles
to create SqueezeNet, and discovered that SqueezeNet is 50x smaller than AlexNet with equivalent
accuracy. However, SqueezeNet and other models reside in a broad and largely unexplored design
space of CNN architectures. Now, in Sections 5 and 6, we explore several aspects of the design
space. We divide this architectural exploration into two main topics: microarchitectural exploration
(per-module layer dimensions and configurations) and macroarchitectural exploration (high-level
end-to-end organization of modules and other layers).

In this section, we design and execute experiments with the goal of providing intuition about the
shape of the microarchitectural design space with respect to the design strategies that we proposed
in Section 3.1. Note that our goal here is not to maximize accuracy in every experiment, but rather
to understand the impact of CNN architectural choices on model size and accuracy.

6Note that, due to the storage overhead of storing sparse matrix indices, 33% sparsity leads to somewhat
less than a 3⇥ decrease in model size.

7

https://arxiv.org/abs/1602.07360

Javier Duarte 18

SqueezeNet on FPGA
• Fits on one FPGA with on board memory (Gschwend 2016)

Gschwend 2016

ZynqNet

Supercomputing Systems AG

Backup Slide: FPGA Utilization

Table 5.2.: Resource Requirements and FPGA Utilization for the ZynqNet Accelerator when synthe-
sized for the Zynq XC-7Z045.

resource Block RAM DSP Slices FF LUT

used 996 739 137k 154k
available 1090 900 437k 218k

utilization 91 % 82 % 31 % 70 %

Resource Utilization

The final ZynqNet FPGA Accelerator contains NPE = 16 computational units, which concur-
rently operate on the calculation of different output feature maps. Each computational unit
contains a pipelined 3◊3 Multiply-Accumulate unit with 9 separate floating-point multipli-
ers and an adder tree for the summation of their products. This results in a total of 144
floating-point multipliers and 128 floating-point adders which constitute the computational
core of the accelerator. The computational units are fed from on-chip caches. In total, up to
1.7 MB CNN parameters (432k single-precision floating-point weights) and 133 kB image
data are buffered in the on-chip Block RAM. When synthesized for the Zynq XC-7Z045
FPGA, this configuration results in the resource requirements and utilization figures shown
in table 5.2. The fact that more than 90 % of all Block RAM resources and more than 80 % of
the DSP slices are used, shows that the design has been properly fitted to the FPGA resources
available.

Maximum Clock Frequency

Despite the high resource utilization and the resulting long routing paths, the ZynqNet FPGA
accelerator can still be synthesized for an adequate clock frequency of fmax = 200 MHz. This
is mostly because the architecture fully distributes the computation as well as all the required
data onto the different computational units. There are no inter-dependencies between
the individual computational units, even their results are accumulated separately. This
results in mostly local routing and few global interconnections, which can all be sufficiently
pipelined.

Operation Schedule

The last factor which determines the system throughput is the efficiency of the operation
schedule. The nested loops used in the algorithm allow (in principle) a fully pipelined
operation where a new pixel (or channel) is fetched and processed in every clock cycle.
There are no data dependencies or feedback loops which would hinder pipelining within a
single layer.

Pipeline Flushing Issue in Vivado HLS 2016.2

However, the state machine which determines the operation schedule is automatically
derived from the high-level software model in Vivado HLS during synthesis. As described in
section 4.4.4, Vivado HLS currently has an issue with the derivation of an efficient operation

5.2 ZynqNet FPGA Accelerator Performance 69

• Optimizations: SqueezeNet to ZynqNet CNN

• resize layers to 2N

CNN Optimization: FPGA

Supercomputing Systems AG

Sq
ue

ez
eN

et
(e

di
t)

3c
h

⋅
22

7×
22

7

96
ch

 ⋅
 1

11
×1

11

96
ch

 ⋅
 5

5×
55

16
ch

 ⋅
 5

5×
55

16
ch

 ⋅
 5

5×
55

64
ch

 ⋅
 5

5×
55

64
ch

 ⋅
 5

5×
55

12
8c

h
⋅

55
×5

5

16
ch

 ⋅
 5

5×
55

16
ch

 ⋅
 5

5×
55

64
ch

 ⋅
 5

5×
55

64
ch

 ⋅
 5

5×
55

12
8c

h
⋅

55
×5

5

32
ch

 ⋅
 5

5×
55

32
ch

 ⋅
 5

5×
55

12
8c

h
⋅

55
×5

5
12

8c
h

⋅
55

×5
5

25
6c

h
⋅

55
×5

5

25
6c

h
⋅

27
×2

7

32
ch

 ⋅
 2

7×
27

32
ch

 ⋅
 2

7×
27

12
8c

h
⋅

27
×2

7
12

8c
h

⋅
27

×2
7

25
6c

h
⋅

27
×2

7

48
ch

 ⋅
 2

7×
27

48
ch

 ⋅
 2

7×
27

19
2c

h
⋅

27
×2

7
19

2c
h

⋅
27

×2
7

38
4c

h
⋅

27
×2

7

48
ch

 ⋅
 2

7×
27

48
ch

 ⋅
 2

7×
27

19
2c

h
⋅

27
×2

7
19

2c
h

⋅
27

×2
7

38
4c

h
⋅

27
×2

7

64
ch

 ⋅
 2

7×
27

64
ch

 ⋅
 2

7×
27

25
6c

h
⋅

27
×2

7
25

6c
h

⋅
27

×2
7

51
2c

h
⋅

27
×2

7

51
2c

h
⋅

13
×1

3

64
ch

 ⋅
 1

3×
13

64
ch

 ⋅
 1

3×
13

25
6c

h
⋅

13
×1

3
25

6c
h

⋅
13

×1
3

51
2c

h
⋅

13
×1

3

10
00

ch
 ⋅

 1
5×

15

10
00

ch
 ⋅

 1
×1

da
ta

co
nv

1

re
lu

_c
on

v1

po
ol

1

;r
e2

/s
qu

ee
ze

1x
1

;r
e2

/r
el

u_
sq

ue
ez

e1
x1

;r
e2

/e
xp

an
d1

x1

;r
e2

/r
el

u_
ex

pa
nd

1x
1

;r
e2

/e
xp

an
d3

x3

;r
e2

/r
el

u_
ex

pa
nd

3x
3

;r
e2

/c
on

ca
t

;r
e3

/s
qu

ee
ze

1x
1

;r
e3

/r
el

u_
sq

ue
ez

e1
x1

;r
e3

/e
xp

an
d1

x1

;r
e3

/r
el

u_
ex

pa
nd

1x
1

;r
e3

/e
xp

an
d3

x3

;r
e3

/r
el

u_
ex

pa
nd

3x
3

;r
e3

/c
on

ca
t

;r
e4

/s
qu

ee
ze

1x
1

;r
e4

/r
el

u_
sq

ue
ez

e1
x1

;r
e4

/e
xp

an
d1

x1

;r
e4

/r
el

u_
ex

pa
nd

1x
1

;r
e4

/e
xp

an
d3

x3

;r
e4

/r
el

u_
ex

pa
nd

3x
3

;r
e4

/c
on

ca
t

po
ol

4

;r
e5

/s
qu

ee
ze

1x
1

;r
e5

/r
el

u_
sq

ue
ez

e1
x1

;r
e5

/e
xp

an
d1

x1

;r
e5

/r
el

u_
ex

pa
nd

1x
1

;r
e5

/e
xp

an
d3

x3

;r
e5

/r
el

u_
ex

pa
nd

3x
3

;r
e5

/c
on

ca
t

;r
e6

/s
qu

ee
ze

1x
1

;r
e6

/r
el

u_
sq

ue
ez

e1
x1

;r
e6

/e
xp

an
d1

x1

;r
e6

/r
el

u_
ex

pa
nd

1x
1

;r
e6

/e
xp

an
d3

x3

;r
e6

/r
el

u_
ex

pa
nd

3x
3

;r
e6

/c
on

ca
t

;r
e7

/s
qu

ee
ze

1x
1

;r
e7

/r
el

u_
sq

ue
ez

e1
x1

;r
e7

/e
xp

an
d1

x1

;r
e7

/r
el

u_
ex

pa
nd

1x
1

;r
e7

/e
xp

an
d3

x3

;r
e7

/r
el

u_
ex

pa
nd

3x
3

;r
e7

/c
on

ca
t

;r
e8

/s
qu

ee
ze

1x
1

;r
e8

/r
el

u_
sq

ue
ez

e1
x1

;r
e8

/e
xp

an
d1

x1

;r
e8

/r
el

u_
ex

pa
nd

1x
1

;r
e8

/e
xp

an
d3

x3

;r
e8

/r
el

u_
ex

pa
nd

3x
3

;r
e8

/c
on

ca
t

po
ol

8

;r
e9

/s
qu

ee
ze

1x
1

;r
e9

/r
el

u_
sq

ue
ez

e1
x1

;r
e9

/e
xp

an
d1

x1

;r
e9

/r
el

u_
ex

pa
nd

1x
1

;r
e9

/e
xp

an
d3

x3

;r
e9

/r
el

u_
ex

pa
nd

3x
3

;r
e9

/c
on

ca
t

dr
op

9

co
nv

10

re
lu

_c
on

v1
0

po
ol

10

lo
ss

N
et

w
or

k
An

al
ys

is

Su
m

m
ar

y:

IDID
na

m
e

na
m

e
ty

pe
ty

pe
ch

_i
n

ch
_i

n
di

m
_i

n
di

m
_i

n
ch

_o
ut

ch
_o

ut
di

m
_o

ut
di

m
_o

ut
op

s
op

s

1
da

ta
Da

ta
3

22
7x

22
7

3
22

7x
22

7

2
co

nv
1

Co
nv

ol
ut

io
n

3
22

7x
22

7
96

11
1x

11
1

m
ac

c
m

ac
c

17
3.

87
M

3
re

lu
_c

on
v1

Re
LU

96
11

1x
11

1
96

11
1x

11
1

co
m

p
co

m
p

1.
18

M

4
po

ol
1

Po
ol

in
g

96
11

1x
11

1
96

55
x5

5
co

m
p

co
m

p
2.

61
M

5
;r

e2
su

bm
od

ul
e(

6)
96

55
x5

5
12

8
55

x5
5

m
ac

c
m

ac
c

35
.6

2M

co
m

p
co

m
p

43
5.

6k

12
;r

e3
su

bm
od

ul
e(

6)
12

8
55

x5
5

12
8

55
x5

5
m

ac
c

m
ac

c
37

.1
7M

co
m

p
co

m
p

43
5.

6k

19
;r

e4
su

bm
od

ul
e(

6)
12

8
55

x5
5

25
6

55
x5

5
m

ac
c

m
ac

c
13

6.
29

M

co
m

p
co

m
p

87
1.

2k

26
po

ol
4

Po
ol

in
g

25
6

55
x5

5
25

6
27

x2
7

co
m

p
co

m
p

1.
68

M

27
;r

e5
su

bm
od

ul
e(

6)
25

6
27

x2
7

25
6

27
x2

7
m

ac
c

m
ac

c
35

.8
3M

co
m

p
co

m
p

20
9.

95
k

34
;r

e6
su

bm
od

ul
e(

6)
25

6
27

x2
7

38
4

27
x2

7
m

ac
c

m
ac

c
76

.1
4M

co
m

p
co

m
p

31
4.

93
k

41
;r

e7
su

bm
od

ul
e(

6)
38

4
27

x2
7

38
4

27
x2

7
m

ac
c

m
ac

c
80

.6
2M

co
m

p
co

m
p

31
4.

93
k

Zy
nq

N
et

(e
di

t)

3c
h

⋅
25

6×
25

6

64
ch

 ⋅
 1

28
×1

28

16
ch

 ⋅
 6

4×
64

16
ch

 ⋅
 6

4×
64

64
ch

 ⋅
 6

4×
64

64
ch

 ⋅
 6

4×
64

12
8c

h
⋅

64
×6

4

16
ch

 ⋅
 6

4×
64

16
ch

 ⋅
 6

4×
64

64
ch

 ⋅
 6

4×
64

64
ch

 ⋅
 6

4×
64

12
8c

h
⋅

64
×6

4

32
ch

 ⋅
 3

2×
32

32
ch

 ⋅
 3

2×
32

12
8c

h
⋅

32
×3

2
12

8c
h

⋅
32

×3
2

25
6c

h
⋅

32
×3

2

32
ch

 ⋅
 3

2×
32

32
ch

 ⋅
 3

2×
32

12
8c

h
⋅

32
×3

2
12

8c
h

⋅
32

×3
2

25
6c

h
⋅

32
×3

2

64
ch

 ⋅
 1

6×
16

64
ch

 ⋅
 1

6×
16

25
6c

h
⋅

16
×1

6
25

6c
h

⋅
16

×1
6

51
2c

h
⋅

16
×1

6

64
ch

 ⋅
 1

6×
16

64
ch

 ⋅
 1

6×
16

19
2c

h
⋅

16
×1

6
19

2c
h

⋅
16

×1
6

38
4c

h
⋅

16
×1

6

11
2c

h
⋅

8×
8

11
2c

h
⋅

8×
8

25
6c

h
⋅

8×
8

25
6c

h
⋅

8×
8

51
2c

h
⋅

8×
8

11
2c

h
⋅

8×
8

11
2c

h
⋅

8×
8

36
8c

h
⋅

8×
8

36
8c

h
⋅

8×
8

73
6c

h
⋅

8×
8

73
6c

h
⋅

8×
8

51
2c

h
⋅

8×
8

51
2c

h
⋅

8×
8

10
24

ch
 ⋅

 8
×8

10
24

ch
 ⋅

 1
×1

da
ta

co
nv

1

re
lu

_c
on

v1

:r
e2

/s
qu

ee
ze

3x
3

:r
e2

/r
el

u_
sq

ue
ez

e3
x3

:r
e2

/e
xp

an
d1

x1

:r
e2

/r
el

u_
ex

pa
nd

1x
1

:r
e2

/e
xp

an
d3

x3

:r
e2

/r
el

u_
ex

pa
nd

3x
3

:r
e2

/c
on

ca
t

:r
e3

/s
qu

ee
ze

1x
1

:r
e3

/r
el

u_
sq

ue
ez

e1
x1

:r
e3

/e
xp

an
d1

x1

:r
e3

/r
el

u_
ex

pa
nd

1x
1

:r
e3

/e
xp

an
d3

x3

:r
e3

/r
el

u_
ex

pa
nd

3x
3

:r
e3

/c
on

ca
t

:r
e4

/s
qu

ee
ze

3x
3

:r
e4

/r
el

u_
sq

ue
ez

e3
x3

:r
e4

/e
xp

an
d1

x1

:r
e4

/r
el

u_
ex

pa
nd

1x
1

:r
e4

/e
xp

an
d3

x3

:r
e4

/r
el

u_
ex

pa
nd

3x
3

:r
e4

/c
on

ca
t

:r
e5

/s
qu

ee
ze

1x
1

:r
e5

/r
el

u_
sq

ue
ez

e1
x1

:r
e5

/e
xp

an
d1

x1

:r
e5

/r
el

u_
ex

pa
nd

1x
1

:r
e5

/e
xp

an
d3

x3

:r
e5

/r
el

u_
ex

pa
nd

3x
3

:r
e5

/c
on

ca
t

:r
e6

/s
qu

ee
ze

3x
3

:r
e6

/r
el

u_
sq

ue
ez

e3
x3

:r
e6

/e
xp

an
d1

x1

:r
e6

/r
el

u_
ex

pa
nd

1x
1

:r
e6

/e
xp

an
d3

x3

:r
e6

/r
el

u_
ex

pa
nd

3x
3

:r
e6

/c
on

ca
t

:r
e7

/s
qu

ee
ze

1x
1

:r
e7

/r
el

u_
sq

ue
ez

e1
x1

:r
e7

/e
xp

an
d1

x1

:r
e7

/r
el

u_
ex

pa
nd

1x
1

:r
e7

/e
xp

an
d3

x3

:r
e7

/r
el

u_
ex

pa
nd

3x
3

:r
e7

/c
on

ca
t

:r
e8

/s
qu

ee
ze

3x
3

:r
e8

/r
el

u_
sq

ue
ez

e3
x3

:r
e8

/e
xp

an
d1

x1

:r
e8

/r
el

u_
ex

pa
nd

1x
1

:r
e8

/e
xp

an
d3

x3

:r
e8

/r
el

u_
ex

pa
nd

3x
3

:r
e8

/c
on

ca
t

:r
e9

/s
qu

ee
ze

1x
1

:r
e9

/r
el

u_
sq

ue
ez

e1
x1

:r
e9

/e
xp

an
d1

x1

:r
e9

/r
el

u_
ex

pa
nd

1x
1

:r
e9

/e
xp

an
d3

x3

:r
e9

/r
el

u_
ex

pa
nd

3x
3

:r
e9

/c
on

ca
t

dr
op

9

co
nv

10
/s

pl
it1

co
nv

10
/s

pl
it2

co
nv

10

po
ol

10

lo
ss

N
et

w
or

k
An

al
ys

is

Su
m

m
ar

y:

IDID
na

m
e

na
m

e
ty

pe
ty

pe
ch

_i
n

ch
_i

n
di

m
_i

n
di

m
_i

n
ch

_o
ut

ch
_o

ut
di

m
_o

ut
di

m
_o

ut
op

s
op

s

1
da

ta
Da

ta
3

25
6x

25
6

3
25

6x
25

6

2
co

nv
1

Co
nv

ol
ut

io
n

3
25

6x
25

6
64

12
8x

12
8

m
ac

c
m

ac
c

28
.3

1M

3
re

lu
_c

on
v1

Re
LU

64
12

8x
12

8
64

12
8x

12
8

co
m

p
co

m
p

1.
05

M

4
:r

e2
su

bm
od

ul
e(

6)
64

12
8x

12
8

12
8

64
x6

4
m

ac
c

m
ac

c
79

.6
9M

co
m

p
co

m
p

58
9.

82
k

11
:r

e3
su

bm
od

ul
e(

6)
12

8
64

x6
4

12
8

64
x6

4
m

ac
c

m
ac

c
50

.3
3M

co
m

p
co

m
p

58
9.

82
k

18
:r

e4
su

bm
od

ul
e(

6)
12

8
64

x6
4

25
6

32
x3

2
m

ac
c

m
ac

c
79

.6
9M

co
m

p
co

m
p

29
4.

91
k

25
:r

e5
su

bm
od

ul
e(

6)
25

6
32

x3
2

25
6

32
x3

2
m

ac
c

m
ac

c
50

.3
3M

co
m

p
co

m
p

29
4.

91
k

32
:r

e6
su

bm
od

ul
e(

6)
25

6
32

x3
2

51
2

16
x1

6
m

ac
c

m
ac

c
79

.6
9M

co
m

p
co

m
p

14
7.

46
k

39
:r

e7
su

bm
od

ul
e(

6)
51

2
16

x1
6

38
4

16
x1

6
m

ac
c

m
ac

c
39

.8
5M

co
m

p
co

m
p

11
4.

69
k

46
:r

e8
su

bm
od

ul
e(

6)
38

4
16

x1
6

51
2

8x
8

m
ac

c
m

ac
c

43
.1

2M

co
m

p
co

m
p

39
.9

4k

53
:r

e9
su

bm
od

ul
e(

6)
51

2
8x

8
73

6
8x

8
m

ac
c

m
ac

c
30

.0
5M

co
m

p
co

m
p

54
.2

7k

60
dr

op
9

Dr
op

ou
t

73
6

8x
8

73
6

8x
8

co
m

p
co

m
p

47
.1

k

61
co

nv
10

su
bm

od
ul

e(
1)

73
6

8x
8

51
2

8x
8

m
ac

c
m

ac
c

48
.2

3M

25
6x2

56

12
8x1
28

16x
16

64
x64

32
x32 8x8

1x1

• remove Pooling

Additional optimization for FPGA

FPGA resources
(Kintex 7)

https://github.com/dgschwend/zynqnet/tree/master/zynqnet_report.pdf

Javier Duarte

24

CNN Shape Configuration
(# of channels, # of filters, etc.)

CNN Weights and Input Data

[0.3, 0, -0.4, 0.7, 0, 0, 0.1, …]

CNN Energy Consumption
L1 L2 L3

Energy

…

Memory
Accesses

Optimization

of MACs
Calculation

…

acc. at mem. level 1
acc. at mem. level 2

acc. at mem. level n

of MACs

Hardware Energy Costs of each
MAC and Memory Access

Ecomp

Edata

Fig. 42. Energy estimation methodology from [142], which estimates the
energy based on data movement from different levels of the memory hierarchy,
number of MACs, and data sparsity.

AlexNet	 SqueezeNet	

GoogLeNet	

ResNet-50	
VGG-16	

77%	

79%	

81%	

83%	

85%	

87%	

89%	

91%	

93%	

5E+08	 5E+09	 5E+10	

To
p-
5	
Ac

cu
ra
cy
	

Normalized	Energy	Consump9on	

Original	DNN	

(a) Energy versus accuracy trade-off of popular DNN models.

AlexNet	 SqueezeNet	

GoogLeNet	

ResNet-50	
VGG-16	

AlexNet	

SqueezeNet	

AlexNet	 SqueezeNet	

GoogLeNet	

77%	

79%	

81%	

83%	

85%	

87%	

89%	

91%	

93%	

5E+08	 5E+09	 5E+10	

To
p-
5	
Ac

cu
ra
cy
	

Normalized	Energy	Consump9on	

 Original	DNN	 Magnitude-based	Pruning	 Energy-aware	Pruning		

1.74x

(b) Impact of energy-aware pruning.

Fig. 43. Energy values estimated with methodology in [142].

can then be used to prune weights based on energy to reduce
the overall energy across all layers by 3.7⇥ for AlexNet, which
is 1.74⇥ more efficient than magnitude-based approaches [141]
as shown in Fig. 43(b). As mentioned previously, it is well
known that AlexNet is over-parameterized. The energy-aware
pruning can also be applied to GoogleNet, which is already a
small DNN model, for a 1.6⇥ energy reduction.

Recent works have examine how to efficiently support
processing of sparse weights in hardware. One area of interest
is how to best store the sparse weights after pruning. Similar to
compressing the sparse activations discussed in Section VII-B1,
the sparse weights can be compressed to reduce memory access
bandwidth by 20 to 30% [118].

When DNN processing is performed as a matrix-vector

of
filters

of weights

(a) Compressed sparse row (CSR)

(b) Compressed sparse column (CSC)

Fig. 44. Sparse matrix-vector multiplications using different storage formats
(Figure from [144]).

multiplication, as shown in Fig. 18(a), one challenge is
to determine how to store the sparse weight matrix in a
compressed format. The compression can be applied either
in row or column order. A compressed sparse row (CSR)
format, as shown in Fig. 44(a), is often used to perform Sparse
Matrix-Vector multiplication. However, the input vector needs
to be read in multiple times even though only a subset of it is
used since each row of the matrix is sparse. Alternatively,
a compressed sparse column (CSC) format, as shown in
Fig. 44(b), can be used, where the output is updated several
times, and only one element of the input vector is read at
a time [144]. The CSC format will provide an overall lower
memory bandwidth than CSR if the output is smaller than the
input, or in the case of DNN, if the number of filters is not
significantly larger than the number of weights in the filter
(C ⇥R⇥ S from Fig. 9(b)). Since this is often true, CSC can
be an effective format for sparse DNN processing.

Custom hardware has been explored to efficiently support
pruned DNN models. Many works aim to perform the process-
ing without decompressing the weights or activations. EIE [145]
performs the sparse matrix-vector multiplication specifically for
the fully connected layers. It stores the weights in a CSC format
along with the start location of each column, which needs to be
stored since the compressed weights have variable length. When
the input is not zero, the compressed weight column is read and
the output is updated. To handle the sparsity, additional logic
is used to keep track of the location of the output that should
be updated. SCNN [146] supports processing of convolutional

19

Energy-Aware Pruning

• Key insights:

• Less operations do not

necessarily mean less
energy consumption

• CONV layers dominate
the overall energy
consumption

• Prune while directly
optimizing for energy
consumption

Yang et al. 2017

arXiv:1611.05128

How much energy does your NN consume?

https://energyestimation.mit.edu/

https://arxiv.org/abs/1611.05128
https://energyestimation.mit.edu/

Javier Duarte

24

CNN Shape Configuration
(# of channels, # of filters, etc.)

CNN Weights and Input Data

[0.3, 0, -0.4, 0.7, 0, 0, 0.1, …]

CNN Energy Consumption
L1 L2 L3

Energy

…

Memory
Accesses

Optimization

of MACs
Calculation

…

acc. at mem. level 1
acc. at mem. level 2

acc. at mem. level n

of MACs

Hardware Energy Costs of each
MAC and Memory Access

Ecomp

Edata

Fig. 42. Energy estimation methodology from [142], which estimates the
energy based on data movement from different levels of the memory hierarchy,
number of MACs, and data sparsity.

AlexNet	 SqueezeNet	

GoogLeNet	

ResNet-50	
VGG-16	

77%	

79%	

81%	

83%	

85%	

87%	

89%	

91%	

93%	

5E+08	 5E+09	 5E+10	

To
p-
5	
Ac

cu
ra
cy
	

Normalized	Energy	Consump9on	

Original	DNN	

(a) Energy versus accuracy trade-off of popular DNN models.

AlexNet	 SqueezeNet	

GoogLeNet	

ResNet-50	
VGG-16	

AlexNet	

SqueezeNet	

AlexNet	 SqueezeNet	

GoogLeNet	

77%	

79%	

81%	

83%	

85%	

87%	

89%	

91%	

93%	

5E+08	 5E+09	 5E+10	

To
p-
5	
Ac

cu
ra
cy
	

Normalized	Energy	Consump9on	

 Original	DNN	 Magnitude-based	Pruning	 Energy-aware	Pruning		

1.74x

(b) Impact of energy-aware pruning.

Fig. 43. Energy values estimated with methodology in [142].

can then be used to prune weights based on energy to reduce
the overall energy across all layers by 3.7⇥ for AlexNet, which
is 1.74⇥ more efficient than magnitude-based approaches [141]
as shown in Fig. 43(b). As mentioned previously, it is well
known that AlexNet is over-parameterized. The energy-aware
pruning can also be applied to GoogleNet, which is already a
small DNN model, for a 1.6⇥ energy reduction.

Recent works have examine how to efficiently support
processing of sparse weights in hardware. One area of interest
is how to best store the sparse weights after pruning. Similar to
compressing the sparse activations discussed in Section VII-B1,
the sparse weights can be compressed to reduce memory access
bandwidth by 20 to 30% [118].

When DNN processing is performed as a matrix-vector

of
filters

of weights

(a) Compressed sparse row (CSR)

(b) Compressed sparse column (CSC)

Fig. 44. Sparse matrix-vector multiplications using different storage formats
(Figure from [144]).

multiplication, as shown in Fig. 18(a), one challenge is
to determine how to store the sparse weight matrix in a
compressed format. The compression can be applied either
in row or column order. A compressed sparse row (CSR)
format, as shown in Fig. 44(a), is often used to perform Sparse
Matrix-Vector multiplication. However, the input vector needs
to be read in multiple times even though only a subset of it is
used since each row of the matrix is sparse. Alternatively,
a compressed sparse column (CSC) format, as shown in
Fig. 44(b), can be used, where the output is updated several
times, and only one element of the input vector is read at
a time [144]. The CSC format will provide an overall lower
memory bandwidth than CSR if the output is smaller than the
input, or in the case of DNN, if the number of filters is not
significantly larger than the number of weights in the filter
(C ⇥R⇥ S from Fig. 9(b)). Since this is often true, CSC can
be an effective format for sparse DNN processing.

Custom hardware has been explored to efficiently support
pruned DNN models. Many works aim to perform the process-
ing without decompressing the weights or activations. EIE [145]
performs the sparse matrix-vector multiplication specifically for
the fully connected layers. It stores the weights in a CSC format
along with the start location of each column, which needs to be
stored since the compressed weights have variable length. When
the input is not zero, the compressed weight column is read and
the output is updated. To handle the sparsity, additional logic
is used to keep track of the location of the output that should
be updated. SCNN [146] supports processing of convolutional

24

CNN Shape Configuration
(# of channels, # of filters, etc.)

CNN Weights and Input Data

[0.3, 0, -0.4, 0.7, 0, 0, 0.1, …]

CNN Energy Consumption
L1 L2 L3

Energy

…

Memory
Accesses

Optimization

of MACs
Calculation

…

acc. at mem. level 1
acc. at mem. level 2

acc. at mem. level n

of MACs

Hardware Energy Costs of each
MAC and Memory Access

Ecomp

Edata

Fig. 42. Energy estimation methodology from [142], which estimates the
energy based on data movement from different levels of the memory hierarchy,
number of MACs, and data sparsity.

AlexNet	 SqueezeNet	

GoogLeNet	

ResNet-50	
VGG-16	

77%	

79%	

81%	

83%	

85%	

87%	

89%	

91%	

93%	

5E+08	 5E+09	 5E+10	

To
p-
5	
Ac

cu
ra
cy
	

Normalized	Energy	Consump9on	

Original	DNN	

(a) Energy versus accuracy trade-off of popular DNN models.

AlexNet	 SqueezeNet	

GoogLeNet	

ResNet-50	
VGG-16	

AlexNet	

SqueezeNet	

AlexNet	 SqueezeNet	

GoogLeNet	

77%	

79%	

81%	

83%	

85%	

87%	

89%	

91%	

93%	

5E+08	 5E+09	 5E+10	

To
p-
5	
Ac

cu
ra
cy
	

Normalized	Energy	Consump9on	

 Original	DNN	 Magnitude-based	Pruning	 Energy-aware	Pruning		

1.74x

(b) Impact of energy-aware pruning.

Fig. 43. Energy values estimated with methodology in [142].

can then be used to prune weights based on energy to reduce
the overall energy across all layers by 3.7⇥ for AlexNet, which
is 1.74⇥ more efficient than magnitude-based approaches [141]
as shown in Fig. 43(b). As mentioned previously, it is well
known that AlexNet is over-parameterized. The energy-aware
pruning can also be applied to GoogleNet, which is already a
small DNN model, for a 1.6⇥ energy reduction.

Recent works have examine how to efficiently support
processing of sparse weights in hardware. One area of interest
is how to best store the sparse weights after pruning. Similar to
compressing the sparse activations discussed in Section VII-B1,
the sparse weights can be compressed to reduce memory access
bandwidth by 20 to 30% [118].

When DNN processing is performed as a matrix-vector

of
filters

of weights

(a) Compressed sparse row (CSR)

(b) Compressed sparse column (CSC)

Fig. 44. Sparse matrix-vector multiplications using different storage formats
(Figure from [144]).

multiplication, as shown in Fig. 18(a), one challenge is
to determine how to store the sparse weight matrix in a
compressed format. The compression can be applied either
in row or column order. A compressed sparse row (CSR)
format, as shown in Fig. 44(a), is often used to perform Sparse
Matrix-Vector multiplication. However, the input vector needs
to be read in multiple times even though only a subset of it is
used since each row of the matrix is sparse. Alternatively,
a compressed sparse column (CSC) format, as shown in
Fig. 44(b), can be used, where the output is updated several
times, and only one element of the input vector is read at
a time [144]. The CSC format will provide an overall lower
memory bandwidth than CSR if the output is smaller than the
input, or in the case of DNN, if the number of filters is not
significantly larger than the number of weights in the filter
(C ⇥R⇥ S from Fig. 9(b)). Since this is often true, CSC can
be an effective format for sparse DNN processing.

Custom hardware has been explored to efficiently support
pruned DNN models. Many works aim to perform the process-
ing without decompressing the weights or activations. EIE [145]
performs the sparse matrix-vector multiplication specifically for
the fully connected layers. It stores the weights in a CSC format
along with the start location of each column, which needs to be
stored since the compressed weights have variable length. When
the input is not zero, the compressed weight column is read and
the output is updated. To handle the sparsity, additional logic
is used to keep track of the location of the output that should
be updated. SCNN [146] supports processing of convolutional

20

Table 1. Performance metrics of various dense and pruned models.

Model
Top-5

Accuracy

of Non-zero

Weights (⇥106)

of Non-skipped

MACs (⇥108)
1

Normalized

Energy (⇥109)
1,2

AlexNet (Original) 80.43% 60.95 (100%) 3.71 (100%) 3.97 (100%)
AlexNet ([8]) 80.37% 6.79 (11%) 1.79 (48%) 1.85 (47%)
AlexNet (Energy-Aware Pruning) 79.56% 5.73 (9%) 0.56 (15%) 1.06 (27%)

GoogLeNet (Original) 88.26% 6.99 (100%) 7.41 (100%) 7.63 (100%)
GoogLeNet (Energy-Aware Pruning) 87.28% 2.37 (34%) 2.16 (29%) 4.76 (62%)
SqueezeNet (Original) 80.61% 1.24 (100%) 4.51 (100%) 5.28 (100%)
SqueezeNet ([8]) 81.47% 0.42 (33%) 3.30 (73%) 4.61 (87%)
SqueezeNet (Energy-Aware Pruning) 80.47% 0.35 (28%) 1.93 (43%) 3.99 (76%)

1 Per image.
2 The unit of energy is normalized in terms of the energy for a MAC operation (i.e., 102 = energy of 100 MACs).

Figure 3. Accuracy versus energy trade-off of popular CNN models. Models pruned with the energy-aware pruning provide a better
accuracy versus energy trade-off (steeper slope).

Table 2. Compression ratio1 of each layer in AlexNet.
[8] This Work

of

Classes
1000 1000 100

10

(Random)

10

(Dog)

CONV1 16% 83% 86% 89% 89%
CONV2 62% 92% 97% 97% 96%
CONV3 65% 91% 97% 98% 97%
CONV4 63% 81% 88% 97% 95%
CONV5 63% 74% 79% 98% 98%

FC1 91% 92% 93% ⇠100% ⇠100%
FC2 91% 91% 94% ⇠100% ⇠100%
FC3 74% 78% 78% ⇠100% ⇠100%

1 The number of removed weights divided by the number of
total weights. The higher, the better.

computation-related energy consumption. However,
pruning reduces the energy of both weight and feature
map movement, as well as computation. In addition, the
weights in CONV1 and FC3 of BWN are not binarized
to preserve the accuracy; thus BWN does not reduce the
energy consumption of CONV1 and FC3. Moreover,
to compensate for the accuracy loss of binarizing the
weights, CONV2, CONV4 and CONV5 layers in BWN
use 2⇥ the number of weights in the corresponding lay-

CONV1

CONV2

CONV3

CONV4

CONV5
FC1

FC2
FC3

0

2

4

6

8

10

12

No
rm

al
ize

d
En

er
gy

 C
on

su
m

pt
io

n

×10 8

Input Feature Map Movement
Output Feature Map Movement
Weight Movement
Computation

Figure 4. Energy consumption breakdown of different AlexNets in
terms of the computation and the data movement of input feature
maps, output feature maps and filter weights. From left to right:
original AlexNet, AlexNet pruned by [8], AlexNet pruned by the
proposed energy-aware pruning.

ers of the original AlexNet, which increases the energy
consumption.

• A lower number of MACs does not necessarily lead

to lower energy consumption. For example, the pruned
GoogleNet has a fewer MACs but consumes more en-
ergy than the SqueezeNet pruned by [8]. That is because
they have different data reuse, which is determined by the
shape configurations, as discussed in Sec. 2.1.

Left-to-right: AlexNet, pruned AlexNet,
energy-aware pruned AlexNet

Energy-Aware Pruning Yang et al. 2017

arXiv:1611.05128

• Key insights:

• Less operations do not

necessarily mean less
energy consumption

• CONV layers dominate
the overall energy
consumption

• Prune while directly
optimizing for energy
consumption

https://arxiv.org/abs/1611.05128

Javier Duarte 21

Binary/Ternary Networks
• Ultimate of quantization/compression

• BinaryConnect, BinaryNet: weights (+1, -1)

• Binary Weight Nets: weights (+w, -w),

• Ternary Weight Nets: weights (+w, 0, -w)

• Trained Ternary Quantization: (+w1, 0, -w2)

https://github.com/MatthieuCourbariaux/BinaryNet

https://github.com/BertMoons/QuantizedNeuralNetworks-Keras-Tensorflow

https://github.com/DingKe/nn_playground/tree/master/ternarynet

23

Reduce Precision Method bitwidth Accuracy loss vs.
Weights Activations 32-bit float (%)

Dynamic Fixed Point w/o fine-tuning [121] 8 10 0.4
w/ fine-tuning [122] 8 8 0.6

Reduce Weight
BinaryConnect [127] 1 32 (float) 19.2

Binary Weight Network (BWN) [129] 1* 32 (float) 0.8
Ternary Weight Networks (TWN) [131] 2* 32 (float) 3.7

Trained Ternary Quantization (TTQ) [132] 2* 32 (float) 0.6

Reduce Weight and Activation

XNOR-Net [129] 1* 1* 11
Binarized Neural Networks (BNN) [128] 1 1 29.8

DoReFa-Net [120] 1* 2* 7.63
Quantized Neural Networks (QNN) [119] 1 2* 6.5

HWGQ-Net [130] 1* 2* 5.2

Non-linear Quantization
LogNet [135] 5 (conv), 4 (fc) 4 3.2

Incremental Network Quantization (INQ) [136] 5 32 (float) -0.2

Deep Compression [118] 8 (conv), 4 (fc) 16 0
4 (conv), 2 (fc) 16 2.6

TABLE III
METHODS TO REDUCE NUMERICAL PRECISION FOR ALEXNET. ACCURACY MEASURED FOR TOP-5 ERROR ON IMAGENET. *NOT APPLIED TO FIRST AND/OR

LAST LAYERS

9 -1 -3
1 -5 5
-2 6 -1

ReLU 9 0 0
1 0 5
0 6 0

(a) ReLU non-linearity

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5
CONV Layer

of activations # of non-zero activations

(Normalized)

(b) Distribution of activation after ReLU of AlexNet

Fig. 41. Sparsity in activations due to ReLU.

The sparsity can be exploited for energy and area savings
using compression, particularly for off-chip DRAM access
which is expensive. For instance, a simple run length coding
that involves signaling non-zero values of 16-bits and then runs
of zeros up to 31 can reduce the external memory bandwidth
of the activations by 2.1⇥ and the overall external bandwidth
(including weights) by 1.5⇥ [61].11 In addition to compression,
the hardware can also be modified such that it skips reading the
weights and performing the MAC for zero-valued activations
to reduce energy cost by 45% [94]. Rather than just gating the
read and MAC computation, the hardware could also skip the
cycle to increase the throughput by 1.37⇥ [138].

The activations can be made to be even more sparse by prun-
ing the low-valued activations. For instance, if all activations
with small values are pruned, this can be translated into an
additional 11% speed up [138] or 2⇥ power reduction [139]
with little impact on accuracy. Aggressively pruning more
activations can provide additional throughput improvement at

11This simple run length compression is within 5-10% of the theoretical
entropy limit.

a cost of reduced accuracy.
2) Network Pruning: To make network training easier, the

networks are usually over-parameterized. Therefore, a large
amount of the weights in a network are redundant and can
be removed (i.e., set to zero). This process is called network
pruning. Aggressive network pruning often requires some fine-
tuning of the weights to maintain the original accuracy. This
was first proposed in 1989 through a technique called Optimal
Brain Damage [140]. The idea was to compute the impact of
each weight on the training loss (discussed in Section II-C),
referred to as the weight saliency. The low-saliency weights
were removed and the remaining weights were fine-tuned; this
process was repeated until the desired weight reduction and
accuracy were reached.

In 2015, a similar idea was applied to modern DNNs in [141].
Rather than using the saliency as a metric, which is too difficult
to compute for the large-scaled DNNs, the pruning was simply
based on the magnitude of the weights. Small weights were
pruned and the model was fine-tuned to restore the accuracy.
Without fine-tuning the weights, about 50% of the weights
could be pruned. With fine-tuning, over 80% of the weights
were pruned. Overall this approach can reduce the number
of weights in AlexNet by 9⇥ and the number of MACs
by 3⇥. Most of the weight reduction comes from the fully-
connected layers (9.9⇥ for fully-connected layers versus 2.7⇥
for convolutional layers).

However, the number of weights alone is not a good metric
for energy. For instance, in AlexNet, the number of weights
in the fully-connected layers is much larger than in the
convolutional layers; however, the energy of the convolutional
layers is much higher than the fully-connected layers as shown
in Fig. 35 [80]. Rather than using the number of weights
and MAC operations as proxies for energy, the pruning of
the weights can be directly driven by energy itself [142]. An
energy evaluation method can be used to estimate the DNN
energy that accounts for the data movement from different
levels of the memory hierarchy, the number of MACs, and the
data sparsity as shown in Fig. 42; this energy estimation tool
is available at [143]. The resulting energy values for popular
DNN models are shown in Fig. 43(a). Energy-aware pruning

Sze et al. (Survey)

arXiv:1703.09039

Binarized Neural Networks: Training Neural Networks with Weights and Activations Constrained to +1 or �1

Table 1. Classification test error rates of DNNs trained on MNIST (MLP architecture without unsupervised pretraining), CIFAR-10
(without data augmentation) and SVHN.

Data set MNIST SVHN CIFAR-10
Binarized activations+weights, during training and test

BNN (Torch7) 1.40% 2.53% 10.15%
BNN (Theano) 0.96% 2.80% 11.40%
Committee Machines’ Array (Baldassi et al., 2015) 1.35% - -

Binarized weights, during training and test
BinaryConnect (Courbariaux et al., 2015) 1.29± 0.08% 2.30% 9.90%

Binarized activations+weights, during test
EBP (Cheng et al., 2015) 2.2± 0.1% - -
Bitwise DNNs (Kim & Smaragdis, 2016) 1.33% - -

Ternary weights, binary activations, during test
(Hwang & Sung, 2014) 1.45% - -

No binarization (standard results)
Maxout Networks (Goodfellow et al.) 0.94% 2.47% 11.68%
Network in Network (Lin et al.) - 2.35% 10.41%
Gated pooling (Lee et al., 2015) - 1.69% 7.62%

Figure 1. Training curves of a ConvNet on CIFAR-10 depend-
ing on the method. The dotted lines represent the training costs
(square hinge losses) and the continuous lines the corresponding
validation error rates. Although BNNs are slower to train, they
are nearly as accurate as 32-bit float DNNs.

and AdaMax variants, which are detailed in Algo-
rithms 3 and 4, whereas in our Theano experiments,
we use vanilla BN and ADAM.

2.1. MLP on MNIST (Theano)

MNIST is an image classification benchmark dataset (Le-
Cun et al., 1998). It consists of a training set of 60K and
a test set of 10K 28 ⇥ 28 gray-scale images represent-
ing digits ranging from 0 to 9. In order for this bench-
mark to remain a challenge, we did not use any convo-
lution, data-augmentation, preprocessing or unsupervised
learning. The MLP we train on MNIST consists of 3 hid-
den layers of 4096 binary units (see Section 1) and a L2-
SVM output layer; L2-SVM has been shown to perform
better than Softmax on several classification benchmarks

Figure 2. Binary weight filters, sampled from of the first convolu-
tion layer. Since we have only 2k

2
unique 2D filters (where k is

the filter size), filter replication is very common. For instance, on
our CIFAR-10 ConvNet, only 42% of the filters are unique.

(Tang, 2013; Lee et al., 2014). We regularize the model
with Dropout (Srivastava, 2013; Srivastava et al., 2014).
The square hinge loss is minimized with the ADAM adap-
tive learning rate method (Kingma & Ba, 2014). We use
an exponentially decaying global learning rate, as per Al-
gorithm 1, and also scale the learning rates of the weights
with their initialization coefficients from (Glorot & Bengio,
2010), as suggested by Courbariaux et al. (2015). We use
Batch Normalization with a minibatch of size 100 to speed
up the training. As is typical, we use the last 10K samples
of the training set as a validation set for early stopping and
model selection. We report the test error rate associated
with the best validation error rate after 1000 epochs (we do
not retrain on the validation set). The results are reported
in Table 1.

2.2. MLP on MNIST (Torch7)

We use a similar architecture as in our Theano experiments,
without dropout, and with 2048 binary units per layer in-
stead of 4096. Additionally, we use the shift base AdaMax

Binary weight filters

Binary weight filters

https://github.com/MatthieuCourbariaux/BinaryNet
https://github.com/BertMoons/QuantizedNeuralNetworks-Keras-Tensorflow
https://github.com/DingKe/nn_playground/tree/master/ternarynet
https://arxiv.org/abs/1703.09039

Javier Duarte

• Network compression (pruning and quantization) is an
important aspect of efficiently computing ML algorithms

• Especially important for LHC trigger applications on FPGAs

• Many different techniques / implementations

• Implementations are currently scattered across random
GitHub repositories

• Should become a standard “tool” in our ML toolkit

22

Summary and Outlook

Javier Duarte I hls4ml

Backup

23

