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Nanophotonics

(dielectrics) with nanometer-scale features
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Limited ways to
manipulate light

Integrated Photonics
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Thanks to improved computation power & fabrication techniques
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Artificial Neural Networks (ANN)

Breakthroughs in deep

learning:

* Natural Language Processing
(NLP)

* Game Playing (Go, Atari)

» Autonomous Vehicles

* Control

« Ad Placement

« Researches (drug discovery,
material study)

* Etc.
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Computing

hidde

input layer

Biological Neural Networks Artificial Neural Networks
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Basic Algorithm of ANN

h(i) = (Z(i))

Input Layer
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Matrix Multiplication: Zj( )= z Wj(i )xi
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Nonlinear Activation; hj =f (zj )
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Hardware and Data Enable Deep Learning
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The Need for Speed

More Data = Bigger Models > More need for Computation

T The Market:
GFLOP / W Theoretical Limit)
“i.r —« Onclouds:

*  Millions of high power Al
processors ($10,000 each)
in data centers by 2020

Optical/Electrical
Hybrid ONN
with thermal PS

Da-Diannao NVIDIAVT00
28nm ASIC nm ASIC

TitanX Tegra K1

28nmGPU  28nm mGPU On premise:

Billions of compact Al
processors needed due
to the rise of

Core-i7 5930K
22nm CPU

Von Neumann ASIC/FPG Optical XOR B 0PO1 ) autonomouse driving,
. A AR and IoT.
A Processing —
d ! ACCESS TO CITY .
trt - )
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In Deep Learning
Key Operation 1s dense M x V

hidden layer 1  hidden layer 2 hidden layer 3

ot Taver In Optics, Matrix Multiplication
g s iS Very Common & (usuallY)
consumes no energy !

output laver

{ Convolution / FFT
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ANN does require high resolution

Dynamic Fixed w/o fine-tuning
Point w/ fine-tuning

Reduce weight Ternary weights
Networks (TWN)

Trained Ternary
Quantization (TTQ)

Binary Connect (BC)

Binary Weight Net
(BWN)

Reduce weight Binarized Neural Net
and activation (BNN)

XNOR-Net 1* 1
Non-Linear LogNet d(conv), 4(fc) 4
Weight Sharing 8(conv), 4(fc) 16
* first and last layers are 32-bit float
Deep Learning with Coherent Sze et al), arXiv:1703.09039 (2017)
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Deep Learning Inference 1s
“Passive”
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Deep Learning 1s very
parallelizable
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Coherent Optical Neural Networks (ONN)

Optical Input Optical Output

Waveguide Optical Interference Unit Optical Nonlinearity Unit
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Programmable Nanophotonic Processors
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Y.Shen and N. Harris et al. “Deep Learning with Coherent Nanophotonic Circuit” Nature Photonics 11, 441-446 (2017)
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Y.Shen and N. Harris et al. “Deep Learning with Coherent Nanophotonic Circuit” Nature Photonics 11, 441-446 (2017)
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Optical Vowel Recognition
(4d 4 classes)
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Experimental Result
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Simulation Result: 165/180=91.7%
Experiment Result: 138/180=76.7%

op

A:[hid]
B:[hEd]

C:[hYd]
D:[hOd]
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The other side of the Story...

® Immature photonics eco-system (low yield, high cost)
® Large device size

® Non-1deal PDK component design (lossy, low resolution,
power hungry)

® AD/DA interface
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Software & Hardware

Al algorithms DESIGNED to be run on photonics chip

Copying Memory Task, delay time T=1000 Permuted-Pixel MNIST Task

EURNN with N=512 L=2
EURNN with N=512 FFT
PURNN with N=128
URNN with N=512
LSTM with N=80
baseline

Accuracy
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1500 2000 2500 3000 3500
Training iterations

Training iterations

L. Jing & Y. Shen et al, International Conference for Machine Learning (ICML
2017)
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Fully Connected Neural Networks

input layer

Recurrent Neural Networks

Deep Learning with Coherent
Nanophotonic Circuits

hidden layer 1

hidden layer 2 hidden layer 3

C3:1. maps 16@10x10
INPUT %;gg%m maps 4

3232 52:1. maps
B@14x14

‘ Fulcanlection | Gaussian connections
Convolutions Sut | Comvolutions  Subsampling Full connection

AFull Convolutional Neural Network [LeNet)

Convolutional Neural Networks
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Recurrent Neural Networks

Commonly used for Speech Recognition and Language Processing
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Convolution Neural Networks

First Layer Filters Second Layer Filters

* ; . *
~ ” Non-Linearity ‘ :

. t ' ‘ and !
. Delay Lines % ' To FC Layer
, — gy —

Out put Pixels
Coming out in
Input Image Time Domain Second Layer Input

%h—/%f—/

Pooling and Convolution Re-Shuffling

Scott Skirlo and Yichen Shen et al, Manuscript in Preparation
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Speed and Energy Efficiency Comparison with Electrical ANN

NVIDIA TITAN X ONN
(with thermal PS)

Architecture Von Neumann Neuromorphic
Power Consumption 1 kW 1-2 kW
Operation Speed 10 TFLOP 10,000 TFLOP
10 Fully Optical Chip
10 GELOP / W (Theoretical Limit)
8
10
6
10 Qptical/Electrical
Hybrid ONN
with thermal PS
4
10 _
Da-Diannao NVIDIAVTOO
28nm ASIC nm ASIC
2
10 TitanX Tegra K1
28nm GPU 28nm mGPU
Core-i7 5930K
22nm CPU
0 ] . ] | —

Y. Shen and N. Harris et al, Nature Photonics 11, 441 (2017)
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A
COMPUTING

Light-Powered Computers
Brighten AI's Future

Fs Optical computers may have finally found a use—improving artificial intelligence
4
4
/ 4

METASURFACES
Retroreflectors

2D MATERIALS
Valley exciton-polaritons

ELECTRON MICROSCOPY
Ultrafast optical gate

Earn unlimited 1.5 points
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Optical Computing

Ehe New Aork Eimes Science

WORLD U.S. N.Y./REGION BUSINESS TECHNOLOGY SCIENCE HEALTH SPORTS OPINION

ENVIRONMENT SPACE & COSMOS

LIGHT MAY BE KEY TO NEW GENERATION OF FAST
COMPUTERS

By WILLIAM J. BROAD
Published: October 22, 1985

SINCE its start nearly half a century ago, the computer revolution has Ei FAcEBOOK
advanced by virtue of a simple physical phenomenon: that streams of  TwiTTER

speeding electrons can start or stop the flow of other streams of 5§ GOOGLE+
electrons. In short, electrons can act as a switch. -

EMAIL
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Some History on Optical Neural
Networks

" The biggest issue with this paper
2005 IS that it relies on neural networks.”

Anonymous Reviewer

Springtime for Al: The Rise of
Deep Learning

2016

After decades of disappointment, artificial intelligence is finally catching up to its early
promise, thanks to a powerful technique called deep learning

SCIENTIFIC
AMERICAN
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