Muon flux measurement status

Eric van Herwijnen 26 july 2018

SHiP

Vacuum Vessel

Electromagnetic Calorimeter

Spectrometer Straw Tracker

B=0.65 Tm

Spectrometer Magnet

Straw trackers: measure p for decay vtx reco NA62 straw tubes, 2cm diameter, 5m long horizontal straws

7/26/2018

$$\sigma_x = 120 \mu m, \frac{\sigma_p}{p} \sim 0.5\%$$

EM calo: e, π^0, γ

Target (14 λ)

Upstream Veto: μ , ν , K, Λ

Muon flux measurement status

Surround Background Tagger (SBT)

Muon Detector

Active Muon shield optimization

×1.5

 $-350~{
m GeV}~\mu^{+}$

····· 50 GeV μ¯

- Per spill: 10¹⁰ μ^{+/-} in acceptance ²
- Large phase space of μ's
- Active μ shield (1.8 T in Fe)
- Details 2017_JINST_12_P05011

Muon shield performance

3x10⁵ μ/s in T4 (reduction 10⁴) Muon trajectories:

 However, depending on the magnet configuration, some muons can still get through

Muon flux measurement

Expected μ phase space for 1 spill (4x10¹³ pot)

4x10¹³ POT/spill; 2x10²⁰ POT during 5 years running

~2.6x10¹⁰ μ's/spill in SHiP acceptance ~4x10⁸ with p>100 GeV

In 10^{10} simulated pp ints: 166 muons with p>100 GeV, p_T>3 GeV, too small!

Measure the (p, p_T) spectrum to make sure the design of the muon shield is good

SPSC-EOI-016: accumulate ~10¹¹ pot using charm cross section inspired spectrometer

Spectrometer for muon flux measurement

7/26/2018

Installation wed-thu 4-5 july

7/26/2018

Muon flux measurement status

Installation fri 6 july

Amount of data taken in 3 weeks

~4.2e11 recorded POT

Muon flux measurement status

Event display

Monitoring histograms

Reconstruction (fitted tracks)

Preliminary comparison with MC

- MC: 0.338 % hit in T1/POT; data: 0.73% trigger/POT
- More than factor 2 higher trigger rate
- Factor 1.6 more muons/pot. However:
 - MC no noisy/dead channels, hence finds all tracks
 - MC perfectly aligned, hence momentum distribution different due to this, especially different for larger p=smaller angular difference before/after Goliath

p/pT

p", (GeV) SHiP acceptance 10⁹ 10⁸ 4 10⁷ 3 ¹ 10⁶ 10⁵ 0 0 ²⁰⁰ 250 300 350 400 μ momentum (GeV) 100 150

1 spill, 1.6 10⁷ POT

EOI, 1 SHiP spill, 4 10¹³ POT Based on 10¹⁰ MC POT

Conclusions

- 43 shifters/experts
- 3 weeks to understand the detector, the trigger and the data.
- Muon flux measurement over. We have accumulated ~4x10¹¹ POT
- Continue with the charm cross section measurement
- A big THANK YOU to:
 - Our fabulous colleagues from RP and EN for their advice, help and enthusiasm
 - all shifters and experts for their enthusiasm and help to make this measurement a success!

Good bye! (see you in 2022...)

Backup

Stable running conditions

- Beam, new optics: focus on beam counter
 - 1 sigma in spot: 2mm
 - SPS beam scintillator: 20ns stretching
 - Our beam counter: 30ns
 - 10 ns time difference: expect to loose (depending on rate) ~ 7%
 - Optimal conditions: 1.8*10^{7 /spill}(SPS); master trigger (raw): 130k/spill
- Trigger:
 - Drifttube PMT close to Goliath (-1.5T) dies in mag field. Came back by lowering the discriminator threshold.
 - (2/4 T1&T2 coincidences).and.(beam counter)
- Drifttubes:
 - Some dead channels
- RPCs:
 - Station 4 dead (since Sunday 15). Came back by changing the HV power supply.

