

SHIP-CHARM

Antonia Di Crescenzo Università Federico II and INFN

SHiP-CHARM PROJECT: Motivation

Charm production in proton interactions and in hadron cascades in the SHiP target important for Hidden Sector searches normalization and v_T cross-section measurement

 Inclusive double-charm cross-section measured in NA27 using thin target

	exp NA27
$\sigma[\mu { m b}]$	18.1 ± 1.7

- Missing information: charm production in hadron cascades
- Charm yield from cascade expected 2.3 times larger than prompt contribution

SHiP-CHARM PROJECT: Conceptual design

- Double-differential cross-section measurement (d²σ/dEdθ)
- Proton collisions in Mo/W target instrumented with nuclear emulsions
- Nuclear emulsions as tracking detector
 - identification of hadronic and leptonic charm decay modes
 - volume of sensitive layers << target volume
- Charm daughters charge and momentum by a dedicated Spectrometer based on silicon pixel detectors, Scintillator fibers and drift tubes
- Muon identification with a Muon Tagger based on RPC

EXPERIMENTAL SETUP

- ► **Lead target**, 12×10 cm² Pb blocks (few cm) interleaved with emulsion to identify charm topology
- Spectrometer to measure momentum and charge of the charm daughters
- Muon tagger to identify muons

EXPERIMENTAL SETUP

MOVING TABLE & ECC TARGET

- Target mover to have protons uniformly distributed on the emulsion films
- Design: shift along x axis during the spill (26 mm/s)
 - Shift along y axis in the inter-spill

EXPOSURE SUMMARY

Configuration	# OF RUNS	Passive material	Emulsion Cloud Chamber	# Emulsion Films
CHARM 1	х6	-	28 mm lead + 29 emulsion films	174
CHARM 2	x6	28 mm lead	28 mm lead + 29 emulsion films	174
CHARM 3	х3	56 mm lead	56 mm lead + 57 emulsion films	171
CHARM 4	х3	2x56 mm lead	56 mm lead + 57 emulsion films	171
CHARM 5	х3	3x56 mm lead	56 mm lead + 57 emulsion films	171
CHARM 6	х3	4x56 mm lead	56 mm lead + 57 emulsion films	171
TOTAL	24			1032

BRICK ASSEMBLY

• Brick Assembly Machine (BAM) in dark room in CERN (Meyrin Site)

TIMELINE

- Sunday 22nd: tuning of the beam for vertical shift
- Tuesday 24th/Wednesday 25th:
 - deinstallation of mu-flux setup and installation of charm production setup
 - assembling of emulsion/lead bricks in dark room
- Thursday 26th: safety inspection, beam tuning (I), survey (I)
- Friday 27^{th:} survey (II), test of sub-detectors
- Saturday 28th- Sunday 29th: no beam
- Monday 30th: tuning of the beam (II), data taking with emulsions
- Tuesday 31st: data taking with electronic detectors only, de-installation
- Wednesday 1st (morning): removal of detectors from experimental area
- Wednesday 1^{st -} Sunday 5th: development of nuclear emulsion in dark room

BEAM REQUIREMENTS:

- 10⁴/spill
- 1 cm FWHM along y
- Vertical shift of 1 cm to center the holes in the Muon Filter

CONCLUSIONS

- 43 shifters/experts
- Charm cross section measurement completed
- Expected fully reconstructed charm-pairs: ~150
- A big THANK YOU to:
 - Our fabulous colleagues from RP and EN for their advice, help and enthusiasm
 - All shifters and experts for their enthusiasm and help to make this measurement possible!

Full data taking after LS2: ~1000 fully reconstructed charm pairs

BACK-UP SLIDES

ECC TARGET

- Target mover to have protons uniformly distributed on the emulsion films
- Design: shift along y axis during the spill
 - Shift along x axis in the inter-spill

2018 EXPOSURE PLAN

- Maximum track density in emulsion films:
 10³/mm²
- ▶ Emulsion surface available in July 2018: 10 m²
- ∼20 ECC bricks exposed to proton beam with maximum intensity 10⁴ pot/spill
- ► Fully reconstructed charm-pairs: ~150

Full data taking after LS2: ~1000 fully reconstructed charm pairs

EXPOSURE CONFIGURATION

- Target material: lead
- Instrumentation of \sim 1.6 λ to study charm production in primary interactions and hadron cascades

- Instrumentation of $\sim 1.6~\lambda$ allows the study of a large fraction of charmed hadrons
- Six Emulsion Cloud Chambers (ECC)
- ECC is the most downstream target part to let charm daughters reach the spectrometer
- Target modules retained upstream of the ECC

ECC1+ECC2

