New Features of Xrootd SE

Wei Yang

US ATLAS Tier 2/Tier 3 meeting, University of Texas, Arlington, 2009-11-12

New features of Xrootd:

Support space tokens up to 63 characters

- Previously 15 characters
- In production at SLAC

Better support of composite name space (CNS)

- Easy recovery of missing entries on CNS
- Space usage auditing
- File inventory records:

location (host) and other attributes of real data files

Inventory feature conflicts with the current Xrootd SE.
Several choice to address this conflict.

Monitoring

- Monitoring data is XML based
- Sent to and collected by a 3rd host to feed to Ganglia, Nagios, etc.

New features of Xrootd, cont'd

Client lib no longer repeat identical large reads

Existing clients in ATLAS releases can overload Xrootd data servers in this way when large read ahead is turn on

Multiple read ahead/streaming algorithms

When will it be integrated into ROOT and ATLAS releases?

New features of XrootdFS

Improved performance under small I/O blocks

- Read ahead managed by Linux kernel (configuration changes)
- Implement a write cache to capture small sequential writes

Directory browsing & usage query w/o CNS

- CNS has been stable at SLAC
- XrootdFS without CNS can't tell if a data server is down
- Tier 3 users seems to be confused by CNS. Easy to make mistakes
- New XrootdFS in light usage at SLAC, should we push it to OSG?
- No CNS, no conflict with the inventory feature

New features of Bestman-gateways

Support Adler32

- Built-in Adler32 calculation
- Allow site specific external tool for calculate Adler32
- Turn directory browsing on and off

Support non-GridFTP protocols

Interested by ATLAS to access conditions files via site specific protocols

Xrootd SE Components

- □ Bestman Gateway ← T2/T3g
- ◆ XrootdFS ← For users and minimum T3g
 - Usage is like NFS
 - Based on Xrootd Posix library and FUSE
 - BeStMan, dq2 clients, and Unix tools need it
 - - Globus GridFTP + Data Storage Interface (DSI) module for Xrootd/Posix

♦ Xrootd Core ← All Babar needed is this layer Redirector, data servers, xrdcp

User interface to Xrootd

TXNetFile class (C++ and ROOT CINT)

Fault tolerance

High performance thought intelligent logics in TXNetFile and server

Command line tools

xrdcp

simple, native, light weight, high performance

Xrootd Posix preload library

export LD PRELOAD=/.../libXrdPosixPreload.so ls/cat/cp/file root://redirector:port//path/file

XrootdFS

Mount the Xrootd cluster on client host's local file system tree

Accessing Xrootd data from ATLAS jobs

Copy input data from Xrootd to local disk on WN

A wrapper script using xrdcp, or cp + xrootd posix preload library Panda production jobs at SLACXRD work this way.

Read ROOT files directly from Xrootd storage

Identify ROOT file using Unix 'file' command (w/ posix preload library) Copy non-ROOT files to local disk on WN Put ROOT file's xroot URL (root://...) in PoolFileCatalog.xml Athena uses TXNetFile class to read ROOT file ANALY_SLAC and ANALY_SWT2_CPB use this mixed accessing mode.

Both need a set of tools for copying, deleting, file id and checksum

Mount XrootdFS on all batch nodes

All files appear under local file system tree. None of the above is needed Untested: XrootdFS came out after SLAC sites were established.

Potential usage of Xrootd SE technology

High performance xrdcp over WAN and BitTorrent style data transfer allows

- Super Xrootd Clusters (federation) across geographic sites
- Treat Xrootd SE at other sites as virtual MSS

Using Xrootd MSS interface to fetch data from non-Xrootd SEs?

See Andy Hanushevsky's talk at ANL Tier 3 meeting

Virtual Mass Storage System

