on the road to equality

dr jess wade (@jesswade)
imperial college london

workshop on high energy theory + gender, cern
• education
• academia
  • juno + athena swan
  • mentors + advocates
  • mental health
  • harassment + bullying
• imperial college london
### Male students

<table>
<thead>
<tr>
<th>Subject</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics</td>
<td>56774</td>
</tr>
<tr>
<td>Physics</td>
<td>28500</td>
</tr>
<tr>
<td>Chemistry</td>
<td>26771</td>
</tr>
<tr>
<td>History</td>
<td>26181</td>
</tr>
<tr>
<td>English</td>
<td>25173</td>
</tr>
<tr>
<td>Biology</td>
<td>24955</td>
</tr>
<tr>
<td>Economics</td>
<td>18651</td>
</tr>
<tr>
<td>Geography</td>
<td>18348</td>
</tr>
<tr>
<td>Business studies</td>
<td>16209</td>
</tr>
<tr>
<td>Psychology</td>
<td>13758</td>
</tr>
<tr>
<td>Media / film / TV studies</td>
<td>12379</td>
</tr>
<tr>
<td>Mathematics (further)</td>
<td>10816</td>
</tr>
<tr>
<td>Design and technology</td>
<td>7884</td>
</tr>
<tr>
<td>Physical education</td>
<td>7874</td>
</tr>
<tr>
<td>Sociology</td>
<td>7569</td>
</tr>
<tr>
<td>ICT</td>
<td>5870</td>
</tr>
<tr>
<td>Computing</td>
<td>4927</td>
</tr>
<tr>
<td>French</td>
<td>3176</td>
</tr>
<tr>
<td>Spanish</td>
<td>2897</td>
</tr>
<tr>
<td>Critical thinking</td>
<td>115</td>
</tr>
<tr>
<td>Irish</td>
<td>91</td>
</tr>
</tbody>
</table>

### Female students

<table>
<thead>
<tr>
<th>Subject</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>64326</td>
</tr>
<tr>
<td>Psychology</td>
<td>43256</td>
</tr>
<tr>
<td>Biology</td>
<td>38320</td>
</tr>
<tr>
<td>Mathematics</td>
<td>35937</td>
</tr>
<tr>
<td>Art and design subjects</td>
<td>34219</td>
</tr>
<tr>
<td>History</td>
<td>29667</td>
</tr>
<tr>
<td>Chemistry</td>
<td>25873</td>
</tr>
<tr>
<td>Economics</td>
<td>8924</td>
</tr>
<tr>
<td>Physics</td>
<td>7787</td>
</tr>
<tr>
<td>French</td>
<td>7152</td>
</tr>
<tr>
<td>Spanish</td>
<td>5797</td>
</tr>
<tr>
<td>Other modern languages</td>
<td>5381</td>
</tr>
<tr>
<td>Design and technology</td>
<td>5356</td>
</tr>
<tr>
<td>Physical education</td>
<td>4531</td>
</tr>
<tr>
<td>Mathematics (further)</td>
<td>4177</td>
</tr>
<tr>
<td>Classical subjects</td>
<td>3856</td>
</tr>
<tr>
<td>Music</td>
<td>3266</td>
</tr>
<tr>
<td>ICT</td>
<td>3254</td>
</tr>
<tr>
<td>Computing</td>
<td>456</td>
</tr>
<tr>
<td>Irish</td>
<td>239</td>
</tr>
<tr>
<td>Critical thinking</td>
<td>121</td>
</tr>
</tbody>
</table>
this has not changed for 30 years.
Gender differences in individual variation in academic grades fail to fit expected patterns for STEM

R.E. O’Dea, M. Lagisz, M.D. Jennions & S. Nakagawa

Fewer women than men pursue careers in science, technology, engineering and mathematics (STEM), despite girls outperforming boys at school in the relevant subjects. This, according to the 'variability hypothesis', is over-representation of males is driven by gender differences in variance; greater male variability leads to greater numbers of men who exceed the performance threshold. However, we use recent meta-analytic advances to compare gender differences in academic grades from over 1.6 million students. In line with previous studies we find strong evidence for lower variation among girls than boys, and of higher average grades for girls. However, the gender differences in both mean and variance of grades are smaller in STEM than in non-STEM subjects, suggesting that greater variability is insufficient to explain male over-representation in STEM. Simulations of these differences suggest the top 10% of a class contains equal numbers of girls and boys in STEM, but more girls in non-STEM subjects.

Fig. 1 Predicted distributions of school grades of girls (red) and boys (blue). a) The grade distribution overlaps represent the prediction that, when all grades are considered, girls on average earn higher grades and are less variable than boys, although there are more highly performing boys than girls at the upper end of the achievement distribution. b) In non-STEM subjects, the difference in mean grades between girls and boys may be more pronounced in favour of girls, which, coupled with similar variability, should result in many more highly performing girls than boys at the upper end of the achievement distribution. c) In contrast, for STEM grades, we expected less difference between boys and girls mean grades and more grade variability for boys, resulting in boys dominating at both the top and bottom of the achievement distribution.
The Institute has published several reports investigating the gender imbalance of physics A-level and on issues around equality of education.


Opening Doors: A guide to good practice in countering gender stereotyping in schools (2015) Case studies and key recommendations of how schools can explore equality issues across the whole school.


It's Different for Girls: The influence of schools (2012) Uses data from the National Pupil Database to explore how uptake by girls onto A-level physics courses varies in different types of schools.

Girls into Physics: Action research (2008) is the evaluation report from our 2008 school-based action research programme, including recommendations for classroom practice.

Teachers, technicians and supporters of physics, join the conversation.

Username or email
Password
Log in

Or join
Forgot your password?

Latest Conversations

INTO THE THIRD DIMENSION IN: TALKING PHYSICS

SOLDERING IRONS IN: NEWS AND COMMENT

RUBEN'S TUBE FOR OPEN EVENING IN: TEACHING PHYSICS 11-14

THU 11 OCT – MECHANICS: SECTIONS B1-B3 IN: ISAAC PHYSICS A LEVEL SKILLS MASTERY
Essential features of good practice in countering gender stereotyping in schools

Based on the discussions and observations that took place within the site visits and subsequent recommendations given to schools, the following are the essential features of a school that is actively addressing gender equity. The next section explores these, and other, aspects of good practice in more detail.

1. Senior gender champion

Senior Leadership Teams identify one of their number as a gender champion whose role includes bringing together the whole school in a coherent campaign to challenge gender stereotypes. Governors are involved in the campaign in order to reinforce the message that this activity is a priority.

2. Training

Staff attend gender awareness and unconscious bias training, whether as part of their induction to the school or their ongoing professional development.

3. Sexist language

Sexist language is treated as being just as unacceptable as racist and homophobic language. Teachers receive training on unconscious bias and equality and diversity awareness.

4. Use of progression data

Gender disaggregated data on both achievement and progression are collected for all subjects and discussed formally at whole-school level, using benchmark data for comparison. Where there are issues to be addressed, actions are generated, including targets where appropriate.

5. Initiatives

Initiatives are introduced and developed on the basis of what works and in a way that shows how they address a problem identified in the school data. Carefully planned external visits encourage students to challenge stereotypical views as do role models who commit to developing sustainable relationships.

6. Subject equity

There is a strict policy that all subjects are presented equally to students in terms of their relative difficulty and teachers refrain from making any remarks about how difficult they find particular subjects. The emphasis is on working to the best of one’s ability rather than seeking to find subjects where one has innate talents.

7. Careers guidance

Careers guidance starts an early stage. It focuses on the next educational phase, emphasising keeping options open and actively challenging gender stereotypes.

8. Student ownership

Students are at the heart of any campaign to counter gender stereotyping. They are made aware of the issues and be encouraged to think of ways of combating them.

9. Personal, social, health and economic education

Regularly timetabled PSHE sessions are regarded as a high-value activity that can have a positive impact on students’ lives, teachers delivering content are provided with resources and activities. Sessions on equality and diversity form the basis of a wider school campaign and discussions on these themes continue through other topics.
improving gender balance

- engage with science
- engage with the issues

- made an impact with the girls we worked with
- need to start younger

**girls' confidence & resilience**

**physics classroom**

**whole school reflection**
- data analysis, school survey, environment and policy audit

**student empowerment**
- assemblies, tutor time, pshe, student voice

**options overview**

**teacher reflection**
- data analysis
- unconscious bias training
- lesson observations

- increased use of **inclusive teaching** techniques
- more equitable practical management
- careers integration
A Study on the Status of Women Faculty in Science at MIT:

How a Committee on Women Faculty came to be established by the Dean of the School of Science, what the Committee and the Dean learned and accomplished, and recommendations for the future.

© Massachusetts Institute of Technology, 1999

Members of the First and Second Committees on Women Faculty in the School of Science

First Committee (1995-1997)
- Sally W. Chisholm - CEE and Biology
- Jerome L. Friedman - Physics (department Head)
- Nancy Hopkins - Biology (Committee Chair)
- Daniel Kliotman - Mathematics (former department Head)
- Jane L. Matthews - Physics
- Mary C. Potter - BCS
- Paula M. Rizzoli - EAPS (served 7/95 -)
- Leigh Reaydon - EAPS (served 2/95-7/95)
- Robert J. Silbey - Chemistry (department Head)

JoAnne Stubble - Chemistry and Biology

Second Committee (1997-1999)
- Sylvia L. Ceyer - Chemistry
- Sally W. Chisholm - CEE and Biology
- Jerome L. Friedman - Physics (former department Head)
- Jacqueline N. Hewitt - Physics
- Kid V. Hodges - EAPS
- Nancy Hopkins - Biology
- Mary C. Potter - BCS (Committee Chair)
- Paula M. Rizzoli - EAPS
- Robert J. Silbey - Chemistry (former department Head)

- advise department heads to place senior women faculty on appropriate search committees.
- when hiring faculty do not overlook women candidates from within mit, particularly in the fields of mathematics and chemistry where the number of women candidates is small.
- inform department heads each year that conscious effort is needed to identify and recruit outstanding junior and senior women faculty from outside mit.
- address the family-work conflict realistically and openly, relying on advice from appropriate women faculty, in order to make mit more attractive to a larger pool of junior women faculty, and to encourage more women students and postdocs to continue in academic science.

http://web.mit.edu/fnl/women/women.html
Table 1: Physics students and staff by gender

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Physics A-level</strong></td>
<td>2293</td>
<td>6405</td>
</tr>
<tr>
<td>Men (%) total</td>
<td>22.3%</td>
<td></td>
</tr>
<tr>
<td>Subject</td>
<td>Physics</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>2004</td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>UK</td>
<td>JCQ</td>
</tr>
<tr>
<td>UCAS applicants for physics courses</td>
<td>2364</td>
<td>495</td>
</tr>
<tr>
<td>Men (%) total</td>
<td>17.3%</td>
<td></td>
</tr>
<tr>
<td>Subject</td>
<td>Physics</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>2004</td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>UK</td>
<td>UCAS</td>
</tr>
<tr>
<td>Acceptances for physics courses</td>
<td>2223</td>
<td>448</td>
</tr>
<tr>
<td>Men (%) total</td>
<td>18.8%</td>
<td></td>
</tr>
<tr>
<td>Subject</td>
<td>Physics</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>2004</td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>UK</td>
<td>UCAS</td>
</tr>
<tr>
<td>Undergraduates and postgraduates</td>
<td>9140</td>
<td>2525</td>
</tr>
<tr>
<td>Men (%) total</td>
<td>21.6%</td>
<td></td>
</tr>
<tr>
<td>Subject</td>
<td>Physics</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>2003/4</td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>UK</td>
<td>HESA</td>
</tr>
<tr>
<td>Research assistants</td>
<td>1795</td>
<td>330</td>
</tr>
<tr>
<td>Men (%) total</td>
<td>15.5%</td>
<td></td>
</tr>
<tr>
<td>Subject</td>
<td>Physics</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>2002/3</td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>UK</td>
<td>UKRC &amp; HESA</td>
</tr>
<tr>
<td>Lecturers</td>
<td>366.25</td>
<td>41</td>
</tr>
<tr>
<td>Men (%) total</td>
<td>10.0%</td>
<td></td>
</tr>
<tr>
<td>Subject</td>
<td>Physics</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>1 March 2004</td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>UK</td>
<td>IOP</td>
</tr>
<tr>
<td>Senior lecturers and readers</td>
<td>395.5</td>
<td>33.5</td>
</tr>
<tr>
<td>Men (%) total</td>
<td>7.9%</td>
<td></td>
</tr>
<tr>
<td>Subject</td>
<td>Physics</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>1 March 2004</td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>UK</td>
<td>IOP</td>
</tr>
<tr>
<td>Professors</td>
<td>412</td>
<td>17</td>
</tr>
<tr>
<td>Men (%) total</td>
<td>4.0%</td>
<td></td>
</tr>
<tr>
<td>Subject</td>
<td>Physics</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>1 March 2004</td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>UK</td>
<td>IOP</td>
</tr>
</tbody>
</table>

Juno Award (2007)

Four levels of award:

- juno supporter
- practitioner
- champion
- excellence (2017)
JUNO framework

1. a robust organisational framework to deliver equality of opportunity and reward
2. appointment and selection processes and procedures that encourage men and women to apply for academic posts at all levels
3. departmental structures and systems which support and encourage the career progression and promotion of all staff and enable men and women to progress and continue in their careers
4. departmental organisation, structure, management arrangements and culture that are open, inclusive and transparent and encourage the participation of all staff
5. flexible approaches and provisions that enable individuals, at all career and life stages, to optimise their contribution to their department, institution and to set
6. an environment where professional conduct is embedded into departmental culture and behaviour.
juno #1: organisational framework

- head of department leads and champions good practice for women in science initiatives and programmes
- structures for management, organisation, operations and decision-making are transparent
- allocation of resources to support its women in science initiatives
- the department collects, monitors and reports data by gender:
  - differential representation / progression of men and women
  - qualitative data gained from staff surveys, discussions, focus groups
juno #2: appointment and selection processes

• clear policy on how career breaks are considered in appointments/promotions

• all staff who interview have undertaken appropriate equality and diversity training (aware of unconscious bias).

• encourage both women and men to apply internally

• actively identifies and attract appropriate external male and female candidates
• all staff regularly appraised, aware what follow-up action should be taken
• career development/mentoring scheme in place – all encouraged to apply
• staff understand responsibilities towards providing career advice for research staff
• encourage all staff to access careers advice
• monitors appropriateness, value and uptake
• **promotion processes and criteria** for nominating and supporting candidates for promotion are well communicated, transparent, consistent and **fair**
Nevertheless She Persisted? Gender Peer Effects in Doctoral STEM Programs

Valerie K. Bostwick, Bruce A. Weinberg

NBER Working Paper No. 25028
Issued in September 2018
NBER Program(s): Economics of Education, Labor Studies

We study the effects of peer gender composition, a proxy for female-friendliness of environment, in STEM doctoral programs on persistence and degree completion. Leveraging unique new data and quasi-random variation in gender composition across cohorts within programs, we show that women entering cohorts with no female peers are 11.9pp less likely to graduate within 6 years than their male counterparts. A 1 sd increase in the percentage of female students differentially increases the probability of on-time graduation for women by 4.6pp. These gender peer effects function primarily through changes in the probability of dropping out in the first year of a Ph.D. program and are largest in programs that are typically male-dominated.

isolated women:
16% less likely to complete phd
18% more likely to drop out in their first year

https://physicsworld.com/a/isolated-female-students-more-likely-to-drop-out-of-phd-programmes/
how to be a good mentor

• enthusiasm
• sensitivity
• the ability to appreciate mentees' individual differences
• respect
• unselfishness

• availability
• the ability to inspire and create optimism
• providing support without micromanaging
• asking insightful questions while being a patient listener
• being widely read and open-minded
• helping to identify the right initial project
• rewarding success

https://www.nature.com/naturejobs/science/career_toolkit/mentoring
Numberous studies across different research fields have shown that both male and female researchers consistently get higher average citation counts than women by more than 20% when studied as a group. In addition, women are under-represented in prestigious positions and are more likely to be denied tenure. In astronomy, similar biases have been observed in conference participation and success rates for telescope proposals. Even though the number of doctoral degrees awarded to women is constantly increasing, women still fail to be under-represented in faculty positions. To determine how sex influences the career path of young astronomers, we measured the career paths of astronomers in various fields. In astronomy, to account for the fact that the proportion of papers written by men and women differ, we use a random forest algorithm to control for the gender-specific properties of these papers. Here we show that papers authored by women receive 15.4% fewer citations than would be expected if the papers with the same gender-specific properties were written by men.

The data used in this analysis come from the full-text metadata of all papers listed in the Astrophysics and Astronomy Database (AASDB), the ArXiv database, and the Astrophysics Data System (ADS) and the cross-reference various publications for each paper, authors, and the abstract. We then group the data into the following categories: the number of citations, the number of authors, the number of references, the year of publication, the number of pages, the abstract, and the number of the first author's institutions. We determine the gender of the first author of each paper and include their publication dates in the database. We then use a random forest algorithm to control for the gender-specific properties of the papers. Here we show that papers authored by women receive 15.4% fewer citations than would be expected if the papers with the same gender-specific properties were written by men.

Nevertheless, the impact of gender on the career paths of young astronomers is still not fully understood. To determine how sex influences the career path of young astronomers, we measured the career paths of astronomers in various fields. In astronomy, to account for the fact that the proportion of papers written by men and women differ, we use a random forest algorithm to control for the gender-specific properties of these papers. Here we show that papers authored by women receive 15.4% fewer citations than would be expected if the papers with the same gender-specific properties were written by men.

The data used in this analysis come from the full-text metadata of all papers listed in the Astrophysics and Astronomy Database (AASDB), the ArXiv database, and the Astrophysics Data System (ADS) and the cross-reference various publications for each paper, authors, and the abstract. We then group the data into the following categories: the number of citations, the number of authors, the number of references, the year of publication, the number of pages, the abstract, and the number of the first author's institutions. We determine the gender of the first author of each paper and include their publication dates in the database. We then use a random forest algorithm to control for the gender-specific properties of the papers. Here we show that papers authored by women receive 15.4% fewer citations than would be expected if the papers with the same gender-specific properties were written by men.

We then use a random forest algorithm to control for the gender-specific properties of these papers. Here we show that papers authored by women receive 15.4% fewer citations than would be expected if the papers with the same gender-specific properties were written by men.

The data used in this analysis come from the full-text metadata of all papers listed in the Astrophysics and Astronomy Database (AASDB), the ArXiv database, and the Astrophysics Data System (ADS) and the cross-reference various publications for each paper, authors, and the abstract. We then group the data into the following categories: the number of citations, the number of authors, the number of references, the year of publication, the number of pages, the abstract, and the number of the first author's institutions. We determine the gender of the first author of each paper and include their publication dates in the database. We then use a random forest algorithm to control for the gender-specific properties of the papers. Here we show that papers authored by women receive 15.4% fewer citations than would be expected if the papers with the same gender-specific properties were written by men.

We then use a random forest algorithm to control for the gender-specific properties of these papers. Here we show that papers authored by women receive 15.4% fewer citations than would be expected if the papers with the same gender-specific properties were written by men.

The data used in this analysis come from the full-text metadata of all papers listed in the Astrophysics and Astronomy Database (AASDB), the ArXiv database, and the Astrophysics Data System (ADS) and the cross-reference various publications for each paper, authors, and the abstract. We then group the data into the following categories: the number of citations, the number of authors, the number of references, the year of publication, the number of pages, the abstract, and the number of the first author's institutions. We determine the gender of the first author of each paper and include their publication dates in the database. We then use a random forest algorithm to control for the gender-specific properties of the papers. Here we show that papers authored by women receive 15.4% fewer citations than would be expected if the papers with the same gender-specific properties were written by men.

We then use a random forest algorithm to control for the gender-specific properties of these papers. Here we show that papers authored by women receive 15.4% fewer citations than would be expected if the papers with the same gender-specific properties were written by men.

The data used in this analysis come from the full-text metadata of all papers listed in the Astrophysics and Astronomy Database (AASDB), the ArXiv database, and the Astrophysics Data System (ADS) and the cross-reference various publications for each paper, authors, and the abstract. We then group the data into the following categories: the number of citations, the number of authors, the number of references, the year of publication, the number of pages, the abstract, and the number of the first author's institutions. We determine the gender of the first author of each paper and include their publication dates in the database. We then use a random forest algorithm to control for the gender-specific properties of the papers. Here we show that papers authored by women receive 15.4% fewer citations than would be expected if the papers with the same gender-specific properties were written by men.

We then use a random forest algorithm to control for the gender-specific properties of these papers. Here we show that papers authored by women receive 15.4% fewer citations than would be expected if the papers with the same gender-specific properties were written by men.

The data used in this analysis come from the full-text metadata of all papers listed in the Astrophysics and Astronomy Database (AASDB), the ArXiv database, and the Astrophysics Data System (ADS) and the cross-reference various publications for each paper, authors, and the abstract. We then group the data into the following categories: the number of citations, the number of authors, the number of references, the year of publication, the number of pages, the abstract, and the number of the first author's institutions. We determine the gender of the first author of each paper and include their publication dates in the database. We then use a random forest algorithm to control for the gender-specific properties of the papers. Here we show that papers authored by women receive 15.4% fewer citations than would be expected if the papers with the same gender-specific properties were written by men.

We then use a random forest algorithm to control for the gender-specific properties of these papers. Here we show that papers authored by women receive 15.4% fewer citations than would be expected if the papers with the same gender-specific properties were written by men.

The data used in this analysis come from the full-text metadata of all papers listed in the Astrophysics and Astronomy Database (AASDB), the ArXiv database, and the Astrophysics Data System (ADS) and the cross-reference various publications for each paper, authors, and the abstract. We then group the data into the following categories: the number of citations, the number of authors, the number of references, the year of publication, the number of pages, the abstract, and the number of the first author's institutions. We determine the gender of the first author of each paper and include their publication dates in the database. We then use a random forest algorithm to control for the gender-specific properties of the papers. Here we show that papers authored by women receive 15.4% fewer citations than would be expected if the papers with the same gender-specific properties were written by men.

We then use a random forest algorithm to control for the gender-specific properties of these papers. Here we show that papers authored by women receive 15.4% fewer citations than would be expected if the papers with the same gender-specific properties were written by men.

The data used in this analysis come from the full-text metadata of all papers listed in the Astrophysics and Astronomy Database (AASDB), the ArXiv database, and the Astrophysics Data System (ADS) and the cross-reference various publications for each paper, authors, and the abstract. We then group the data into the following categories: the number of citations, the number of authors, the number of references, the year of publication, the number of pages, the abstract, and the number of the first author's institutions. We determine the gender of the first author of each paper and include their publication dates in the database. We then use a random forest algorithm to control for the gender-specific properties of the papers. Here we show that papers authored by women receive 15.4% fewer citations than would be expected if the papers with the same gender-specific properties were written by men.

We then use a random forest algorithm to control for the gender-specific properties of these papers. Here we show that papers authored by women receive 15.4% fewer citations than would be expected if the papers with the same gender-specific properties were written by men.

The data used in this analysis come from the full-text metadata of all papers listed in the Astrophysics and Astronomy Database (AASDB), the ArXiv database, and the Astrophysics Data System (ADS) and the cross-reference various publications for each paper, authors, and the abstract. We then group the data into the following categories: the number of citations, the number of authors, the number of references, the year of publication, the number of pages, the abstract, and the number of the first author's institutions. We determine the gender of the first author of each paper and include their publication dates in the database. We then use a random forest algorithm to control for the gender-specific properties of the papers. Here we show that papers authored by women receive 15.4% fewer citations than would be expected if the papers with the same gender-specific properties were written by men.
Huge peer-review study reveals lack of women and non-Westerners

Analysis of thousands of submissions to eLife journal shows that these groups are also under-represented as senior authors and editors.

Women are inadequately represented as peer reviewers, journal editors and last authors of studies, according to an analysis of manuscript submissions to an influential biomedical journal.

The study looked at all submissions made to the open-access eLife journal from its launch in 2012 to 2017 — nearly 24,000 in total. It found that women worldwide, and researchers outside North America and Europe, were less likely to be peer reviewers, editors and last authors. The paper — which hasn’t itself yet been peer-reviewed — was posted on the preprint server bioRxiv on 29 August.

About 7,000 of the submitted studies went through the full submission process at eLife, authors make a ‘pre-submission query’ before being invited by the journal to send a full paper — a relatively uncommon practice among journals. In all, the analysis covered the activity of about 7,000 referees, 880 reviewing editors and 57 senior editors.

The researchers found that women make up only around 20% of peer reviewers, and around one in four reviewing editors (see ‘Peer-review patterns’). Most reviewing editors and reviewers were in the United States — 62% and 58%, respectively — followed by the United Kingdom and Germany in second and third place. Less than 2% of peer reviewers were in developing nations — all in China, India or South Africa.
Figure 1. 2015 author gender ratio for physics sub-disciplines, its rate of change per year, and the estimated number of years until the gender ratio comes within 5% of parity (Holman, Stuart-Fox and Hauser, 2018).
DO NOT TALK ABOUT COOKIE BAKING IN LETTERS OF RECOMMENDATION (actual letter just received)
"Incidentally, <female scientist applicant> is also very good at making delicious cookies, which bring a lot of joy to stressful committee meetings."

Leslie Vosshall
@pollyp1

Avoiding gender bias in reference writing

Mention research & publications
Letters of reference for men are 4x more likely to mention publications and twice as likely to have multiple references to research. Make sure you put these critical accomplishments in every letter!

Don't stop now!
On average, letters for men are 16% longer than letters for women and letters for women are 2.8x as likely to make a minimal assurance ("she can do the job") rather than a ringing endorsement ("she is the best for the job").

Emphasize accomplishments, not effort
Letters for reference for men are more likely to emphasize accomplishments ("his research", "his skills", or "his career") while letters for women are 58% more likely to include "grindstone" adjectives that describe effort ("hard-working") associates with effort, but not ability.

We all share bias
It is important to remember that unconscious gender bias isn't a male problem. Research shows that women are just as susceptible to these common pitfalls as men. This is a problem for all of us - let's solve it together!

Keep it professional
Letters of reference for women are 7x more likely to mention personal life - something that is almost always irrelevant for the application. Also make sure you use formal titles and surnames for both men and women.

Stay away from stereotypes
Although they describe positive traits, adjectives like 'caring', 'compassionate', and 'helpful' are used more frequently in letters for women and can invoke gender stereotypes which can hurt a candidate. And be careful not to invoke these stereotypes directly ("she is not emotional").

Be careful raising doubt
We all want to write honest letters, but negative or irrelevant comments, such as 'challenging personality' or 'I have confidence that she will become better than average' are twice as common in letters for female applicants. Don't add doubt unless it is strictly necessary!

Adjectives to avoid:
caring
compassionate
consistent
dependable
diligent
dedicated
tactful

Adjectives to include:
successful
excellent
accomplished
skilled
knowledgeable
insightful
resourceful
confident
ambitious
independent
intelligent

Follow us at: www.facebook.com/ucsw
For an electronic copy of this graphic, see: www.csw.arizona.edu/LOBbias

Gender Decoder for Job Ads

Without realising it, we all use language that is subtly ‘gender-coded’. Society has certain expectations of what men and women are like, and how they differ, and this seeps into the language we use. Think about “bossy” and “feisty”: we almost never use these words to describe men.

This linguistic gender-coding shows up in job adverts as well, and research has shown that it puts women off applying for jobs that are advertised with masculine-coded language.

This site is a quick way to check whether a job advert has the kind of subtle linguistic gender-coding that has this discouraging effect. Find out more about how this works.

Paste your job ad here

Check this ad
• equality and diversity training mandatory for all staff
• departmental image reflects the contribution of under-represented groups.
• agreed targets for women seminar speakers.
• junior staff, women and under-represented groups, encouraged to raise their profile internally
• a transparent work allocation model inclusive and fully recognises and rewards all types of contributions (including administration, mentoring, pastoral work and outreach).
When to be an Active Bystander

- Bullying
- Harassment
- Micro-inequities/Micro-aggressions
  - Small events which are hard to prove, often unintentional and frequently unrecognised by the perpetrator and occurs wherever people are perceived to be different (race/gender, etc.). Individuals may be singled out or overlooked
- Interrupting a person mid-sentence constantly
- Taking more questions from men than women
- Rolling eyes at meetings
- Sighing loudly
- Consistently ignoring emails for no good reason
- Inappropriate or offensive behaviour
- Raising voices in anger and frustration, or losing temper
- Rude, mean, inconsiderate, or unprofessional/ unacceptable behaviour
- Swearing in a professional environment
- Disrespectful or derogatory comments about others, or spreading rumours
- Violation of ethical standards
- Threats or potential violence
- Practices and procedures that may be deemed unfair or have detrimental impact
- Sending aggressive emails or emails sent unnecessarily to large groups with the aim of embarrassing or belittling the target

The key to a happy lab life is in the manual

A well-crafted set of guidelines and advice can save time, reassure trainees and promote a positive lab culture, argues Mariam Aly.

A year and a half ago, as I was preparing to launch my own laboratory studying cognition at Columbia University in New York City, I kept returning to a particular concern: I would soon be responsible for the scientific advancement of trainees. How could I help them be the best scientists they could be, while also protecting their well-being?

I found the answer on Twitter. Two principal investigators in my field, Jonathan Peele at Washington University in St Louis, Missouri, and Maureen Ritchey at Boston College in Massachusetts, shared their lab manuals. These laid out expectations for themselves and their trainees, as well as resources and tips to guide trainees through their time in the lab. I decided to follow in their footsteps by writing a lab manual to introduce my trainees to my philosophy for research and work-life balance. This required a great deal of time and thought, but it is something I would recommend to anyone leading a research group.

In the final few months of my postdoctoral studies, I thought about what had worked well and not so well for me as a trainee, and how to create best practices for my lab. Then I put into writing things that are usually
juno #5: flexibility

• policy and practice on flexible working transparent

• understanding of a good work-life balance for all
  • department meetings are timed to take account of caring/family responsibilities
  • work allocation discussions are held with new staff
  • changes in caring responsibilities are dealt with in a supportive and practical way.

• all arrangements in before/ after during career breaks or shared parental leave well managed

• support is provided to allow returners to get back up to speed.
The rise in student mental health problems - ‘I thought my tutor would say: deal with it’

Students starting university face different pressures from earlier generations. What are the potential troubles and how can young people be prepared?

- Expert tips: what you can do now to help you start with confidence

How to prepare for university: dos and don'ts

Lecturers, tutors and doctors give their expert tips on what students need to know to get off to a stress-free start

- Student mental health - ‘I thought my tutor would say: deal with it’

After months feeling depressed and alone, student Nicola Gee finally so
Sarah Lee for the Guardian

Ensuring time to socialise and make friends helps increase resilience. Photograph: SWNS.com
**Resilience Toolkit**

A Physicist’s Guide to Building and Maintaining Wellbeing

- Your working life becomes more challenging despite improved income or progression.
- You work in a discipline that is demanding and contains many unknowns.
- Your ambition to do well means pushing yourself hard and developing new skills.
- Some career paths in physics are competitive to follow, so you are likely to face rejection.
- You may encounter difficult people who are stressful to work with.
- You worry that you aren’t good enough to pursue your career or qualification.
- You’re uncertain about what comes next in your career.
- You might face uncertainty working on a fixed contract.

**Why might you need to think about your resilience and wellbeing?**
Time to talk about why so many postgrads have poor mental health

An outpouring on Twitter highlights the acute pressures on young scientists.

Poor mental health is an issue for many of our readers. That fact is underscored by the response to a tweet sent by @NatureNews earlier this week, which highlighted that rates of depression and anxiety reported by postgraduate students are six times higher than in the general population (T. M. Evans et al. Nature Biotechnol. 36, 282–284; 2018), and asked what should be done to help. The figures are a shock, but it was the reaction that blew us away: more than 1,200 retweets and
• clear values and expectations of the behaviour of individuals to each other (staff and students), communicated to all staff
• policy on harassment and misconduct covering staff, students and postdocs setting out clear guidance on how to make a complaint and how it will be addressed
• system for recording confidential complaints of harassment, bullying or misconduct
Sussex University failed duty of care to student assault victim, inquiry finds

Sussex University ‘failed to follow its own safeguarding procedures’ by allowing Dr Lee Salter to remain employed, despite gross physical and emotional abuse caused to Allison Smith

Rachael Pells Education Correspondent · @rachaelpells · Wednesday 18 January 2017 15:48 · 0 comments

University of Cambridge

University of Cambridge admits significant sexual misconduct problem

Institution receives 173 complaints of improper behaviour in nine months

Sex harassment victims force University College London to end gagging orders

A leading university has abandoned non-disclosure settlements in sexual harassment cases after the number of complaints made against staff more than doubled in a year.
I shouldn't bother you with this. You are my student, not my therapist :(

I was fucking bleeding when I wrote that poem

oh god. I am in love with her :(

I am just so happy that I have a female grad student who is actually sane and I can talk to

Do you think I am a shady person because I let myself be emotionally involved with my student?

It's not good if a person in power is out of their fucking mind
Astrophysicist Christian Ott Was Just Fired From His New Job In Finland After Harassment Scandal

The decision came after Finnish astronomers circulated an open letter. "Harassment or discrimination threaten our community and our way of working together. They have no place here," it said.
• enabling cultures
  • power imbalance / lack of professionalism
  • culture of alcohol/ office extensions (conference culture)
  • loud voices dominate over better ideas

• perpetrators protected, damages victims, perps and team

• junior scientists carry disproportionate load (reporting + educating senior colleagues – effort they could be putting in to their work)

• culture of silence perpetuates abuse

• senior scientists have power to professionalise + enhance openness + enforce procedures
role of institutions

• lack of transparency
• lack of clear implementation
• competing interests:
  • hr / org / alleged perp/ alleged victims (hr protect org from employees)
  • timescales (phd/ postdoc contract)
  • use of NDAs
  • role of HoD
• PhD students particularly vulnerable (status student < > employee)
• fragmented support across sector
why we need to challenge bad behaviour

• It is the law + the right thing to do
• scientific research is a privilege
• collective + individual responsibility
• alternative is wasteful + expensive
• professionalism is productive

diversity will come as an outcome, not tokenism
guardian freedom of information act (120 universities): 300 claims in 6 years

**national level:**
- research on impact / prevalence
- national awareness campaign
- independent national office for sexual misconduct prevention
- binding code for university staff

**institutional level:**

**prevention**
- policies, codes of conduct, cultural change

**improved institutional responses**
- independent advisors, external investigations, risk assessments, support for students
1752 group

• 2015 (student – student), 1993
• fewer than **1 in 10 victims** reported to institution
• **1/3 of british universities** have no staff-students relationships policy
• **80 % of students are uncomfortable** with staff-student sexual or romantic relationship

• awareness-raising activities should take place only after policies and training have been implemented, in order to be sure that it is safe to encourage students to report
• public/visible information both online and offline should be made available, including in induction packs, on what behaviours will and will not be should not be tolerated
Welcome to The 1752 Group Wiki

The 1752 Group

Welcome to the 1752 Group wiki, a knowledge sharing platform surrounding the issue of staff-to-student sexual misconduct in UK higher education. We hope the information here will enable and support activism in this area but this is not intended to be legal advice. Other legal advice should always be sought.

You can search for specific topics using the search box or you can start with the most popular articles:
- Advice for complainants/witnesses
- Advice for supporters
- Advice for institutions
- Advice for conference organisers
- Advice for activists
- Advice for sector

The 1752 Group is a UK-based research and lobby organisation working to end staff-to-student sexual misconduct in higher education.

Nowhere in the world is there adequate knowledge and research on the prevalence and impact of staff sexual misconduct in higher education.

We work at a national level to educate and lobby for change in the UK higher education sector by drawing attention to the complexity and impact of staff sexual misconduct and proposing solutions to address these issues.

The group forms partnerships and works in collaboration with academics, student unions, support services experts, universities and national organisations to conduct research that will lead to the development of best practice guidelines for the higher education sector.

- Maturity Matrix  - EChapman - 5 Jul 2018, 12:40
- Advice for Activists  - EChapman - 5 Jul 2018, 12:39
- Gender Schemes  - EChapman - 27 May 2018, 21:49
- Funding Scheme Actions  - EChapman - 27 May 2018, 21:49
- Guidance for Conferences  - EChapman - 27 May 2018, 21:45
# University Sexual Misconduct

## Response & Prevention Maturity Matrix

A self-assessment tool to measure the progress of university institutional responses to sexual misconduct. To complete the assessment, in each row, select the box that most represents the current practice of your university. Then on the next page, outline further details about current practices and future actions.

<table>
<thead>
<tr>
<th>STRATEGIC LEADERSHIP</th>
<th>INITIAL</th>
<th>REACTIVE</th>
<th>PROACTIVE</th>
<th>INNOVATIVE</th>
<th>OUTSTANDING</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is no formal sexual misconduct working group.</td>
<td>There is a formal sexual misconduct working group.</td>
<td>There is a joint university &amp; students' union sexual misconduct working group.</td>
<td>There is a joint university &amp; students' union sexual misconduct working group that is embedded into the university's governance structure.</td>
<td>There is a working group with members from the university, students' union and local external partners that is embedded into the university's governance structure.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POLICY</th>
<th>INITIAL</th>
<th>REACTIVE</th>
<th>PROACTIVE</th>
<th>INNOVATIVE</th>
<th>OUTSTANDING</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are no formal policies that outline conduct and behaviour expectations.</td>
<td>There are formal policies that outline conduct and behaviour expectations.</td>
<td>There are specific policies that address sexual misconduct.</td>
<td>There are specific policies that address sexual misconduct and student and staff relationships.</td>
<td>There are specific policies that address sexual misconduct, including relationships and sexual misconduct between students and staff.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROCESS</th>
<th>INITIAL</th>
<th>REACTIVE</th>
<th>PROACTIVE</th>
<th>INNOVATIVE</th>
<th>OUTSTANDING</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are no formal procedures for investigating sexual misconduct.</td>
<td>There are formal procedures for investigating sexual misconduct.</td>
<td>There are formal procedures for investigating sexual misconduct, which are in line with UUK guidelines.</td>
<td>There are formal procedures for investigating sexual misconduct, including misconduct between students and staff.</td>
<td>There are formal procedures for investigating sexual misconduct, including misconduct between students and staff, which do not require the implementation of non-disclosure agreements.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATA</th>
<th>INITIAL</th>
<th>REACTIVE</th>
<th>PROACTIVE</th>
<th>INNOVATIVE</th>
<th>OUTSTANDING</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are no formal procedures for reporting sexual misconduct.</td>
<td>There are formal procedures for reporting sexual misconduct.</td>
<td>There is a centralised system for reporting sexual misconduct.</td>
<td>There is a centralised online system for reporting sexual misconduct.</td>
<td>There is a centralised online system for formal reporting and anonymous disclosures of sexual misconduct.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRAINING</th>
<th>INITIAL</th>
<th>REACTIVE</th>
<th>PROACTIVE</th>
<th>INNOVATIVE</th>
<th>OUTSTANDING</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are no sexual misconduct awareness training or resources available for staff</td>
<td>There are online information pages on sexual misconduct available for staff.</td>
<td>There is a sexual misconduct awareness training programme available for staff.</td>
<td>There is a multi-tiered sexual misconduct training programme that has been integrated into the core mandatory training programme for staff.</td>
<td>There is a multi-tiered sexual misconduct training programme that has been integrated into the core mandatory training programme for staff.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EDUCATION</th>
<th>INITIAL</th>
<th>REACTIVE</th>
<th>PROACTIVE</th>
<th>INNOVATIVE</th>
<th>OUTSTANDING</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are no educational initiatives for students that address sexual consent.</td>
<td>There are online information pages on sexual consent available for staff.</td>
<td>There is a voluntary sexual consent education programme for students.</td>
<td>There is a voluntary sexual consent education programme for students, which is embedded into student induction/enrollment.</td>
<td>There is a mandatory sexual consent education programme for students, which is embedded into student induction/enrollment.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUPPORT SERVICES</th>
<th>INITIAL</th>
<th>REACTIVE</th>
<th>PROACTIVE</th>
<th>INNOVATIVE</th>
<th>OUTSTANDING</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are no university support services or resources available for people who have experienced sexual misconduct</td>
<td>There are online information pages available for people who have experienced sexual misconduct</td>
<td>There are generic university support services available for people who have experienced sexual misconduct</td>
<td>There are university support services with specially trained staff for supporting people who have experienced sexual misconduct</td>
<td>There are bespoke university support services for people who have experienced sexual misconduct</td>
<td></td>
</tr>
</tbody>
</table>

*All statements refer to both students and staff unless stated otherwise. Alternatively, users can choose to focus on students or staff separately.*
Sexual harassment

Universities failing to tackle sex harassment by staff, says report

Only one sexual misconduct case out of 16 led to a staff member losing their job

Women in British universities have been targeted by members of staff, finds the 1752 Group. Photograph: Alamy

Sally Weale Education correspondent

Wed 26 Sep 2018 00.01 BST

A number of UK universities are failing to tackle sexual predators on their staff as a due to shortcomings in complaints and disciplinary processes, finds a new report.
NSF spells out new sexual harassment policy: Talk to us

By Jeffrey Mervis | Sep. 19, 2018, 12:00 PM

Starting next month, universities must tell the National Science Foundation (NSF) in Alexandria, Virginia, if any faculty members with NSF grants have been found guilty of sexual and other forms of harassment, or if they have suspended them for any reason. But NSF won’t pull its funding if institutions can assure the agency that another faculty member can take over the research project.

Those new requirements are part of changes to NSF’s grantmaking process that will go into effect on 21 October. They are essentially what NSF proposed in March, after Director France Córdova responded to rising concern over sexual harassment in science by promising to provide a “safe, productive research and education environment” at institutions it funds.

Petition Asks AAAS to Remove Fellows With Sexual Harassment Records

The request is similar to one made of the National Academy of Sciences.

Jul 12, 2018
KERRY GRENS

Update (September 17): AAAS announced September 15 that it has adopted a new revocation policy for elected fellows “in cases of proven scientific misconduct, serious breaches of professional ethics, or when the Fellow in the view of AAAS no longer merits the status of Fellow.”

A petition by members of the scientific community asks the American Association for the Advancement of Science to remove fellows who have been found guilty of sexual harassment or assault.

“This is a no-brainer,” says BethAnn McLaughlin, a neuroscientist at Vanderbilt University who started the petition. “This is something the world’s largest science organization should have done when title IX came out.”
“juno is run by physicists for physicists”

<table>
<thead>
<tr>
<th></th>
<th>Number of Physics Departments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supporter</td>
<td>17</td>
</tr>
<tr>
<td>Practitioner</td>
<td>14</td>
</tr>
<tr>
<td>Champion</td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>49</td>
</tr>
</tbody>
</table>

apply for award
→ assessed by panel of independent physicist who work on equality and diversity
→ buddying, mentoring

**Timeline**

2007: Project Juno is introduced
2008: 19 departments in “Supporter” category
2009: First Juno Champions are awarded – Warwick and Imperial College
2017: Current status: 58 departments offering undergraduate courses in physics, 49 are currently engaged with Juno.
2005, ten principles
• three levels of award: bronze, silver and gold based on 10 principles
• to receive an award, the institution must have at least an athena swan bronze
how do we assess and understand institutional culture as it impacts on gender equality?
how do we evolve our culture to promote gender equality?

- **first phase**: documentary analysis, in depth and more informal interviews, focus groups, an open-text survey, participant and non-participant observation, and an anonymous wordpress blog.
- **second phase**: action inquiry process
- **themes**: empathy, authority, silence/dissent and failure.
- 249 students + staff
• lack community spirit
• hiding perceived vulnerability
• all consuming focus on academic performance
• many examples given to the researchers of bullying and discriminatory behaviour towards staff and students
• staff and students feeling afraid to speak up about issues
ED&I strategy 2018
“we recognise the important of equality and that diversity is a strength”
“a culture that values difference is fairer and enhances the day-to-day experiences of everyone”
“people do better work when they are not stressed by discrimination or harassment”
“organisations that value all people will recruit and retain the best of them”
 Athena Journey
2005 – founding member of charter
2006 – first institutional award
2009 – first departmental award (now 16)
2016 – first award in UK on new criteria
2017 – all 21 departments entered

Ongoing Projects
• have your say: anonymous harassment and bullying reporting
• annual athena lecture
• women @ imperial week
• unconscious bias training
• active bystander training
• mind, student minds
• sexual harassment working group
• research around bias on student surveys
• research around experience of BME staff and students

Networks
• able@imperial,
• imperial 600
• women’s engineering society
• women in physics society
  • lunches, networking
  • talks, sponsors
• women in science & engineering campaign
recruitment
- know your pool
- targeted job adverts
- inclusive language

training and support
- learning and development centre
- postdoc development centre
- educational development unit
- equality, diversity & inclusion centre
- 50 courses, including springboard
- workshop on job level review process
- tailored departmental induction packs for postdocs

other awards
- juno champion status (iop)
- stonewall diversity champion
- disability confident employer
- time to change mental health action plan

maternity & returnships
- nurseries on main campuses
- childcare vouchers for all
- return to work plan pre-maternity leave
- short-term funding to accommodate maternity leave /grant proposals
Gender Stereotypes

Annual Review of Psychology
Vol. 69:275-298 (Volume publication date January 2018)
First published as a Review in Advance on September 27, 2017
https://doi.org/10.1146/annurev-psych-122216-011719

Naomi Ellemers
Faculty of Social Sciences, Utrecht University, 3508 TC Utrecht, Netherlands; email: N.ellemers@uu.nl

Abstract

There are many differences between men and women. To some extent, these are captured in the stereotypical images of these groups. Stereotypes about the way men and women think and behave are widely shared, suggesting a kernel of truth.

However, stereotypical expectations not only reflect existing differences, but also impact the way men and women define themselves and are treated by others. This article reviews evidence on the nature and content of gender stereotypes and considers how these relate to gender differences in important life outcomes. Empirical studies show that gender stereotypes affect the way people attend to, interpret, and remember information about themselves and others. Considering the cognitive and motivational functions of gender stereotypes helps us understand their impact on implicit beliefs and communications about men and women. Knowledge of the literature on this subject can benefit the fair judgment of individuals in situations where gender stereotypes are likely to play a role.
"I certainly think that women though generally superior to men [in] moral qualities, they are inferior intellectually," Charles Darwin, 1882
1.7% of UK professors were BME women.

- White male: 69.4%
- White female: 22.6%
- BME male: 6.2%
- BME female: 1.7%

15: UK professors by gender and BME/white identity, 2015-16

ECU (2017) Equality in higher education statistical report 2017 - weighted by full person equivalent
How to be an LGBT+ Ally

More than 59% of LGBT+ scientists are still in the closet or most people they work with, and 3 out of 4 LGBT+ scientists have experienced discrimination and bullying in their careers. Here are some tips on how to be an ally:

1. Learn about LGBT+
   - Understand the language and terminology.
   - Read about the history and current issues.

2. Think before you assume
   - Avoid making assumptions about someone's orientation.
   - Ask if you're unsure.

3. Be open about your support
   - Speak up against discrimination.
   - Promote equality and inclusion.

4. Challenge discrimination
   - Call out inappropriate behavior.
   - Advocate for change.

5. Look for role models
   - Look for LGBT+ role models in your field.
   - Support and celebrate their achievements.

Support networks
- LGBT networks provide support for LGBT+ people.
- Find out about the network in your area.

Push for inclusivity
- Advocate for LGBT+ inclusion in your workplace.
- Encourage diversity and inclusion.

Unconscious bias
- Recognize and address your own biases.
- Be open to feedback.

Accept your limitations
- Acknowledge that everyone has limitations.
- Be open to learning and growing.

IOP diversity survey

Every four years, the IOP carries out a diversity survey with more than 35,000 members of the Institute of Physics to collect data on the experiences of LGBT+ scientists. Participation is voluntary, and the survey is anonymous. In the 2019 survey, 12% of membership responded. Included for the first time in the 2019 survey was a question about sexual orientation.

Results are based on 5,218 responses.

- LGBTQ 4.99% preferred not to answer.
- Bisexual 5.21% gay man 3.4% gay woman 0.9% heterosexual 83.5% other 2.5%
Building momentum towards inclusive teaching and learning
A good-practice guide for undergraduate physics

Strong and effective leadership
- Engagement of senior management in discussions on the need to take more strategic approaches to inclusive learning, including the consideration of anticipatory approaches
- Regular discussions and sharing of expertise to embed good practice and to document support strategies for future provision
- A named, visible champion for disabled students, acting as the focal point of contact for support and reporting into departmental decision-making structures

Clear and consistent policies and practices
- Consistently applied policies and practices on inclusive learning, such as the use of lecture capture, provision of lecture notes, attendance policies that support the identification of student health or mental-health issues
- Assessing the impact of policies and practices on disabled students during review processes, such as peer review, programme review, or curricula or assessment review
- Encouraging feedback specifically from disabled students

Ongoing training and development
- Training, development, and support for staff and students and opportunities for dialogue
- Appropriate disability awareness training for processes, such as induction

Encouraging disclosure
- A positive culture of disclosure and sharing with ongoing opportunities
- Clear processes on disclosure

Engagement with colleagues
- Understanding the needs of disabled students
-Good communication between faculty and central disability office

Communicating data
- Clear process for disability data gathering, sharing, and analysis
- Ensuring anonymity and confidentiality

Lab accessibility
- Offering flexible learning in the lab
- Communication to tutors and support staff on visibly impaired students

Supporting Students in STEM with Colour Vision Deficiency
A Good Practice Guide | April 2017

IOP Institute of Physics
British astrophysicist overlooked by Nobels wins $3m award for pulsar work

Dame Jocelyn Bell Burnell will donate the money to help students underrepresented in physics

A British astrophysicist who was passed over for the Nobel prize for her discovery of exotic cosmic objects that light up the heavens has won the most lucrative award in modern science.

Dame Jocelyn Bell Burnell, a visiting professor at Oxford University, was chosen by a panel of leading scientists to receive the $3m (£2.3m) special Breakthrough prize in fundamental physics for her landmark work on pulsars and a lifetime of inspiring leadership in the scientific community.
thank you

@jesswade
imperial college london
jessica.wade@imperial.ac.uk