Standard Model Effective Field Theory

Eleni Vryonidou CERN TH

1st Worshop on HET and Gender CERN 28/9/18

LHC: the story so far

Higgs couplings

Good agreement with the SM predictions

E.Vryonidou

HET & Gender

How to look for new physics?

Model-dependent

SUSY, 1HSM, 2HDM...

New particles

Model-Independent

anomalous couplings, EFT

New Interactions

How to look for new physics?

Model-dependent

SUSY,1HSM,2HDM...

New particles

Model-Independent

anomalous couplings, EFT

New Interactions

How to look for new physics?

Model-dependent

SUSY,1HSM,2HDM...

New particles

Model-Independent

anomalous couplings, EFT

New Interactions

SMEFT

BSM?
 New Interactions of SM particles

$$\mathcal{L}_{\text{Eff}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_i^{(6)} O_i^{(6)}}{\Lambda^2} + \mathcal{O}(\Lambda^{-4})$$

• 59(3045) operators at dim-6: Buchmuller, Wyler Nucl.Phys. B268 (1986) 621-653

X^3			φ^6 and $\varphi^4 D^2$	$\psi^2 arphi^3$		
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$	
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{arphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$	
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$	
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$					
	$X^2 \varphi^2$		$\psi^2 X \varphi$	$\psi^2 \varphi^2 D$		
$Q_{\varphi G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{l}_{p}\gamma^{\mu}l_{r})$	
$Q_{arphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu u}W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$	
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger} \varphi \widetilde{W}^{I}_{\mu \nu} W^{I \mu \nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$	
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q^{(3)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	
$Q_{arphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$	
$Q_{\varphi WB}$	$\varphi^\dagger \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$	
$Q_{\varphi \widetilde{W}B}$	$\varphi^\dagger \tau^I \varphi \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$	

Grzadkowski et al arXiv:1008.4884

	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$	$(\bar{L}L)(\bar{R}R)$				
Q_{ll}	$(ar{l}_p \gamma_\mu l_r) (ar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$			
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r) (\bar{u}_s \gamma^\mu u_t)$			
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(ar{l}_p\gamma_\mu l_r)(ar{d}_s\gamma^\mu d_t)$			
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$			
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$			
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$			
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(ar q_p \gamma_\mu q_r) (ar d_s \gamma^\mu d_t)$			
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$			
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		<i>B</i> -violating					
Q_{ledq}	$(ar{l}_p^j e_r) (ar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[\left(d_{p}^{\alpha}\right)\right.$	${}^{T}Cu_{r}^{\beta}\left[(q_{s}^{\gamma j})^{T}Cl_{t}^{k} ight]$				
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^{\gamma})^T C e_t\right]$					
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq}^{(1)}$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$					
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	$Q_{qqq}^{(3)}$	$\varepsilon^{\alpha\beta\gamma}(\tau^{I}\varepsilon)_{jk}(\tau^{I}\varepsilon)_{mn}\left[(q_{p}^{\alpha j})^{T}Cq_{r}^{\beta k}\right]\left[(q_{s}^{\gamma m})^{T}Cl_{t}^{n}\right]$					
$Q_{lequ}^{(3)}$	$(\bar{l}_{p}^{j}\sigma_{\mu u}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}\sigma^{\mu u}u_{t})$	Q_{duu}	$\varepsilon^{\alpha\beta\gamma} \left[(d_p^{\alpha})^T C u_r^{\beta} \right] \left[(u_s^{\gamma})^T C e_t \right]$					

SMEFT

• BSM? New Interactions of SM particles

$$\mathcal{L}_{\text{Eff}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_{i} + O_{i}}{\Lambda^{2}} + \mathcal{O}(\Lambda^{-4})$$

• 59(3045) operators at dim-6: Buchmuller, Wyler Nucl.Phys. B268 (1986) 621-653

Grzad	kowski et	al arXiv:10)08.4884

X^3			φ^6 and $\varphi^4 D^2$	$\psi^2 \psi^3$			$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$	
Q_G	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	Q_{arphi}	•								Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$
$Q_{\widetilde{G}}$	$f^{ABC}\widetilde{G}^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	$Q_{\varphi \Box}$	A mo		elinder	Den	de	nt tram	1ev	Nork toi	Qu	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$(\varphi^{\dagger}I$									$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$		nar	narametrising deviations from the								$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$
	$\frac{\mu}{X^2 \omega^2}$					9 9		allonio	TT C		$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$
0	$A \phi$	0		lir	tha ah	ncon		a of liat	ht o	etatae	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$
$\varphi_{\varphi G}$	$\varphi \cdot \varphi G_{\mu\nu} G \cdot$	Q_{eW}			i lite al	1901		, or ngi		Sidics	$P_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$
$Q_{arphi \widetilde{G}}$	$\varphi^{\dagger}\varphi G^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(l_{p}, c_{r})\varphi D_{\mu\nu}$	φ	$(\varphi \circ \mathcal{D}_{\mu} \varphi)(\mathfrak{c}_{p}, j \mathfrak{c}_{\tau})$						$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}iD_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$		$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-vio	lating	
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi W^{I}_{\mu u}W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{arphi q}$	$(\varphi^{\dagger}iD_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$		Q_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[\left(d_{p}^{lpha} ight) ight]$	TCu_r^{β}	$\left[(q_s^{\gamma j})^T C l_t^k\right]$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q^{(3)}_{arphi q}$	$(\varphi^{\dagger}i \overleftrightarrow{D}^{I}_{\mu} \varphi)(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r})$		$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[(q_p^{lpha j})\right]$	$TCq_r^{\beta k}$	$\left[(u_s^\gamma)^T C e_t \right]$
$Q_{arphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$		$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq}^{(1)}$	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[\left(q_p^{lpha} ight)\right]$	$(j)^T C q_r^{\beta}$	$\left[(q_s^{\gamma m})^T C l_t^n \right]$
$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphiW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$		$Q_{lequ}^{(1)}$	$(\bar{l}_{p}^{j}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}u_{t})$	$Q_{qqq}^{(3)}$	$\varepsilon^{lphaeta\gamma}(\tau^I\varepsilon)_{jk}(\tau^I\varepsilon)_{mn}$	$\left[(q_p^{\alpha j})^T ight]$	$\left[Cq_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$
$Q_{\varphi \widetilde{W}B}$	$\varphi^\dagger \tau^I \varphi \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$		$Q_{lequ}^{(3)}$	$(\bar{l}^{j}_{p}\sigma_{\mu\nu}e_{r})\varepsilon_{jk}(\bar{q}^{k}_{s}\sigma^{\mu\nu}u_{t})$	Q_{duu}	$\varepsilon^{lphaeta\gamma}\left[(d_p^{lpha})^T ight]$	$\begin{bmatrix} Cu_r^{\beta} \end{bmatrix}$	$\left[(u_s^\gamma)^T C e_t\right]$

Outline

I. SMEFT for top and Higgs

II. Precision in the SMEFT III. SMEFT and the Higgs self-coupling

Example 1) Top-Higgs interaction

Example 1) Top-Higgs interaction

HET & Gender

How can we constrain these operators?

Probing the top-Higgs interaction

Probing the top-Higgs interaction

The Global EFT picture

SMEFT in the top-Higgs sector

Processes:

Process	O_{tG}	O_{tB}	O_{tW}	$O^{(3)}_{arphi Q}$	$O^{(1)}_{arphi Q}$	$O_{arphi t}$	$O_{t \varphi}$
$t \rightarrow bW \rightarrow bl^+ \nu$	Ν		L	L			
$pp \rightarrow tj$	Ν		\mathbf{L}	\mathbf{L}			
$pp \rightarrow tW$	\mathbf{L}		\mathbf{L}	\mathbf{L}			
$pp \rightarrow t\bar{t}$	\mathbf{L}						
$pp ightarrow t \bar{t} j$	\mathbf{L}						
$pp \rightarrow t \bar{t} \gamma$	\mathbf{L}	\mathbf{L}	\mathbf{L}				
$pp \rightarrow t\bar{t}Z$	\mathbf{L}	\mathbf{L}	\mathbf{L}	\mathbf{L}	\mathbf{L}	\mathbf{L}	
$pp \rightarrow t\bar{t}W$	\mathbf{L}						
$pp ightarrow t\gamma j$	Ν	\mathbf{L}	\mathbf{L}	\mathbf{L}			
pp ightarrow tZj	Ν	\mathbf{L}	\mathbf{L}	\mathbf{L}	\mathbf{L}	\mathbf{L}	
$pp ightarrow t \bar{t} t \bar{t}$	\mathbf{L}						
$pp \rightarrow t\bar{t}H$	L						L
$pp \rightarrow tHj$	Ν		\mathbf{L}	\mathbf{L}			\mathbf{L}
$gg \rightarrow H$	\mathbf{L}						\mathbf{L}
$gg \rightarrow Hj$	\mathbf{L}						\mathbf{L}
$gg \rightarrow HH$	\mathbf{L}						\mathbf{L}
$gg \to HZ$	\mathbf{L}			\mathbf{L}	\mathbf{L}	\mathbf{L}	\mathbf{L}

Top operators:

$O_{\varphi Q}^{(3)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \varphi \right) \left(\bar{Q} \gamma^{\mu} \tau^{I} Q \right)$
$O^{(1)}_{\varphi Q} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) \left(\bar{Q} \gamma^{\mu} Q \right)$
$O_{\varphi t} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t)$
$O_{tW} = y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^I t) \tilde{\varphi} W^I_{\mu\nu}$
$O_{tB} = y_t g_Y (\bar{Q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu}$
$O_{tG} = y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G^A_{\mu\nu} ,$
$O_{t\phi} = y_t^3 \left(\phi^{\dagger}\phi\right) \left(\bar{Q}t\right) \tilde{\phi}$
$O_{\phi G} = y_t^2 \left(\phi^\dagger \phi \right) G^A_{\mu u} G^{A \mu u}$

Need for a Global approach

Global EFT fits in the top sector

First work towards global fits: Buckley et al arxiv:1506.08845 and 1512.03360 (N)NLO SM + LO EFT

Limits

Tevatron and LHC data

Cross-sections and distributions

E.Vryonidou

HET & Gender

Towards more global fits

Ellis et al arXiv:1803.03252

The future of global fits Differential Inclusive cg (×1000) **c**_a (×1000) **c**_γ (×100) c, (×100) **C**w Cw C_H **C**H **c**_{HW} **C**HW **C**HB **C**HB -----C_{u3} C_{u3} -0.1 -0.05 0 0.05 0.1 -0.1 -0.05 0 0.05 0.1 Run I 14 TeV, 300 ifb 14 TeV, 3000 ifb

Using differential information will be crucial Englert, Kogler, Spannowsky arXiv:1511.05170

E.Vryonidou

HET & Gender

EFT: some considerations

- Theory uncertainties:
 - SM: factorisation and renormalisation scale, PDF uncertainties
 - EFT: as in SM but also EFT scale c(μ), running and mixing
 - EFT expansion: dimension-8 operators see Hays et al arXiv:1808.00442
- Validity of the EFT expansion: E<∧, report limits as a function of the max scale probed: Contino et al arXiv:1604.06444
- $1/\Lambda^2$ vs $1/\Lambda^4$ contributions
 - $1/\Lambda^2$ suppressed due to helicity: Azatov et al arXiv:1607.05236
 - 1/A⁴ can be large for loosely constrained operator coefficients/strongly coupled theories

$$C_i^2 \frac{E^4}{\Lambda^4} > C_i \frac{E^2}{\Lambda^2} > 1 > \frac{E^2}{\Lambda^2}$$

EFT condition satisfied but $O(1/\Lambda^4)$ large for large operator coefficients

- Range of Wilson coefficients:
 - The theory: perturbativity, unitarity, linear or non-linear EFT, UV completion

Outline

I. SMEFT for top and Higgs II. Precision in the SMEFT III. SMEFT and the Higgs self-coupling

Use SMEFT to parametrise and look for deviations from SM predictions

Use SMEFT to parametrise and look for deviations from SM predictions

Use as many experimental measurements as possible Cross-sections+differential distributions

Use SMEFT to parametrise and look for deviations from SM predictions

Use as many experimental measurements as possible Cross-sections+differential distributions

> Use the best SM predictions QCD/EW corrections

Use SMEFT to parametrise and look for deviations from SM predictions

Use as many experimental measurements as possible Cross-sections+differential distributions

Use the best SM predictions QCD/EW corrections

Use SMEFT to parametrise and look for deviations from SM predictions

Use as many experimental measurements as possible Cross-sections+differential distributions

Need for precision calculations Automated tools for the EFT

Use the best SM predictions QCD/EW corrections

Precision calculations in the EFT: NLO QCD

E.Vryonidou

HET & Gender

Precision calculations in the EFT: NLO QCD

$$\begin{split} O_{\phi G} &= y_t^2 \left(\phi^{\dagger} \phi \right) G^A_{\mu\nu} G^{A\mu\nu} \\ O_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\phi} G^A_{\mu\nu} \end{split}$$

Maltoni, EV, Zhang arXiv:1607.05330

Degrande, Maltoni, Mimasu, EV, Zhang arXiv:1804.07773

- Rare processes: important HL-LHC
- Higher-order corrections for the EFT have become available for a range of processes
- Full automation underway

E.Vryonidou

HET & Gender

Towards theoretical uncertainties in the EFT

Operators run and mix with the scale:

NLO EW in SMEFT may not be small: $O(\alpha_{EW}/\pi \cdot C_t/C_H)$ instead of $O(\alpha_{EW}/\pi)$

$$\begin{split} O_{t\varphi} &= \bar{Q}t\tilde{\varphi}\left(\varphi^{\dagger}\varphi\right) + h.c., \\ O_{\varphi Q}^{(3)} &= (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{Q}\gamma^{\mu}\tau^{I}Q), \\ O_{\varphi tb} &= (\tilde{\varphi}^{\dagger}iD_{\mu}\varphi)(\bar{t}\gamma^{\mu}b) + h.c., \\ O_{tB} &= (\bar{Q}\sigma^{\mu\nu}t)\,\tilde{\varphi}B_{\mu\nu} + h.c., \\ O_{\varphi t} &= (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{t}\gamma^{\mu}t), \\ O_{\varphi Q}^{(1)} &= (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{Q}\gamma^{\mu}Q), \\ O_{tW} &= (\bar{Q}\sigma^{\mu\nu}\tau^{I}t)\,\tilde{\varphi}W_{\mu\nu}^{I} + h.c., \end{split}$$

Current constraints

Operator	Top Fitter	RHCC	$\sigma_{t\bar{t}H}$ [28]
$C_{\varphi tb}$		[-5.28, 5.28]	
$C^{(3)}_{\varphi Q}$	[-2.59, 1.50]		
$C^{(1)}_{\varphi Q}$	[-3.10,3.10]		
$C_{\varphi t}$	[-9.78,8.18]		
C_{tW}	[-2.49, 2.49]		
C_{tB}	[-7.09, 4.68]		
$C_{t\varphi}$			[-6.5, 1.3]

Uncertainties on Higgs measurements at the LHC:

	$\gamma\gamma$	$\gamma { m Z}$	bb	WW*	ZZ^*	au au	$\mu\mu$
gg	(-100%,1980%)	(-88%,200%)	(-40%, 48%)	(-40%, 47%)	(-40%, 46%)	(-40%, 48%)	(-40%,48%)
VBF	(-100%,1880%)	(-88%,170%)	(-6.1%,5.3%)	(-6.8%,6.7%)	(-8.8%,9.2%)	(-6.2%,5.9%)	(-6.2%,5.9%)
WH	(-100%,1880%)	(-88%,170%)	(-5.5%,4.2%)	(-6.1%,5.6%)	(-7.8%,7.9%)	(-5.8%, 5.1%)	(-5.8%,5.1%)
\mathbf{ZH}	(-100%,1880%)	(-87%,170%)	(-6.5%,5.9%)	(-7.1%,7.1%)	(-9.4%,9.9%)	(-6.8%,6.7%)	(-6.8%,6.7%)

E.Vryonidou

HET & Gender

Towards weak loops in the EFT

Circular Electron Positron Collider & HL-LHC: Top + Higgs Global Fit

E.Vryonidou

HET & Gender

Outline

I. SMEFT for top and HiggsII. Precision in the SMEFTIII. SMEFT and the Higgs self-coupling

The Higgs potentialHiggs potential:
$$V(H) = \frac{1}{2}M_H^2H^2 + \lambda_{HHH}VH^3 + \frac{1}{4}\lambda_{HHHH}H^4$$
Fixed values in the SM: $\lambda_{HHH} = \lambda_{HHHH} = \frac{M_H^2}{2V^2}$ Measuring λ_{HHH} and λ_{HHHH} tests the SM

What can measuring λ_{HHH} tell us?

Electroweak baryogenesis requires a first order strong EWPT

The Higgs potentialHiggs potential:
$$V(H) = \frac{1}{2}M_{H}^{2}H^{2} + \lambda_{HHH}vH^{3} + \frac{1}{4}\lambda_{HHHH}H^{4}$$
Fixed values in the SM: $\lambda_{HHH} = \lambda_{HHHH} = \frac{M_{H}^{2}}{2v^{2}}$ Measuring λ_{HHH} and λ_{HHHH} tests the SMWhat can measuring λ_{HHH} tell us?Electroweak baryogenesis requires a first order strong EWPT $\oint_{c} \gtrsim 1$ $\lambda_{H^{3}}/\lambda_{H^{3}},SM < 1.5 : \phi_{c}/T_{c} < 1$ $\oint_{c} = 1$ $\lambda_{H^{3}}/\lambda_{H^{3}},SM < 2 : \phi_{c}/T_{c} > 1$ $\int_{c} = \frac{\phi_{c}}{T_{c}} < 1$ Even baryogenesis is disfavoured $\lambda_{H^{3}}/\lambda_{H^{3}},SM > 2 : \phi_{c}/T_{c} > 1$ $\int_{c} = \frac{\phi_{c}}{T_{c}} < 1$ Even baryogenesis is favoured $\int_{c} = \frac{\phi_{c}}{T_{c}} < 1$ Even det baryogenesis is favoured $\int_{c} = \frac{\phi_{c}}{T_{c}} < 1$ Even det baryogenesis is favoured $\int_{c} = \frac{\phi_{c}}{T_{c}} < 1$ Even det baryogenesis is favoured $\int_{c} = \frac{\phi_{c}}{T_{c}} < 1$ Even det baryogenesis is favoured $\int_{c} = \frac{\phi_{c}}{T_{c}} < 1$ Even det baryogenesis is favoured $\int_{c} = \frac{\phi_{c}}{T_{c}} < 1$ Even det baryogenesis is favoured $\int_{c} = \frac{\phi_{c}}{T_{c}} < 1$ Even det baryogenesis is favoured $\int_{c} = \frac{\phi_{c}}{T_{c}} < 1$ Even det baryogenesis is favoured $\int_{c} = \frac{\phi_{c}}{T_{c}} < 1$ Even det baryogenesis is favoured $\int_{c} = \frac{\phi_{c}}{T_{c}} < 1$ Even det baryogenesis is favoured $\int_{c} = \frac{\phi_{c}}{T_{c}} < 1$ Even det baryogenesis is favoured $\int_{c} = \frac{\phi_{c}}{T_{c}} < 1$

HET & Gender

How to extract λ_{HHH} : 1) HH

How to extract λ_{HHH} : 1) HH

How to extract λ_{HHH} : 1) HH

HH in the EFT

Other couplings enter in the same process:

top Yukawa, ggh(h) coupling, top-

gluon interaction

HH in the EFT

$$\begin{split} O_{t\phi} &= y_t^3 \left(\phi^{\dagger} \phi \right) \left(\bar{Q}t \right) \tilde{\phi} \,, \\ O_{\phi G} &= y_t^2 \left(\phi^{\dagger} \phi \right) G_{\mu\nu}^A G^{A\mu\nu} \,, \\ O_{tG} &= y_t g_s (\bar{Q}\sigma^{\mu\nu}T^A t) \tilde{\phi} G_{\mu\nu}^A \,, \\ O_6 &= -\lambda (\phi^{\dagger} \phi)^3 \,, \\ O_H &= \frac{1}{2} (\partial_{\mu} (\phi^{\dagger} \phi))^2 \,, \end{split}$$

Other couplings enter in the same process:

top Yukawa, ggh(h) coupling, topgluon interaction

The present

Given the current constraints on σ (HH), σ (H) and the fresh ttH measurement, the Higgs self-coupling can be currently constrained "ignoring" other couplings

HH in the EFT

The present

Given the current constraints on σ (HH), σ (H) and the fresh ttH measurement, the Higgs self-coupling can be currently constrained "ignoring" other couplings

$$\begin{split} O_{t\phi} &= y_t^3 \left(\phi^{\dagger} \phi \right) \left(\bar{Q}t \right) \tilde{\phi} \,, \\ O_{\phi G} &= y_t^2 \left(\phi^{\dagger} \phi \right) G_{\mu\nu}^A G^{A\mu\nu} \,, \\ O_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\phi} G_{\mu\nu}^A \,, \\ O_6 &= -\lambda (\phi^{\dagger} \phi)^3 \,, \\ O_H &= \frac{1}{2} (\partial_\mu (\phi^{\dagger} \phi))^2 \,, \end{split}$$

Other couplings enter in the same process:

top Yukawa, ggh(h) coupling, top-

gluon interaction

The future

Precise knowledge of other Wilson coefficients will be needed to bound λ as the bound gets closer to SM

Differential distributions will also be necessary

How to extract λ_{HHH} : 2) Indirectly

Higgs observables: production and decay at NLO (EW)

Run I single Higgs results: $\kappa_{\lambda}^{2\sigma} = [-9.4, 17.0]$

c.f. HH: $\kappa_{\lambda}^{2\sigma} = [-8.82, 15.04]$ Future prospects:

Degrassi et al. arXiv:1607.04251

See also: Gorbahn, Haisch 1607.03773, Bizon et al 1610.05771, Maltoni et al 1709.08649

Summary

LHC Higgs measurements are exploring Higgs and top couplings, with no clear sign of deviation from the SM predictions, **yet.**

The SMEFT provides a pathway to new physics by probing scales above the direct collider energy reach.

LHC measurements should be interpreted in the SMEFT framework in a global way.

Predictions in the SMEFT can be systematically improved and promoted to NLO in QCD and EW

Thanks for your attention