Stringy dark matter in the KL moduli stabilization scenario

Thaisa Guio

1805.01521
w/ Ernany R. Schmitz

1st Workshop on High Energy Theory and Gender @ CERN

September 27th, 2018
Why dark matter in the KL moduli stabilization scenario?

Baryonic matter ∼ 5% of the Universe content!
Why dark matter in the KL moduli stabilization scenario?

Baryonic matter \(\sim 5\% \) of the Universe content!

Dark matter: not in SM!
Why dark matter in the KL moduli stabilization scenario?

Baryonic matter ~ 5% of the Universe content!

Dark matter: not in SM!

- Effective theories from superstrings → SUGRA w/ moduli (massless scalars).
Why dark matter in the KL moduli stabilization scenario?

Baryonic matter $\sim 5\%$ of the Universe content!

Dark matter: not in SM!

- Effective theories from superstrings \rightarrow SUGRA w/ moduli (massless scalars).
- Moduli stabilization: flat directions of V stabilized by giving masses to moduli.
Why dark matter in the KL moduli stabilization scenario?

Baryonic matter \(\sim 5\% \) of the Universe content!

Dark matter: not in SM!

- Effective theories from superstrings → SUGRA w/ moduli (massless scalars).

- Moduli stabilization: flat directions of \(V \) stabilized by giving masses to moduli. **Here:** Kallosh-Linde scenario (KL)!
Why dark matter in the KL moduli stabilization scenario?

Baryonic matter ~ 5% of the Universe content!

Dark matter: not in SM!

• Effective theories from superstrings → SUGRA w/ moduli (massless scalars).

• Moduli stabilization: flat directions of V stabilized by giving masses to moduli. **Here**: Kallosh-Linde scenario (KL)!

• Moduli dynamics can create problems for consistent evolution of the Universe.
Why dark matter in the KL moduli stabilization scenario?

Baryonic matter \(\sim 5\%\) of the Universe content!

Dark matter: not in SM!

- Effective theories from superstrings \(\rightarrow\) SUGRA w/ moduli (massless scalars).

- Moduli stabilization: flat directions of \(V\) stabilized by giving masses to moduli. **Here:** Kallosh-Linde scenario (KL)!

- Moduli dynamics can create problems for consistent evolution of the Universe. **Here:** Avoid them + dark matter!
Outline

- KL moduli stabilization scenario + ISS uplifting sector
- Evolution of the Universe
- Dark matter production
- Conclusions
KL moduli stabilization scenario

- Low-scale SUSY breaking + high-scale inflation.
- IIB on orientifolded Calabi-Yau 3-folds \(\Rightarrow\) 4d \(\mathcal{N} = 1\) SUGRA for volume modulus \(\rho\)

 \[
 K_{KL} = -3 \ln(\rho + \bar{\rho}) \\
 W_{KL} = W_0 + A e^{-a\rho} - B e^{-b\rho}, \quad W_0 < 0, \; A, B, a, b > 0
 \]

- \(V = e^K (K^{\rho \bar{\rho}} \partial_{\rho} W \partial_{\bar{\rho}} \bar{W} - 3|W|^2) < 0 \Rightarrow \Lambda < 0\) (AdS SUSY).
KL moduli stabilization scenario

- Low-scale SUSY breaking + high-scale inflation.
- IIB on orientifolded Calabi-Yau 3-folds \Rightarrow 4d $\mathcal{N} = 1$ SUGRA for volume modulus ρ

 \[
 K_{\text{KL}} = -3 \ln(\rho + \bar{\rho})
 \]
 \[
 W_{\text{KL}} = W_0 + A e^{-a \rho} - B e^{-b \rho}, \quad W_0 < 0, \ A, B, a, b > 0
 \]
 \[
 V = e^K(K\rho \bar{\rho} D_\rho W \bar{D}_\rho \bar{W} - 3|W|^2) < 0 \Rightarrow \Lambda < 0 \text{ (AdS SUSY)}.
 \]

ISS sector

- 4d $\mathcal{N} = 1$ SU(N_c) SQCD in $N_c + 1 \leq N_f < 3N_c/2$.

 - Chiral superfields: $q^a_i, \tilde{q}^j_b, S^i_j, \ i, j = 1, \ldots, N_f$ and $a, b = 1, \ldots, N = N_f - N_c$.

 \[
 K_{\text{ISS}} = |q|^2 + |\tilde{q}|^2 + |S|^2
 \]
 \[
 W_{\text{ISS}} = h(\text{Tr} \tilde{q} S q - M^2 \text{Tr} S)
 \]

 h = dimensionless coupling and M = ISS energy scale.

 - Here: $N = 1$ and $N_f = 4$.

Uplifting

- V becomes positive $\Rightarrow \Lambda > 0 \text{ (dS SUSY)}$ with

$$m_{3/2} \equiv \langle e^{K/2}W \rangle \simeq \frac{h}{(2\langle \rho \rangle/M_P)^{3/2}} \left(\frac{M}{M_P}\right)^2 M_P$$
Uplifting

- V becomes positive $\Rightarrow \Lambda > 0$ (dS SUSY) with

$$m_{3/2} \equiv \langle e^{K/2} W \rangle \simeq \frac{h}{(2 \langle \rho \rangle / M_P)^{3/2}} \left(\frac{M}{M_P} \right)^2 M_P$$

Decay rates

- Largest contributions from

\[
\begin{align*}
\text{Re} S_1 & \rightarrow \chi S_1 + \bar{\chi} S_1 \\
\text{Re} S_2 & \rightarrow \psi_{3/2} + \psi_{3/2} \\
\text{Re} Q_1 & \rightarrow (\psi_{3/2} + \psi_{3/2}, \chi S_1 + \bar{\chi} S_1 + \text{Im} Q_2, \chi S_1 + \bar{\chi} S_1 + \text{Re} Q_2) \\
\text{Re} Q_2 & \rightarrow (\psi_{3/2} + \psi_{3/2}, \chi S_1 + \bar{\chi} S_1 + \text{Im} Q_2)
\end{align*}
\]

ISS scalars: S and Q and **ISS fermions**: χ_S
Evolution of the Universe

Moduli and gravitino problems:

- decays after BBN
 ⇒ unacceptable entropy diluting BBN products,

- decays to large number of unstable gravitinos or lighter ISS fields
 ⇒ large DM relic density.
Moduli and gravitino problems:

- decays after BBN
 ⇒ unacceptable entropy diluting BBN products,

- decays to large number of unstable gravitinos or lighter ISS fields
 ⇒ large DM relic density.

Oscillations after inflationary phase (inflaton η)

⇒ Neglect: modulus ρ and $\text{Re}Q_2$,

⇒ Relevant (amplitude $\neq 0$): $\text{Re}S_1$, $\text{Re}S_2$ and $\text{Re}Q_1$.
Dark matter production

- **Dark matter**: LSP neutralino χ.
 - Thermal: freeze-out from η plasma.
 - Non-thermal: decays of $\psi_{3/2}$ or χ_{S1} (followed or not by neutralino co-annihilation).

[TG and Schmitz ‘18]
Dark matter production

- **Dark matter**: LSP neutralino χ.
 - Thermal: freeze-out from η plasma.
 - Non-thermal: decays of $\psi_{3/2}$ or χ_{S1} (followed or not by neutralino co-annihilation).

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_\eta > s_{\phi IS} \quad \text{and} \quad \rho_\eta > \rho_{\phi IS}$</td>
<td>$M \lesssim 4.80 \times 10^{-2} h M_p$</td>
</tr>
<tr>
<td>$\psi_{3/2}$ decays before BBN and $\psi_{3/2}$ decays after neutralino freezeout</td>
<td>$M \gtrsim 3.82 \times 10^{-6} h^{-1/2} M_p$ and $M \lesssim 2.56 \times 10^{-5} h^{-1/2} M_p$</td>
</tr>
<tr>
<td>χ_{S1} decays before BBN and χ_{S1} decays after neutralino freezeout</td>
<td>$M \gtrsim 1.75 \times 10^{-3} h^{-1/2} M_p$ and $M \lesssim 9.12 \times 10^{-3} h^{-1/2} M_p$</td>
</tr>
</tbody>
</table>
Dark matter production

- **Dark matter:** LSP neutralino χ.
 - Thermal: freeze-out from η plasma.
 - Non-thermal: decays of $\psi_{3/2}$ or χ_{S1}
 (followed or not by neutralino co-annihilation).

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M < 4.80 \times 10^{-2} h M_P$</td>
<td>$s_\eta > s_{\phi_{ISS}}$ and $\rho_\eta > \rho_{\phi_{ISS}}$</td>
</tr>
<tr>
<td>$M \gtrsim 3.82 \times 10^{-6} h^{-1/2} M_P$ and $M \lesssim 2.56 \times 10^{-5} h^{-1/2} M_P$</td>
<td>$\psi_{3/2}$ decays before BBN and $\psi_{3/2}$ decays after neutralino freezeout</td>
</tr>
<tr>
<td>$M \gtrsim 1.75 \times 10^{-3} h^{-1/2} M_P$ and $M \lesssim 9.12 \times 10^{-3} h^{-1/2} M_P$</td>
<td>χ_{S1} decays before BBN and χ_{S1} decays after neutralino freezeout</td>
</tr>
</tbody>
</table>

- Acceptable production: $\Omega_{DM} h^2 \lesssim 0.12$ [Planck 2018].
 10% thermal + 90% non-thermal without moduli/gravitino problems.
• $m_\chi = 100$ GeV, $\langle \sigma_{\text{ann}} v_{\text{Mol}} \rangle = 10^{-7}$ GeV$^{-2}$

$a_\eta = 10^{-1} \times$ coupling η-MSSM gauge bosons.

[TG and Schmitz '18]
Conclusions

* KL+ISS+MSSM+inflaton scenario

- Fruitful string derived scenario with myriad of particles.
- Decay rates + evolution of Universe.
- Dark matter candidates with relic density $\Omega_{DM} h^2 \lesssim 0.12$ and no moduli/gravitino problems.

arXiv: 1805.01521
Conclusions

* KL+ISS+MSSM+inflaton scenario

- Fruitful string derived scenario with myriad of particles.
- Decay rates + evolution of Universe.
- Dark matter candidates with relic density $\Omega_{DM} h^2 \lesssim 0.12$ and no moduli/gravitino problems.

arXiv: 1805.01521

Thank you for your attention!