Exploring doubly charged Higgs bosons collider signals in light of low energy constrains

Magdalena Kordiaczyńska

University of Silesia

in collaboration with Tripurari Srivastava, Janusz Gluza

27.09.2018

1st Workshop on High Energy Theory and Gender

27.09.2018

1 / 30

Magdalena Kordiaczyńska (U.Silesia) Exploring doubly charged Higgs bosons...

Plan:

- Extensions of the Standard Model
- 2 Higgs Triplet Model
- (3) $H^{\pm\pm} I I'$ coupling (LFV)
- Experimental constraints
- **5** $H^{\pm\pm}$ decay (HTM and LRSM)
- 6 Pair production and collider signals

Summary

Extensions of the Standard Model

• Higgs Triplet Model (HTM) One additional triplet:

$$\Delta = rac{1}{\sqrt{2}} \left(egin{array}{cc} w_\Delta^+ & \sqrt{2} \delta^{++} \ v_\Delta + h_\Delta + i z_\Delta & -w_\Delta^+ \end{array}
ight)$$

 Doubly charged scalar particles exist in other Standard Model's extention, for example Left Right Symmetric Model (LRSM)

Extensions of the Standard Model

HTM	MLRSM		
Type II See-Saw	Three heavy neutrinos		
SU(2) imes U(1)	$SU(2)_R imes SU(2)_L imes U(1)_{B-L} \ W_1,\ W_2,\ Z_1,\ Z_2,\ \gamma$		
$h, H, A, H^{\pm}, H^{\pm\pm}$	$\begin{array}{c} \textbf{h}, \textbf{H}_1, \textbf{H}_2, \textbf{H}_3, \textbf{A}_1, \textbf{A}_2 \\ \textbf{H}_1^{\pm}, \textbf{H}_2^{\pm}, \ \textbf{H}_1^{\pm\pm}, \textbf{H}_2^{\pm\pm} \end{array}$		

イロト イヨト イヨト イヨト

$V = -m_{\Phi}^{2} \left(\Phi^{\dagger} \Phi \right) + M^{2} \operatorname{Tr} \left(\Delta^{\dagger} \Delta \right) + \left\{ \mu \left(\Phi^{T} i \sigma_{2} \Delta^{\dagger} \Phi \right) + \text{h.c.} \right\} \\ + \frac{\lambda}{4} \left(\Phi^{\dagger} \Phi \right)^{2} + \lambda_{1} \left(\Phi^{\dagger} \Phi \right) \operatorname{Tr} \left(\Delta^{\dagger} \Delta \right) + \lambda_{2} \left\{ \operatorname{Tr} \left(\Delta^{\dagger} \Delta \right) \right\}^{2} \\ + \lambda_{3} \operatorname{Tr} \left[\left(\Delta^{\dagger} \Delta \right)^{2} \right] + \lambda_{4} \left(\Phi^{\dagger} \Delta \Delta^{\dagger} \Phi \right)$

• Potential stability

Unitarity

・ロト ・聞ト ・ ヨト

HTM - Lagrangian

$$\begin{split} M_A^2 &= \frac{\mu}{\sqrt{2}v_\Delta} (v_{\Phi}^2 + 4v_{\Delta}^2) \\ M_h^2 &= \lambda v_{\Phi}^2 \cos^2 \alpha + \left(\frac{\mu v_{\Phi}^2}{\sqrt{2}v_\Delta} + 2v_{\Delta}^2 (\lambda_2 + \lambda_3)\right) \sin^2 \alpha \\ &+ 2 \left(v_{\Phi} v_{\Delta} (\lambda_1 + \lambda_4) - \sqrt{2}\mu v_{\Phi}\right) \cos \alpha \sin \alpha \\ M_H^2 &= \lambda v_{\Phi}^2 \sin^2 \alpha + \left(\frac{\mu v_{\Phi}^2}{\sqrt{2}v_\Delta} + 2v_{\Delta}^2 (\lambda_2 + \lambda_3)\right) \cos^2 \alpha \\ &- 2 \left(v_{\Phi} v_{\Delta} (\lambda_1 + \lambda_4) - \sqrt{2}\mu v_{\Phi}\right) \cos \alpha \sin \alpha \\ M_{H^{\pm}}^2 &= \frac{(2\sqrt{2}\mu - \lambda_4 v_\Delta)}{4v_\Delta} (v_{\Phi}^2 + 2v_{\Delta}^2) \\ M_{H^{\pm\pm}}^2 &= \frac{\mu v_{\Phi}^2}{\sqrt{2}v_\Delta} - \frac{\lambda_4}{2} v_{\Phi}^2 - \lambda_3 v_{\Delta}^2 \end{split}$$

590

イロト イヨト イヨト イヨト

Unitarity, stability

Magdalena Kordiaczyńska (U.Silesia) Exploring doubly charged Higgs bosons...

$H^{\pm\pm} - I - I'$ coupling

$$\mathcal{L}_{Y} = \frac{1}{2} f_{\ell \ell'} L_{\ell}^{T} C^{-1} i \sigma_{2} \Delta L_{\ell'} + \text{h.c.}$$

$$\mathcal{L}_{
u} = rac{1}{2}\,ar{
u}_\ell\,rac{
u_\Delta}{\sqrt{2}}\,f_{\ell\ell'}\,
u_{\ell'}$$

Magdalena Kordiaczyńska (U.Silesia) Exploring doubly charged Higgs bosons...

1 27.09.2018 8 / 30

590

◆ロト ◆聞ト ◆ヨト ◆ヨト

$H^{\pm\pm} - I - I'$ coupling

$$f = \frac{1}{\sqrt{2}v_{\Delta}} V_{PMNS}^* D_{\nu} V_{PMNS}^{\dagger} \qquad D_{\nu} = \frac{1}{2} \operatorname{diag}\{m_1, m_2, m_3\}$$

$$V_{\Delta} \iff f_{\parallel \prime} \iff \theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}$$

$$m_1, m_2, m_3$$

990

◆ロト ◆聞ト ◆ヨト ◆ヨト

$f_{ll'}$ coupling and parameter's constraints

- $10^{-7} \leq f_{ll'} \leq \sqrt{4\pi}$ [hep-ex/0309076]
- $v_{\Delta} \sim 1 \ {
 m GeV}$ [Phys.Rev. D21 (Mar, 1980) 1404-1409], [arXiv:0712.4053]

$$\rho = \frac{M_W^2}{M_Z^2 \cos \theta_W} = \frac{1 + 2\frac{v_A^2}{v_\phi^2}}{1 + 4\frac{v_A^2}{v_\phi^2}} = 1.00040 \pm 0.00024$$

• $\sum_{i=1}^{n} m_i \le 2 \text{ eV}$ - Iritium decay [PDG] • $\sum_{i=1}^{n} m_i \le 0.23 \text{ eV}$ - astrophysics [arXiv:1303.5076]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Neutrino oscillation data

	Normal hierarchy			Inverted hierarchy		
	Best fit:	σ	bfp $\pm 2\sigma$	Best fit:	σ	bfp $\pm 2\sigma$
$\sin^2 \theta_{12}$	0.306	$^{+0.012}_{-0.012}$	$0.282 \div 0.330$	0.306	+0.012 -0.012	0.282 ÷ 0.330
$\sin^2 \theta_{23}$	0.441	+0.027 -0.021	0.399 ÷ 0.495	0.587	+0.020 -0.024	0.539 ÷ 0.627
$\sin^2 \theta_{13}$	0.02166	+0.00075 -0.00075	0.02016 ÷ 0.02316	0.02179	+0.00076 -0.00076	0.02027 ÷ 0.02331
δ _{CP} [°]	261	+51 -59	143 ÷ 363	277	+40 -46	185 ÷ 357
$\frac{\Delta m_{21}^2}{10^{-5} \text{eV}^2}$	7.50	$^{+0.19}_{-0.17}$	$7.16 \div 7.88$	7.50	$^{+0.19}_{-0.17}$	7.16 ÷ 7.88
$\frac{\Delta m_{3l}^2}{10^{-3} \mathrm{eV}^2}$	+2.524	+0.039 -0.040	2.445 ÷ 2.602	-2.514	+0.038 -0.041	-2.596 ÷ -2.438

[www.nu-fit.org , arXiv:1611.01514]

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Magdalena Kordiaczyńska (U.Silesia) Exploring doubly charged Higgs bosons...

Experimental constraints

- High energy:
 - Bhabha scattering: $f_{ee}^2 \leq 6.0 imes 10^{-6} M_{H^{\pm\pm}}$

[Phys.Rev. D40 (1989) 1521], [hep-ph/0304069]

Experimental constraints

• Low energy:

27.09.2018 13 / 30

Experimental constraints

• $(g-2)_{\mu}$ $\Delta a_{(muong-2)}$ = (29.3 ± 9.0) × 10⁻¹⁰ • μ to e (for Au) $BR(\mu N \rightarrow eN^*) < 7.0 \times 10^{-13}$ Radiative LFV decays 10^{-13} $\mathsf{BR}(\mu \to e\gamma) < 5.7 \times$ $\mathsf{BR}(au o e\gamma)$ < 3.3 imes 10^{-8} $\mathsf{BR}(\tau \rightarrow \mu \gamma) < 4.4 \times 10^{-8}$ LFV three body decays $\mathsf{BR}(\tau \to \mu \gamma)$ < 4.4 × 10⁻⁸ $\mathsf{BR}(au o 3\mu)$ < 2.1 imes 10⁻⁸ $\mathsf{BR}(au o e \mu^+ \mu^-)$ < 2.7 imes 10^{-8} [arXiv:1512.03581] . [Nucl. Phys. B299 (1988) 1-6] $\mathsf{BR}(\mu \to 3e) < 1.0 \times 10^{-12}$

14 / 30

 Magdalena Kordiaczyńska (U.Silesia)
 Exploring doubly charged Higgs bosons...
 27.09.2018

 v_{Δ} vs $M_{H^{\pm\pm}}$

NH

IH

◆ロト ◆聞ト ◆ヨト ◆ヨト

E 27.09.2018 15 / 30

$H^{\pm\pm}$ decay

•
$$H^{\pm\pm} \rightarrow I_i I_j$$

• $H^{\pm\pm} \rightarrow W^{\pm} W^{\pm}$
• $H^{\pm\pm} \rightarrow H^{\pm} W^{\pm}$

 $\bullet \hspace{0.2cm} H^{\pm\pm} \to H^{\pm}H^{\pm}$

Magdalena Kordiaczyńska (U.Silesia)

Exploring doubly charged Higgs bosons...

27.09.2018 16 / 30

$H^{\pm\pm}$ decay

$H^{\pm\pm}$ pair production in lepton colliders

э 27.09.2018 18 / 30

 $\exists \rightarrow$

イロト イポト イヨト イ

$H^{\pm\pm}$ pair production in hadron colliders

For MLRSM see arXiv:1311.4144

Magdalena Kordiaczyńska (U.Silesia) Exploring doubly charged Higgs bosons...

27.09.2018 19 / 30

$pp \rightarrow H^{++}H^{--} \rightarrow$ 4-leptons signal

Luminosity 25 fb⁻¹, $\sqrt{s} = 14$ TeV

			НТМ				
$M_{H^{\pm\pm}}$	SM	MLRSM	NH		I	IH	
			$\alpha_1 = 0, \ \alpha_2 = 0$	$\alpha_1 = 0, \ \alpha_2 = \frac{\pi}{2}$	$\alpha_1=$ 0, $\alpha_2=$ 0	$\alpha_1 = 0, \ \alpha_2 = \frac{\pi}{2}$	
400	2.9	30	7.3	2.6	33	20	
600		4.4	1.0	0.4	4.9	2.9	

Magdalena Kordiaczyńska (U.Silesia) Exploring doubly charged Higgs bosons...

27.09.2018 20 / 30

- $H^{\pm\pm}$ pair production in colliders gives possibility for clean BSM 4I signals
- For $\theta_{13} \neq 0$ the strongest limit on v_t comes from the $\mu \rightarrow 3e$ LFV process
- T channel contribution to the $H^{\pm\pm}$ pair production in lepton colliders is negligible due to the low energy constraints
- Heavy gauge bosons (RH currents) do not influence the total number of event for the 4-lepton signal in hadron colliders

イロト イポト イヨト イヨト 二日

Thank you for your attention

mkordiaczynska@us.edu.pl

Magdalena Kordiaczyńska (U.Silesia) Exploring doubly charged Higgs bosons...

27.09.2018 22 / 30

U_{PMNS}

$$V_{PMMS} = \begin{bmatrix} c_{12}c_{13}e^{i\alpha_1} & s_{12}c_{13}e^{i\alpha_2} & s_{13}e^{-i\delta}CP \\ (-s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta}CP)e^{i\alpha_1} & (c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta}CP)e^{i\alpha_2} & s_{23}c_{13} \\ (s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta}CP)e^{i\alpha_1} & (-c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta}CP)e^{i\alpha_2} & c_{23}c_{13} \end{bmatrix}$$
(1)

27.09.2018 23 / 30

ρ and T parameters

$$\Delta \rho = \frac{\prod_{WW}(0)}{M_W^2} - \frac{\prod_{ZZ}(0)}{M_Z^2}$$
$$T = \frac{1}{\alpha} \left(\frac{\prod_{WW}(0)}{M_W^2} - \frac{\prod_{ZZ}(0)}{M_Z^2} \right) = \frac{\rho - 1}{\alpha} = 0.05 \pm 0.12$$
$$\Delta T = \frac{1}{4\pi \sin \theta_W^2 M_W^2} \left(F(M_{H^{\pm}}^2, M_A^2) + F(M_{H^{\pm\pm}}^2, M_{H^{\pm}}^2) \right)$$
$$\Delta T < 0.2$$
$$F(x, y) = \frac{x + y}{2} - \frac{xy}{x - y} \ln\left(\frac{x}{y}\right)$$

 $(g - 2)_{\mu}$

Magdalena Kordiaczyńska (U.Silesia) Exploring doubly charged Higgs bosons...

27.09.2018 25 / 30

900

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆

$H^{\pm\pm}$ decay

$0\nu\beta\beta$

27.09.2018 27 / 30

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ● ● ●

FCNC

E 28 / 30 27.09.2018

590

イロト イヨト イヨト イヨト

Potential stability

$$\begin{array}{rcl} \lambda &> 0\\ \lambda_2 + \lambda_3 &\geq 0\\ \lambda_2 + \frac{\lambda_3}{2} &\geq 0\\ \lambda_1 + \sqrt{\lambda(\lambda_2 + \lambda_3)} &\geq 0\\ \lambda_1 + \lambda_4 + \sqrt{\lambda(\lambda_2 + \lambda_3)} &\geq 0\\ \left[& |\lambda_4|\sqrt{\lambda_2 + \lambda_3} - \lambda_3\sqrt{\lambda} &\geq 0\\ & \left[& |\lambda_4|\sqrt{\lambda_2 + \lambda_3} - \lambda_3\sqrt{\lambda} &\geq 0 \\ & \left[& |\lambda_4|\sqrt{\lambda_2 + \lambda_3} - \lambda_3\sqrt{\lambda} &\geq 0 \\ & \end{array} \right] \end{array}$$

1 27.09.2018 29 / 30

999

イロト イヨト イヨト イヨト

Unitarity