Buildup Simulations with 25 ns and 50 ns Beams for Large SEY

Luca Sabato

Giovanni Iadarola, Annalisa Romano

23rd March 2018

Introduction

Buildup Simulation Results

Conclusion

Introduction

Heat Load in LHC

Buildup Simulation Results

➤ Summary

Heat Load in LHC

Recent heat-load localization measurements by the cryogenics teams seem to point to very high heat-load densities (> 10 W/m) with 25 ns spacing, which are compatible only with very large SEY max values (>2.0)

• What do we expect with 50 ns spacing in this range?

> Introduction

> Buildup Simulation Results

- $R_0 = 0.7$ (standard case)
- $R_0 = 0.3$

Simulation Parameters

- Energy: 6.5 TeV;
- Intensity: 1e11 protons per bunch;
- Bunch length: 1.10 ns;
- $\varepsilon_{nx} = \varepsilon_{ny} = 2.5 \ \mu m;$
- Bunch spacing: 25 ns and 50 ns;
- Number of bunches per train: 72 (25 ns) and 36 (50 ns);
- Number of trains: 4;
- Results rescaled to 2808 bunches (25 ns) and 1404 bunches (50 ns);
- δ : from 1 to 3.5 with step of 0.05;
- $R_0 = 0.7$ (standard case)

• In the case of a dipole for a bunch spacing 25 ns the multipacting threshold is lower:

- $\circ \quad \delta \approx 1.25 \text{ for bunch spacing 25 ns}$
- \circ $\delta \approx 1.75$ for bunch spacing 50 ns
- In the case of a dipole the ratio between the heat loads due to the electron cloud for the bunch spacing 50 ns and 25 ns is less than 0.2 (up to $\delta = 3.5$). 7

- In the case of a drift space the heat load is bigger than the case of a dipole.
- For bunch spacing 25 ns the multipacting threshold is lower as well:
 - $\circ~~\delta\approx 1.25$ for bunch spacing 25 ns
 - $\circ ~~\delta~\approx 2 \text{ for bunch spacing 50 ns}$
- In the case of a dipole the ratio between the heat loads due to the electron cloud for the bunch

spacing 50 ns and 25 ns is less than 0.2 (up to $\delta = 3.5$) as well.

23rd March 2018

luca.sabato@cern.ch BE – ABP – HSC

- In the case of a quadrupole the heat load is bigger than the previous cases
- For bunch spacing 25 ns the multipacting threshold is lower as well:
 - $\circ \quad \delta \approx 1 \text{ for bunch spacing 25 ns}$
 - $\circ~~\delta~\approx 1.25$ for bunch spacing 50 ns
- In the case of a quadrupole, the ratio between the heat loads due to the electron cloud for the

bunch spacing 50 ns and 25 ns is less than 0.35 (up to $\delta = 3.5$).

9

Are the results affected by modeling of elastics?

- Parameters of the electron production
 - 1. large SEY: up to 3.5

Simulation Parameters

- Energy: 6.5 TeV;
- Intensity: 1e11 protons per bunch;
- Bunch length: 1.10 ns;
- $\varepsilon_{nx} = \varepsilon_{ny} = 2.5 \ \mu m;$
- Bunch spacing: 25 ns and 50 ns;
- Number of bunches per train: 72 (25 ns) and 36 (50 ns);
- Number of trains: 4;
- Results rescaled to 2808 bunches (25 ns) and 1404 bunches (50 ns);
- δ : from 1 to 3.5 with step of 0.05;
- $R_0 = 0.3$

Buildup Simulation Results: $R_0 = 0.3$

Dipole

• In the case of a dipole the ratio of heat load due to the electron cloud with $R_0 = 0.3$ is lower than the heat load due to the electron cloud with $R_0 = 0.7$.

Buildup Simulation Results: $R_0 = 0.3$

Drift Space

• In the case of a drift space the ratio of heat load due to the electron cloud with $R_0 = 0.3$ is lower than the heat load due to the electron cloud with $R_0 = 0.7$ as well.

Buildup Simulation Results: $R_0 = 0.3$

Quadrupole

• In the case of a quadrupole the ratio of heat load due to the electron cloud with $R_0 = 0.3$ is lower than the heat load due to the electron cloud with $R_0 = 0.7$ as well.

> Introduction

> Buildup Simulation Results

> Summary

Summary

BE – ABP – HSC

Thank you for your attention

EC Meeting 54

Introduction

Parameters under Investigation 2/2

• Magnetic field configurations

2. Quadrupole

1. Dipole

Courtesy of Giovanni Iadarola (from presentation at LBNL, 26 April 2017)

3. Drift Space: uniformly distributed

Summary

BE – ABP – HSC

20