# Central Exclusive Production at LHCb: Measurements and Opportunities



Ronan McNulty (UCD Dublin) on behalf of the LHCb collaboration



Workshop on QCD and Diffraction -Various Faces of QCD 15-17 November 2018, Krakow.

# <u>Outline</u>

#### CEP as a probe of QCD

Theoretical and Experimental considerations

#### Tests of QCD

- Meson production
- PDFs
- Physics of the Vacuum: soft and hard QCD.

#### Open questions in QCD

- Saturation
- Odderon
- Tetraquarks
- Glueballs, hybrids.

#### Summary

# **CEP: Colourless propagators**



- Signal: central system with rapidity gaps down to proton
- Background: proton dissociation & finite detector acceptance.



## **CEP: Complementarity of LHC running**



- pp running: generally  $\sigma_{PP} > \sigma_{P\gamma} > \sigma_{\gamma\gamma}$
- pA running
  - +  $\sigma_{Pv}$  enhanced by Z<sup>2</sup> in UPC
  - $\sigma_{PP}$  enhanced by A<sup>1/3</sup>
- AA running
  - +  $\sigma_{\gamma\gamma}$  enhanced by  $Z^4$  in UPC

# The LHCb detector

Int. J. Mod. Phys. A 30 (2015) 1530022









# High Rapidity Shower Counters at LHCb(HeRSCheL)JINST 13 (2018) P04017





# Scintillators, light-guides and PMTs



# **Backward stations**





JINST 13 (2018) P04017



Showers induced by high-rapidity particles interacting with machine elements Ideally wish to veto on any activity: threshold depends on signal and noise.

#### Sample 1: Response to CEP events (QED µµ)



#### Sample 1: Response to CEP events



#### Sample 2: Non-CEP events (J/ψ dissociation)



# HeRSCheL discriminant for physics signals



# Herschel: considerations for physics

- MIP signal: 2-5 ADC counts. Noise ~5 counts.
- In principle can veto proton remnants (y<10) showering into Herschel.
- Complicated by electronic spill-over and machine pile-up (mainly for pp running)
- Note: directionality of break-up.
  - Photoproduction in pA has break-up in p direction
  - Break-up of A gives larger signal than p







#### R. McNulty, CEP at LHCb: Measurements and Opportunities **21**





Roughly equal cross-sections with rapidity for J/ $\psi,\,\psi(2S)\,\Upsilon$ 

Strongly peaked to higher rapidities for  $\rho$ ,  $\omega$ ,  $\phi$ 

x=M<sup>2</sup>/W<sup>2</sup> W<sup>2</sup>=Me<sup>y</sup>√s J/ψ: W=[20,2000] GeV, x=[3E-6, 0.02] ρ: W=[10,1000] GeV, x=[[5E-7, 0.007]



W- solution overlaps HERA results (calibration) W+ solution is in new energy regime: high W, low x.

### LHCb J/ψ compared to lower energies



# **Gluon PDF determination**

• Major impact on gluon PDF (yet this is not included in default global PDF sets)





# **Nuclear PDF determination**

- In similar way  $\sigma_{vA}$  gives nuclear PDFs (or shadowing)
- LHCb measurement of  $J/\psi$  CEP in Lead-lead collisions



# **Upsilon photoproduction**





# Complementarity of AA running:

do(PbPb→PbPb/γγ)/dM (pb/GeV) 10<sup>10</sup> 10<sup>10</sup> 00<sup>10</sup> 00<sup>10</sup>

10<sup>5</sup>

10<sup>4</sup>

η'(958)

light-by-light scattering

M. Kłusek-Gawenda, arXiv:1809.03823

LHCb cuts

 $\sqrt{s_{NN}}$ =5.02 TeV, UPC

 $2 < \eta_v < 4.5, p_{tv} > 200 \text{ MeV}$ 

γγ signal

M<sub>yy</sub> (GeV)

10



ATLAS, Nature Phys. 13 (2017) 852 CMS, CMS-PAS-FSQ-16-012 (2018) M<sub>vv</sub>>5 GeV

LHCb in principle can go to lower masses  $\pi^0\pi^0$  can be removed through pT spectrum <100 MeV for signal

2018: Aim for  $4\mu b^{-1}$  of data. (Sufficient for seeing resonances but not continuum)  $\pi^0\pi^0$  background

χ<sub>co</sub>(1P)

n (2S)

# Open questions in QCD....





Collision between one well understood parton and one unknown or large DGLAP-evolved parton.

# Saturation



# **Open questions in QCD: Exotics**



Selection requirement:

Require precisely 4 tracks, at least three identified as muons

# Double J/ψ production



Final state theoretically studied in diphoton production (linear collider) but not through double pomeron exchange (hadron collider)

Sensitivity to higher mass states (tetraquarks,  $\eta_b$ ) Inclusive production has attracted much interest (DPS effects)

# Double J/ψ production (Tetraquark candidate)



# Open questions in QCD: The odderon (1)



| $d\sigma^{ m corr}/dy$ | $J/\psi$     |                 | Υ            |            |
|------------------------|--------------|-----------------|--------------|------------|
|                        | odderon      | photon          | odderon      | photon     |
| Tevatron               | 0.3–1.3–5 nb | 0.8–5–9 nb      | 0.7-4-15  pb | 0.8–5–9 pb |
| LHC                    | 0.3–0.9–4 nb | 2.4  15  27  nb | 1.7-5-21  pb | 53155  pb  |

Requires understanding  $p_T^2$  spectrum for proton dissociation (or rejection of it)

# **Odderoproduction**



Proton dissociation or Odderoproduction ? !

### Open questions in QCD: The odderon (2)



# Open questions in QCD: The odderon (3)

 $γp->ηp, γp->π^0p, γp->f_2p, γq->π^0π^0$ 



Czyzewski et al., PLB398 (1997) 400. Berger et al., EPJ C9 (1999) 491. M.G. Ryskin EPJ C2 (1998) 339. Kilian & Nachtmann, EPJ C5 (1998) 317.



In pp colisions, photon flux small so γγ cross-section small (and calculable) Photon-Odderon production 'small'/unknown Pomeron-Pomeron production suppressed, but still constitutes a background.

# Open questions in QCD: Glueballs, Hybrids





Central Exclusive Production is an attractive environment theoretically and experimentally to study QCD and look for new effects.