# CENTRALITY DEPENDENCE OF DILEPTON PRODUCTION IN HEAVY ION COLLISIONS

Mariola Kłusek-Gawenda INSTITUTE OF NUCLEAR PHYSICS POLISH ACADEMY OF SCIENCE, Kraków, Poland Ralf Rapp, Wolfgang Schäfer, Antoni Szczurek

arXiv:1809.07049 / Phys. Lett. B



QCD AND DIFF + VARIOUS FACES OF QCD

.<sup>+</sup>l<sup>-</sup> radiation at small *p<sub>T</sub>* 

 $\gamma\gamma$  FUSION UPC

CENTRALITY

Thermal Radiation

COCKTAIL

THEORY VS DATA RHIC SPS

PREDICTIONS

CONSLUSION



INER NEWODNICZAŃSU ITUTE OF NUCLEAR PHYSICS SH ACADEMY OF SCIENCES

RADIATION AT SMALL  $p_T$ 

QCD AND DIFF + VARIOUS FACES OF QCD

Kraków, 17/11/2018 1 / 14

### INTRODUCTION

- O First measurements of  $e^+e^-$  production in the mass region 0.4 <  $M_{e^+e^-}$  < 2.6 GeV at low  $p_T^e$ in non-central and non-ultraperipheral A-A collisions (STAR)
- O Previous dilepton measurements over a wide  $p_T^{\text{lepton}}$ region and in the mass region below  $\approx 0.7 \text{ GeV}$ (NA60, STAR)
- O Photon-photon process & photoproduction process
- O  $\gamma\gamma \rightarrow I^+I^-$  & coherent  $\gamma A \rightarrow VA$  peaked at very low  $p_T^{\text{lepton}}$  (ALICE)
- O UPC STAR, ALICE, ATLAS, CMS
- O This talk first result including centrality classes

QCD AND DIFF + VARIOUS FACES OF QCD

L<sup>+</sup>L<sup>-</sup> RADIATION AT SMALL *p<sub>T</sub>* 

 $\gamma\gamma$  FUSION UPC

CENTRALITY

Thermal Radiation

COCKTAIL

THEORY VS DATA RHIC SPS

PREDICTIONS

Conslusion



HINRY NEWODACZANE TITUTE OF NUCLEAR PHYSICS 19H ACADEMY OF SCIENCES

#### $\gamma\gamma$ fusion

### $\gamma\gamma$ fusion



$$\frac{\mathrm{d}\sigma\left(AA \to AAI^{+}I^{-}\right)}{\mathrm{d}y_{I^{+}}\mathrm{d}y_{I^{-}}\mathrm{d}p_{T}^{2}d^{2}\mathbf{b}} = \int \mathrm{d}^{2}\mathbf{b}_{1}d^{2}\mathbf{b}_{2}\,\delta^{(2)}(\mathbf{b}-\mathbf{b}_{1}-\mathbf{b}_{2})$$

$$\times \quad N(\omega_1, b_1) N(\omega_2, b_2) \frac{\mathrm{d}\sigma(\gamma \gamma \to l^+ l^-; \hat{\mathbf{s}})}{\mathrm{d}(-\hat{t})} ,$$

$$\textit{N}(\omega,\textit{b})$$

=



$$\frac{Z^{2} \alpha_{\text{EM}}}{\pi^{2}} \Big| \int_{0}^{\infty} dq_{T} \frac{q_{T}^{2} F_{\text{em}}(q_{T}^{2} + \frac{\omega^{2}}{\gamma^{2}})}{q_{T}^{2} + \frac{\omega^{2}}{\gamma^{2}}} J_{1}(bq_{T}) \Big|^{2}$$

$$(!) F_{\text{em}}^{\text{real}} \left(\mathbf{q}^{2}\right) = \frac{4\pi}{|\mathbf{q}|} \int \rho(r) \sin(|\mathbf{q}|r) r dr$$

$$F_{\text{em}}^{\text{mon}} \left(\mathbf{q}^{2}\right) = \frac{\Lambda^{2}}{\Lambda^{2} + |\mathbf{q}|^{2}}$$

QCD AND DIFF + Various Faces of QCD

L<sup>+</sup>L<sup>-</sup> RADIATION AT SMALL *p<sub>T</sub>* 

 $\gamma\gamma$  FUSION

CENTRALITY

Γhermal Radiation

COCKTAIL

THEORY VS DATA RHIC SPS

PREDICTIONS



### $AA ightarrow AAe^+e^-$ - UltraPeripheral Collision

➤ ALICE Collaboration (Abbas, E. et al.), Charmonium and e<sup>+</sup>e<sup>-</sup> pair photoproduction at mid-rapidity in ultra-peripheral Pb-Pb collisions at √s<sub>NN</sub> = 2.76 TeV, Eur. Phys. J. C73 (2013) 2617



QCD AND DIFF + VARIOUS FACES OF QCD

L<sup>+</sup>L<sup>-</sup> RADIATION AT SMALL *p<sub>T</sub>* 

 $\gamma\gamma$  FUSION UPC

CENTRALITY

Thermal Radiation

COCKTAIL

THEORY VS DATA RHIC SPS

PREDICTIONS

CONSLUSION

Kraków, 17/11/2018 4 / 14

<sup>+</sup>L<sup>-</sup> radiation at small  $p_T$ 

QCD AND DIFF + VARIOUS FACES OF QCD

### ${\cal A}{\cal A} ightarrow {\cal A}{\cal A} \mu^+ \mu^-$ - UltraPeripheral Collision

> ATLAS Collaboration,

Measurement of high-mass dimuon pairs from ultraperipheral lead-lead collisions at  $\sqrt{s_{NN}}=5.02$  TeV with the ATLAS detector at the LHC, ATLAS-CONF-2016-025



QCD AND DIFF + VARIOUS FACES OF QCD

L<sup>+</sup>L<sup>-</sup> RADIATION AT SMALL *p<sub>T</sub>* 

 $\gamma\gamma$  FUSION

CENTRALITY

THERMAL RADIATION

COCKTAIL

THEORY VS DATA RHIC SPS

PREDICTIONS

### $AA \rightarrow AAI^+I^-$

### ULTRA-PERIPHERAL $\rightarrow$ PERIPHERAL $\rightarrow$



 $\rightarrow$  Semi-Peripheral  $\rightarrow$  Semi-Central STAR Collaboration (Adam, J. et al.), Low- $p_T e^+e^-$  pair production in Au+Au collisions at  $\sqrt{s_{NN}}$  = 200 GeV and U+U collisions at  $\sqrt{s_{NN}} = 193 \text{ GeV}$  at STAR, Phys. Rev. Lett. 121 (2018) 132301

$$\frac{dN_{l+l-}[C]}{dM} = \frac{1}{f_C \cdot \sigma_{AA}^{in}} \int_{b_{min}}^{b_{max}} db$$

$$\times \int dy_{l+} dy_{l-} dp_T^2 \,\delta(M - 2\sqrt{\omega_1\omega_2}) \frac{d\sigma(AA \to AAl^{l+}l^{-})}{dy_{l+} dy_{l-} dp_T^2 db}$$

$$f_C = \frac{1}{\sigma_{AA}^{in}} \int_{b_{min}}^{b_{max}} db \frac{d\sigma_{AA}^{in}}{db},$$

$$\frac{d\sigma_{AA}^{in}}{db} = 2\pi b(1 - e^{-\sigma_{NN}^{in} T_{AA}(b)}),$$

$$f_{AA}(b) = \int d^3 \mathbf{r}_1 d^3 \mathbf{r}_2 \,\delta^{(2)}(\mathbf{b} - \mathbf{r}_{1\perp} - \mathbf{r}_{2\perp}) n_A(r_1) n_A(r_2).$$
(Find the second second

OCD AND DIFF + VARIOUS FACES OF QCD

CENTRALITY

INSTITUTE OF NUCLEAR PHYSI 6/14

### THERMAL DILEPTON RADIATION

➤ R. Rapp and H. van Hees, Thermal dileptons as fireball thermometer and chronometer. Phys. Lett. B753 (2016) 586

$$\frac{\mathrm{d}N_{l^+l^-}}{\mathrm{d}M} = \int \mathrm{d}^4 x \; \frac{M\,\mathrm{d}^3 P}{P_0} \frac{\mathrm{d}N_{l^+l^-}}{\mathrm{d}^4 x \,\mathrm{d}^4 P} ,$$
  
$$\frac{\mathrm{d}N_{l^+l^-}}{\mathrm{d}^4 x \,\mathrm{d}^4 P} = -\frac{\alpha_{\rm EM}^2 L(M)}{\pi^3 M^2} \; f^B(P_0;T) \,\mathrm{Im}\Pi_{\rm EM}(M,P;\mu_B,T) \; ,$$

- $f^{B}(P_{0}; T)$  thermal Bose function
- L(M) final-state lepton phase space factor
- Im $\Pi_{\rm EM}(M, P; \mu_B, T)$  the EM spectral function is well known in the vacuum, being proportional to the cross section for  $e^+e^- \rightarrow$  hadrons.
  - $O M \leq 1$  GeV saturated by the light vector mesons,
  - O M > 1 GeV characterized by a  $q\bar{q}$  continuum which hadronizes into multi-meson states

OCD AND DIFF + VARIOUS FACES OF OCD

THERMAL. RADIATION



Kraków, 17/11/2018

7/14

### HADRONIC COCKTAIL

When all particles decouple from the system, long-lived hadrons can decay into lepton pairs and are measured by the detector system.

| B.R.                    | $dN/dy$ or $\sigma$                                                                                                                                                                                                                                                                                                               | Uncertainty (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $1.174 \times 10^{-2}$  | 98.5                                                                                                                                                                                                                                                                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | STAR [33,34]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7 × 10 <sup>-3</sup>    | 7.86                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PHENIX [17,35]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $4.7 \times 10^{-4}$    | 2.31                                                                                                                                                                                                                                                                                                                              | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PHENIX [17], STAR [31]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4.72 × 10 <sup>-5</sup> | 16.7                                                                                                                                                                                                                                                                                                                              | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | STAR [42]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7.28 × 10 <sup>-5</sup> |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $7.7 \times 10^{-4}$    | 9.87                                                                                                                                                                                                                                                                                                                              | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | STAR [43]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $2.95 \times 10^{-4}$   |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $1.15 \times 10^{-4}$   | 2.43                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | STAR [36]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5.94 × 10 <sup>-2</sup> | 2.33 × 10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                           | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PHENIX [38]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7.72 × 10 <sup>-3</sup> | 3.38 × 10 <sup>-4</sup>                                                                                                                                                                                                                                                                                                           | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PHENIX [44,45]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $1.03 \times 10^{-1}$   | $d\sigma^{\alpha}/dy = 171 \mu b$                                                                                                                                                                                                                                                                                                 | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | STAR [41]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $1.08 \times 10^{-1}$   | $\sigma_{ab}^{bb} = 3.7 \ \mu b$                                                                                                                                                                                                                                                                                                  | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PYTHIA[32]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $3.36 \times 10^{-2}$   | $\sigma_{pp}^{DY} = 42 \text{ nb}$                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PYTHIA[32]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                         | $\begin{array}{c} \text{B.R.} \\ \hline 1.174 \times 10^{-2} \\ 7 \times 10^{-3} \\ 4.7 \times 10^{-4} \\ 4.72 \times 10^{-4} \\ 7.28 \times 10^{-5} \\ 7.7 \times 10^{-4} \\ 2.95 \times 10^{-4} \\ 1.15 \times 10^{-4} \\ 5.94 \times 10^{-2} \\ 7.72 \times 10^{-3} \\ 1.03 \times 10^{-1} \\ 3.36 \times 10^{-1} \end{array}$ | B.R. $dN/dy$ or $\sigma$ 1.174 × 10 <sup>-2</sup> 98.5           7 × 10 <sup>-3</sup> 7.86           4.7 × 10 <sup>-4</sup> 2.31           4.72 × 10 <sup>-5</sup> 16.7           7.28 × 10 <sup>-5</sup> 9.87           2.95 × 10 <sup>-4</sup> 1.15 × 10 <sup>-4</sup> 1.15 × 10 <sup>-4</sup> 2.33 × 10 <sup>-3</sup> 5.94 × 10 <sup>-2</sup> 2.33 × 10 <sup>-4</sup> 1.03 × 10 <sup>-1</sup> $\sigma^{\sigma'}/dy = 171  \mu b$ 3.36 × 10 <sup>-2</sup> $\sigma^{rp}_{PN} = 42  nb$ | B.R. $dN/dy$ or $\sigma$ Uncertainty (%)           1.174 × 10 <sup>-2</sup> 98.5         8           7 × 10 <sup>-3</sup> 7.86         30           4.7 × 10 <sup>-4</sup> 2.31         100           4.72 × 10 <sup>-5</sup> 16.7         42           7.28 × 10 <sup>-5</sup> 9.87         33           2.95 × 10 <sup>-4</sup> 10         5.94 × 10 <sup>-2</sup> 1.15 × 10 <sup>-4</sup> 2.43         10           5.94 × 10 <sup>-2</sup> 2.33 × 10 <sup>-4</sup> 27           1.03 × 10 <sup>-1</sup> $d^{ab}_{c}/dy = 171 \ \mu b$ 15           1.08 × 10 <sup>-1</sup> $d^{ab}_{c}/dy = 171 \ \mu b$ 30           3.36 × 10 <sup>-2</sup> $d^{py}_{py} = 42 \ nb$ 30 |

TABLE III. Input yields of various cocktail components for 0-80% minimum-bias Au + Au collisions at  $\sqrt{s_{NN}} = 200$  GeV.

Phys. Rev. C92 (2015) 024912

QCD AND DIFF + VARIOUS FACES OF QCD

L<sup>+</sup>L<sup>-</sup> RADIATION AT SMALL *p<sub>T</sub>* 

 $\gamma\gamma$  FUSION

CENTRALITY

Thermal Radiation

COCKTAIL

THEORY VS DATA RHIC SPS

PREDICTIONS



## $\pmb{J}/\psi$ photoproduction



$$= \frac{Z^{2} \alpha_{em}}{\pi^{2}} \left| \int u^{2} J_{1} \left( u \right) \frac{F\left( \frac{\left( \omega b \right)^{2} + u^{2}}{b^{2}} \right)}{\left( \frac{\omega b}{\gamma} \right)^{2} + u^{2}} \right|^{2} ,$$
  
$$= \int \frac{N^{(0)} \left( \omega, b_{1} \right)}{RR_{A}^{2}} \frac{\theta(R_{A} - \mathbf{b}_{2})}{\pi R_{A}^{2}} d^{2} b_{1} ,$$
  
$$= \int \frac{N^{(0)} \left( \omega, b_{1} \right)}{RR_{A}^{2}} \frac{\theta(R_{A} - \mathbf{b}_{2}) \times \theta(\mathbf{b}_{1} - R_{A})}{\pi R^{2}} d^{2} b_{1} .$$

Region of overlapping nuclei  $\rightarrow$  quark-gluon plasma.

 $p_T^e > 0.2 \text{ GeV}, 2.5 < y < 4$ 

- > ALICE Collaboration (Adam, J. et al.), Measurement of an excess in the yield of  $J/\psi$  at very low  $p_T$  in Pb-Pb collisions at  $\sqrt{s_{NN}} = 2.76$  TeV, Phys. Rev. Lett. **116** (2016) 222301
- > Phys. Rev. C93 (2016) 044912



QCD AND DIFF + VARIOUS FACES OF QCD

L<sup>+</sup>L<sup>-</sup> RADIATION AT SMALL *p<sub>T</sub>* 

 $\gamma\gamma$  FUSION UPC

CENTRALITY

THERMAL RADIATION

COCKTAIL

THEORY VS DATA RHIC SPS

PREDICTIONS

CONSLUSION



IS INTERNETION CONCOMENT INSTITUTE OF NUCLEAR PHYSIC OUISH ACADEMY OF SCIENCE

### Au+Au 200 GeV





QCD AND DIFF + VARIOUS FACES OF QCD

L<sup>+</sup>L<sup>-</sup> RADIATION AT SMALL *p<sub>T</sub>* 

 $\gamma\gamma$  FUSION upc

CENTRALITY

Thermal Radiation

COCKTAIL

THEORY VS DATA RHIC SPS

PREDICTIONS

CONSLUSION

11/14

QCD AND DIFF + VARIOUS FACES OF QCD

### IN+IN 17.3 GeV

$$\frac{3.3 < Y^{\mu^+\mu^-,LAB} < 4.2}{\frac{d^2 N}{d\eta dM_{\mu^+\mu^-}} / \frac{dN_{ch}}{d\eta}}$$



 Na60 Collaboration (Arnaldi, R. et al.),
 NA60 results on thermal dimuons, Eur. Phys. J. C61 (2009) 711 QCD AND DIFF + VARIOUS FACES OF QCD

+L<sup>—</sup> RADIATION AT SMALL **P**T

 $\gamma\gamma$  FUSION UPC

CENTRALITY

Thermal Radiation

COCKTAIL

THEORY VS DATA RHIC SPS

PREDICTIONS

CONSLUSION



IDEEX NEW COMPACTANCE ITTUTE OF NUCLEAR PHYSICS ISEN ACADEMY OF SCIENCES 12 / 14

### Рв-Рв 5.02 ТеV







PERIPHERAL....SEMI-PERIPHERAL....SEMI-CENTRAL

 $\gamma \gamma \rightarrow e^+ e^- \Leftarrow \Rightarrow \text{in-medium } \rho + \text{QGP}$ 

13/14

INSTITUTE OF NUCLEAR PHYSIC

OCD AND DIFF +

VARIOUS FACES OF QCD

