Top pair production in hadron-hadron collisions at NNLO

Sebastian Sapeta

IFJ PAN Kraków

In collaboration with René Ángeles-Martinez and Michał Czakon

based on JHEP 1810 (2018) 201

Various Faces of QCD, IFJ PAN, Kraków, 15-17 November 2018

A single complete NNLO result for total and differential cross section obtained with STRIP-PER methodology [Czakon, Mitov Fiedler, Heymes, Mitov '13, '16]

A single complete NNLO result for total and differential cross section obtained with STRIP-PER methodology [Czakon, Mitov Fiedler, Heymes, Mitov '13, '16]

- Flavour off-diagonal channels at NNLO from q_T subtraction [Bonciani, Catani, Grazzini, Sargsyan, Torre '15]
- Approximate NNLO [Broggio, Papanastasiou, Signer '14]
- Soft and small-mass resummation at NNLL [Czakon, Ferroglia, Heymes, Mitov, Pecjak, Scott, Wang, Yang '18]
- Small-q_T resummation at NNLL [Li, Li, Shao, Yang, Zhu '13; Catani, Grazzini, Torre '14]

 A single complete NNLO result for total and differential cross section obtained with STRIP-PER methodology [Czakon, Mitov Fiedler, Heymes, Mitov '13, '16]

- Flavour off-diagonal channels at NNLO from q_T subtraction [Bonciani, Catani, Grazzini, Sargsyan, Torre '15]
- Approximate NNLO [Broggio, Papanastasiou, Signer '14]
- Soft and small-mass resummation at NNLL [Czakon, Ferroglia, Heymes, Mitov, Pecjak, Scott, Wang, Yang '18]
- Small-q_T resummation at NNLL [Li, Li, Shao, Yang, Zhu '13; Catani, Grazzini, Torre '14]
- Given the complexity of the calculation, a second result obtained with an *independent* method is highly desirable

 A single complete NNLO result for total and differential cross section obtained with STRIP-PER methodology [Czakon, Mitov Fiedler, Heymes, Mitov '13, '16]

- Flavour off-diagonal channels at NNLO from q_T subtraction [Bonciani, Catani, Grazzini, Sargsyan, Torre '15]
- Approximate NNLO [Broggio, Papanastasiou, Signer '14]
- Soft and small-mass resummation at NNLL [Czakon, Ferroglia, Heymes, Mitov, Pecjak, Scott, Wang, Yang '18]
- Small-q_T resummation at NNLL [Li, Li, Shao, Yang, Zhu '13; Catani, Grazzini, Torre '14]
- Given the complexity of the calculation, a second result obtained with an *independent* method is highly desirable
- The framework developed to perform the above would be of direct use for N³LO calculations for a range of processes relevant for the LHC

Sebastian Sapeta (IFJ PAN Kraków)

Next-to-Leading Order (NLO), UV-renormalized

 $\sigma_{\rm NLO} = R + V$

- R and V are separately divergent in the soft and collinear limits (IR divergences)
- ► Kinoshita-Lee-Nauenberg theorem guarantees that σ_{NLO} is finite \hookrightarrow Divergences of *R* and *V* have to cancel

 $\sigma_{\rm NLO} = R + V$

- R and V are separately divergent in the soft and collinear limits (IR divergences)
- ► Kinoshita-Lee-Nauenberg theorem guarantees that σ_{NLO} is finite \hookrightarrow Divergences of R and V have to cancel
- ► The cancellation can be easily achieved for total cross sections by calculating both *R* and *V* in *d* dimensions

 $\sigma_{\rm NLO} = R + V$

- R and V are separately divergent in the soft and collinear limits (IR divergences)
- ► Kinoshita-Lee-Nauenberg theorem guarantees that σ_{NLO} is finite \hookrightarrow Divergences of R and V have to cancel
- ► The cancellation can be easily achieved for total cross sections by calculating both *R* and *V* in *d* dimensions
- ▶ But, experiments measure cross sections is fiducial volumes
 ⇒ predictions should take into account cuts on real radiation
 ⇒ R has to be calculated in 4 dimensions

 $\sigma_{\rm NLO} = R + V$

- R and V are separately divergent in the soft and collinear limits (IR divergences)
- ► Kinoshita-Lee-Nauenberg theorem guarantees that σ_{NLO} is finite \hookrightarrow Divergences of *R* and *V* have to cancel
- ► The cancellation can be easily achieved for total cross sections by calculating both *R* and *V* in *d* dimensions
- ▶ But, experiments measure cross sections is fiducial volumes ⇒ predictions should take into account cuts on real radiation ⇒ R has to be calculated in 4 dimensions

How to carry out this cancellation in practice, given that R is integrated in 4 while V in d dimensions?

Sebastian Sapeta (IFJ PAN Kraków)

Top Pair Production in Hadron-Hadron Collisions at NNLO

The q_T slicing method

[Catani, Grazzini '07, '15]

$$p+p \rightarrow F(q_T) + X$$

$$\sigma_{\mathsf{N}^{\mathsf{m}}\mathsf{LO}}^{\mathsf{F}} = \int_{0}^{q_{\mathsf{T},\mathsf{cut}}} dq_{\mathsf{T}} \, \frac{d\sigma_{\mathsf{N}^{\mathsf{m}}\mathsf{LO}}^{\mathsf{F}}}{dq_{\mathsf{T}}} + \int_{q_{\mathsf{T},\mathsf{cut}}}^{\infty} dq_{\mathsf{T}} \, \frac{d\sigma_{\mathsf{N}^{\mathsf{m}}\mathsf{LO}}^{\mathsf{F}}}{dq_{\mathsf{T}}}$$

The q_T slicing method

[Catani, Grazzini '07, '15]

$$p+p
ightarrow F(q_T) + X$$

$$\sigma_{\mathsf{N}^{\mathsf{m}}\mathsf{LO}}^{\mathsf{F}} = \int_{0}^{q_{\mathsf{T},\mathsf{cut}}} dq_{\mathsf{T}} \, \frac{d\sigma_{\mathsf{N}^{\mathsf{m}}\mathsf{LO}}^{\mathsf{F}}}{dq_{\mathsf{T}}} + \int_{q_{\mathsf{T},\mathsf{cut}}}^{\infty} dq_{\mathsf{T}} \, \frac{d\sigma_{\mathsf{N}^{\mathsf{m}}\mathsf{LO}}^{\mathsf{F}}}{dq_{\mathsf{T}}}$$

$$= \int_{0}^{q_{T,\text{cut}}} dq_{T} \frac{d\sigma_{N^{m}\text{LO}}^{F}}{dq_{T}} + \int_{q_{T,\text{cut}}}^{\infty} dq_{T} \frac{d\sigma_{N^{m-1}\text{LO}}^{F+\text{jet}}}{dq_{T}}$$

The q_T slicing method

[Catani, Grazzini '07, '15]

$$p + p \rightarrow F(q_T) + X$$

$$\sigma_{\mathsf{N}^{\mathsf{F}}\mathsf{LO}}^{\mathsf{F}} = \int_{0}^{q_{T,\mathsf{cut}}} dq_{T} \, \frac{d\sigma_{\mathsf{N}^{\mathsf{m}}\mathsf{LO}}^{\mathsf{F}}}{dq_{T}} + \int_{q_{T,\mathsf{cut}}}^{\infty} dq_{T} \, \frac{d\sigma_{\mathsf{N}^{\mathsf{m}}\mathsf{LO}}^{\mathsf{F}}}{dq_{T}}$$
$$= \int_{0}^{q_{T,\mathsf{cut}}} dq_{T} \, \frac{d\sigma_{\mathsf{N}^{\mathsf{m}}\mathsf{LO}}^{\mathsf{F}}}{dq_{T}} + \int_{q_{T,\mathsf{cut}}}^{\infty} dq_{T} \, \frac{d\sigma_{\mathsf{N}^{\mathsf{m}}\mathsf{LO}}^{\mathsf{F}+\mathsf{jet}}}{dq_{T}}$$
enough to know in small- q_{T} approximation

Soft Collinear Effective Theory (SCET)

 $\mathsf{SCET}\simeq\mathsf{QCD}\Big|_{\mathsf{IR\ limit}}$

Hard degrees of freedom are integrated out into Wilson coefficients, which are then used to adjust new couplings of the (effective) theory.

Soft Collinear Effective Theory (SCET)

 $\mathsf{SCET} \simeq \mathsf{QCD}\Big|_{\mathsf{IR\ limit}}$

Hard degrees of freedom are integrated out into Wilson coefficients, which are then used to adjust new couplings of the (effective) theory.

QCD fields written as sums of collinear, anti-collinear and soft components:

$$\phi(x) = \phi_c(x) + \phi_{\bar{c}}(x) + \phi_s(x)$$

Soft Collinear Effective Theory (SCET)

 $\mathsf{SCET} \simeq \mathsf{QCD}\Big|_{\mathsf{IR limit}}$

Hard degrees of freedom are integrated out into Wilson coefficients, which are then used to adjust new couplings of the (effective) theory.

QCD fields written as sums of collinear, anti-collinear and soft components:

$$\phi(x) = \phi_c(x) + \phi_{\bar{c}}(x) + \phi_s(x)$$

The new fields decouple in the Lagrangian

$$\mathcal{L}_{\mathsf{SCET}} = \mathcal{L}_c + \mathcal{L}_{\bar{c}} + \mathcal{L}_s$$

 The separation of fields in the Lagrangian into collinear, anti-collinear and soft sectors, facilitates proofs of factorization theorems

Sebastian Sapeta (IFJ PAN Kraków)

where $F = H, Z, W, ZZ, WW, t\bar{t}, \ldots$

where $F = H, Z, W, ZZ, WW, t\bar{t}, \ldots$

$$rac{d\sigma^{F}}{d\Phi} = \mathcal{B}_{1}\otimes\mathcal{B}_{2}\otimes\mathcal{H}\otimes\mathcal{S} + \mathcal{O}\left(rac{q_{T}^{2}}{q^{2}}
ight)$$

Sebastian Sapeta (IFJ PAN Kraków)

Gluons' momenta in light-cone coordinates

$$k_i^\mu = \left(k_i^+, k_i^-, \boldsymbol{k}_i^\perp
ight)$$
 where $k^\pm = k^0 \pm k^3$

Expansion parameter

$$\lambda = rac{q_T^2}{q^2} \ll 1$$

Gluons' momenta in light-cone coordinates

$$k_i^\mu = \left(k_i^+, k_i^-, {oldsymbol k}_i^\perp
ight)$$
 where $k^\pm = k^0 \pm k^3$

Expansion parameter

$$\lambda = \frac{q_T^2}{q^2} \ll 1$$

Regions

Top pair production at small- q_T through NNLO

$$\frac{d\sigma^{\text{NNLO}}}{dq_T \, dy \, dM \, d\cos\theta} = \sum_{i,\bar{i}} \mathcal{B}_{i/h_1} \otimes \mathcal{B}_{\bar{i}/h_2} \otimes \text{Tr} \left[\mathcal{H}_{i\bar{i}} \otimes \mathcal{S}_{i\bar{i}} \right]$$

where

 q_T , y, M : transverse momentum, rapidity, mass of top quark pair θ : scattering angle of the top quark in $t\bar{t}$ rest frame

Top pair production at small- q_T through NNLO

$$\frac{d\sigma^{\text{NNLO}}}{dq_T \, dy \, dM \, d\cos\theta} = \sum_{i,\bar{i}} \mathcal{B}_{i/h_1} \otimes \mathcal{B}_{\bar{i}/h_2} \otimes \text{Tr} \left[\mathcal{H}_{i\bar{i}} \otimes \mathcal{S}_{i\bar{i}} \right]$$

where

- q_T , y, M : transverse momentum, rapidity, mass of top quark pair θ : scattering angle of the top quark in $t\bar{t}$ rest frame
- B known up to NNLO [Gehrmann, Lübbert, Yang '12, '14]
- ${\cal H}$ known up to NNLO [Czakon '08; Baernreuther, Czakon, Fiedler '13]
- *S* known up to NLO in small-q_T limit [Li, Li, Shao, Yan, Zhu '13;
 Catani, Grazzini, Torre '14]

Top pair production at small- q_T through NNLO

$$\frac{d\sigma^{\text{NNLO}}}{dq_T \, dy \, dM \, d\cos\theta} = \sum_{i,\overline{i}} \mathcal{B}_{i/h_1} \otimes \mathcal{B}_{\overline{i}/h_2} \otimes \text{Tr} \left[\mathcal{H}_{i\overline{i}} \otimes \mathcal{S}_{i\overline{i}} \right]$$

where

- q_T , y, M : transverse momentum, rapidity, mass of top quark pair θ : scattering angle of the top quark in $t\bar{t}$ rest frame
- B known up to NNLO [Gehrmann, Lübbert, Yang '12, '14]
- ${\cal H}$ known up to NNLO [Czakon '08; Baernreuther, Czakon, Fiedler '13]
- *S* known up to NLO in small-q_T limit [Li, Li, Shao, Yan, Zhu '13;
 Catani, Grazzini, Torre '14]

Calculating the missing NNLO correction to the soft function in the small- q_T limit, S, is the aim of this phase of our work.

Sebastian Sapeta (IFJ PAN Kraków)

▶ Represents corrections coming from exchanges of real, soft gluons, whose transverse momenta sum up to a fixed value q_T.

▶ Represents corrections coming from exchanges of real, soft gluons, whose transverse momenta sum up to a fixed value q_T.

▶ Represents corrections coming from exchanges of real, soft gluons, whose transverse momenta sum up to a fixed value q_T.

- ▶ external momenta \rightarrow Wilson Lines along *n*, \bar{n} , v_3 , v_4
- dimensional regularization insufficient; necessity of additional regulator of "rapidity" divergencies α

▶ Represents corrections coming from exchanges of real, soft gluons, whose transverse momenta sum up to a fixed value q_T.

- ▶ external momenta \rightarrow Wilson Lines along *n*, \bar{n} , v_3 , v_4
- dimensional regularization insufficient; necessity of additional regulator of "rapidity" divergencies α

$$\begin{split} \boldsymbol{S}_{i\bar{i}} &= \sum_{n=0}^{\infty} \boldsymbol{S}_{i\bar{i}}^{(n)} \left(\frac{\alpha_s}{4\pi}\right)^n \qquad \qquad \boldsymbol{S}_{i\bar{i}}^{(n)} &= \sum_{\{j\}} \boldsymbol{w}_{\{j\}}^{i\bar{i}} \boldsymbol{I}_{\{j\}} \\ & \text{colour matrices} \quad \boldsymbol{\uparrow} \quad \boldsymbol{\uparrow} \quad \text{phase space integrals} \end{split}$$

Sebastian Sapeta (IFJ PAN Kraków)

Soft function at NLO

Soft function at NLO

Sebastian Sapeta (IFJ PAN Kraków)

Soft function at NNLO

Three distinct groups of diagrams:

Soft function at NNLO

Three distinct groups of diagrams:

Three distinct groups of diagrams:

Three distinct groups of diagrams:

Sebastian Sapeta (IFJ PAN Kraków)

Three distinct groups of diagrams:

Three distinct groups of diagrams:

Single-cut

DIFFERENTIAL EQUATIONS

DIRECT INTEGRATION

▶ Double-cut

SECTOR DECOMPOSITION

Double-cut NNLO integrals

Example:

$$\tilde{I}_{3gv,ij} = \int \frac{d^d k_1 \, d^d k_2 \, \delta^+(k_1^2) \, \delta^+(k_2^2) \, \delta((k_1 + k_2)_T^2 - q_T^2)}{(n \cdot k_1)^{\alpha} \, (n \cdot k_2)^{\alpha} \, (n_i \cdot k_1) \, (n_j \cdot (k_1 + k_2)) \, (k_1 + k_2)^2}$$

Double-cut NNLO integrals

Example:

$$\tilde{I}_{3gv,ij} = \int \frac{d^d k_1 \, d^d k_2 \, \delta^+(k_1^2) \, \delta^+(k_2^2) \, \delta((k_1 + k_2)_T^2 - q_T^2)}{(n \cdot k_1)^{\alpha} \, (n \cdot k_2)^{\alpha} \, (n_i \cdot k_1) \, (n_j \cdot (k_1 + k_2)) \, (k_1 + k_2)^2}$$

- divergent in the limits $\epsilon \to \mathbf{0}$ and $\alpha \to \mathbf{0}$
- a range of overlapping singularities
- complication introduced by δ((k₁ + k₂)²_T − q²_T) which additionally couples gluon's momenta

Double-cut NNLO integrals

Example:

$$\tilde{I}_{3gv,ij} = \int \frac{d^d k_1 \, d^d k_2 \, \delta^+(k_1^2) \, \delta^+(k_2^2) \, \delta((k_1 + k_2)_T^2 - q_T^2)}{(n \cdot k_1)^{\alpha} \, (n \cdot k_2)^{\alpha} \, (n_i \cdot k_1) \, (n_j \cdot (k_1 + k_2)) \, (k_1 + k_2)^2}$$

- \blacktriangleright divergent in the limits $\epsilon \rightarrow \mathbf{0}$ and $\alpha \rightarrow \mathbf{0}$
- a range of overlapping singularities
- ► complication introduced by $\delta((k_1 + k_2)_T^2 q_T^2)$ which additionally couples gluon's momenta

To disentangle overlapping singularities and calculate regularized integrals we use the method of sector decomposition [Binoth, Heinrich, '00; Borowka, Heinrich, Jahn, Jones, Kerner, Schlenk, Zirke '17].

$$\int_0^1 dx \, dy \frac{\mathcal{W}(x,y)}{(x+y)^{2+\epsilon}}$$

$$\int_0^1 dx \, dy \frac{\mathcal{W}(x,y)}{(x+y)^{2+\epsilon}} = \int_0^1 dx \, dy \frac{\mathcal{W}(x,y)}{(x+y)^{2+\epsilon}} \Big[\underbrace{\Theta(x-y)}^{(1)} + \underbrace{\Theta(y-x)}^{(2)} \Big]$$

$$\int_{0}^{1} dx \, dy \frac{\mathcal{W}(x,y)}{(x+y)^{2+\epsilon}} = \int_{0}^{1} dx \, dy \frac{\mathcal{W}(x,y)}{(x+y)^{2+\epsilon}} \Big[\underbrace{\Theta(x-y)}_{(x-y)} + \underbrace{\Theta(y-x)}_{(y-x)} \Big]$$

$$(1) \quad y = x t \qquad (2) \quad x = y t$$

$$\int_0^1 dx \, dy \frac{\mathcal{W}(x,y)}{(x+y)^{2+\epsilon}} = \int_0^1 dx \, dy \frac{\mathcal{W}(x,y)}{(x+y)^{2+\epsilon}} \Big[\underbrace{\Theta(x-y)}_{(x-y)} + \underbrace{\Theta(y-x)}_{(y-x)} \Big]$$

$$(1) \quad y = x t \qquad (2) \quad x = y t$$

$$= \int_0^1 dx \, dt \frac{\mathcal{W}(x,tx)}{(1+t)^{2+\epsilon} x^{1+\epsilon}} + \int_0^1 dt \, dy \frac{\mathcal{W}(ty,y)}{(1+t)^{2+\epsilon} y^{1+\epsilon}}$$

In general, each integral can be expressed as

$$\mathcal{I} = \sum_{i \in \text{sectors}} \int_0^1 \frac{dx_1}{x_1^{1+a_1\epsilon}} \frac{dx_2}{x_2^{1+a_2\epsilon}} \cdots \frac{dx_n}{x_n^{1+a_n\epsilon}} \mathcal{W}_i(x_1, x_2, \dots, x_n)$$

In general, each integral can be expressed as

$$\mathcal{I} = \sum_{i \in \text{sectors}} \int_0^1 \frac{dx_1}{x_1^{1+a_1\epsilon}} \frac{dx_2}{x_2^{1+a_2\epsilon}} \cdots \frac{dx_n}{x_n^{1+a_n\epsilon}} \mathcal{W}_i(x_1, x_2, \dots, x_n)$$

and then we use

$$\frac{1}{x_i^{1+a_i\epsilon}} = -\frac{1}{a_i\epsilon}\delta(x_i) + \sum_{n=0}^{\infty} \frac{a_i^n\epsilon^n}{n!} \left[\frac{\log^n(x_i)}{x_i}\right]_+$$

In general, each integral can be expressed as

$$\mathcal{I} = \sum_{i \in \text{sectors}} \int_0^1 \frac{dx_1}{x_1^{1+a_1\epsilon}} \frac{dx_2}{x_2^{1+a_2\epsilon}} \cdots \frac{dx_n}{x_n^{1+a_n\epsilon}} \mathcal{W}_i(x_1, x_2, \dots, x_n)$$

and then we use

$$\frac{1}{x_i^{1+a_i\epsilon}} = -\frac{1}{a_i\epsilon}\delta(x_i) + \sum_{n=0}^{\infty} \frac{a_i^n\epsilon^n}{n!} \left[\frac{\log^n(x_i)}{x_i}\right]_+$$

After the above procedure is performed, all divergences become explicit and are turned in to ϵ poles

Sebastian Sapeta (IFJ PAN Kraków)

Two types of singularities

► Endpoint, *e.g.* soft:

$$\left(k_{1}^{+},k_{1}^{-},k_{1}^{\perp}\right) \rightarrow 0$$

Two types of singularities

► Endpoint, *e.g.* soft:

$$\left(k_1^+, k_1^-, k_1^\perp\right) \to 0$$

► Manifold, *e.g.* collinear

$$S_{1-\text{cut}}^{(2)} = \sum_{ijk} \int d^{d} I \frac{\delta^{+}(l^{2}) \,\delta(l_{T} - q_{T})}{l_{+}^{\alpha} \,n_{k} \cdot l} n_{k}^{\mu} T_{k}^{a} J_{ij,a}^{\mu}(I)$$

$$S_{1-\text{cut}}^{(2)} = \sum_{ijk} \int d^{d} I \frac{\delta^{+}(I^{2})\,\delta(I_{T} - q_{T})}{I_{+}^{\alpha}\,n_{k} \cdot I} n_{k}^{\mu}\,T_{k}^{a}J_{ij,a}^{\mu}(I)$$

The soft current J^µ_{ij,a}(I) is known up to NLO [Catani, Grazzini '00; Bierenbaum, Czakon, Mitov '12; Czakon, Mitov '18].

$$S_{1-\text{cut}}^{(2)} = \sum_{ijk} \int d^{d}l \frac{\delta^{+}(l^{2})\,\delta(l_{T}-q_{T})}{l_{+}^{\alpha}\,n_{k}\cdot l} n_{k}^{\mu}\,T_{k}^{a}J_{ij,a}^{\mu}(l)$$

The soft current J^μ_{ij,a}(I) is known up to NLO [Catani, Grazzini '00; Bierenbaum, Czakon, Mitov '12; Czakon, Mitov '18].

• $S_{1-\text{cut}}^{(2)}$ can be obtained by a relatively simple integration over l^{μ} .

$$S_{1-\text{cut}}^{(2)} = \sum_{ijk} \int d^{d}l \frac{\delta^{+}(l^{2})\,\delta(l_{T}-q_{T})}{l_{+}^{\alpha}\,n_{k}\cdot l} n_{k}^{\mu}\,T_{k}^{a}J_{ij,a}^{\mu}(l)$$

The soft current J^µ_{ij,a}(I) is known up to NLO [Catani, Grazzini '00; Bierenbaum, Czakon, Mitov '12; Czakon, Mitov '18].

• $S_{1-\text{cut}}^{(2)}$ can be obtained by a relatively simple integration over I^{μ} .

Single-cut piece of the soft function exhibits both real and imaginary part. The latter when i ≠ j ≠ k, the former, otherwise.

Sebastian Sapeta (IFJ PAN Kraków)

Bubble

Bubble

- Solvable analytically: direct cross check of our sector decompositionbased implementation
- \blacktriangleright Non-trivial tensor structure \rightarrow challenging numerators
- Laboratory to stress-test sector decomposition-based methodology

$$\int \frac{d^{d}q \,\delta(q_{T}-1)\,\theta^{+}(q^{2})\,n_{i}^{\mu}n_{j}^{\nu}}{q^{4}\left(n_{i}\cdot q\right)\left(n_{j}\cdot q\right)} \left(\bigcap_{k}^{q} \bigcap_{k}^{q,k} \right)_{\mu\nu}$$

$$\int \frac{d^{d}q \,\delta(q_{T}-1) \,\theta^{+}(q^{2}) \,n_{i}^{\mu} n_{j}^{\nu}}{q^{4} \left(n_{i} \cdot q\right) \left(n_{j} \cdot q\right)} \left(\bigvee_{k}^{q} \bigoplus_{j}^{q \cdot k} \right)_{\mu\nu}$$

where

$$\begin{pmatrix} q \\ rot \\ rot$$

Sebastian Sapeta (IFJ PAN Kraków)

Top Pair Production in Hadron-Hadron Collisions at NNLO

Reverse unitarity [Anastasiou, Melnikov '02, Cutkosky '60]

$$2i\pi\delta(p^2-m^2)
ightarrow rac{1}{p^2-m^2+i\epsilon}-rac{1}{p^2-m^2-i\epsilon}$$

Reverse unitarity [Anastasiou, Melnikov '02, Cutkosky '60]

$$2i\pi\delta(p^2-m^2)
ightarrow rac{1}{p^2-m^2+i\epsilon}-rac{1}{p^2-m^2-i\epsilon}$$

real gluons are turned into virtual ones

Reverse unitarity [Anastasiou, Melnikov '02, Cutkosky '60]

$$2i\pi\delta(p^2-m^2)
ightarrow rac{1}{p^2-m^2+i\epsilon}-rac{1}{p^2-m^2-i\epsilon}$$

- real gluons are turned into virtual ones
- this allows us to utilize all the existing loop technology

Reverse unitarity [Anastasiou, Melnikov '02, Cutkosky '60]

$$2i\pi\delta(p^2-m^2)
ightarrow rac{1}{p^2-m^2+i\epsilon}-rac{1}{p^2-m^2-i\epsilon}$$

- real gluons are turned into virtual ones
- this allows us to utilize all the existing loop technology

Topology:

$$\int \frac{d^d k}{(n \cdot k)^{a_1 + 2\alpha} (\bar{n} \cdot k)^{a_2} (v_3 \cdot k)^{a_3} (v_4 \cdot k)^{a_4} (k^2 - m^2)^{a_5} ((n \cdot k) (\bar{n} \cdot k) - m^2 - 1)^{a_6}}$$

Identities (5 standard IBPs + 2 specific)

$$\int d^d k \, \frac{\partial}{\partial k^\mu} q^\mu I(a_1, a_2, \dots, a_6) = 0 \,, \qquad q^\mu = n^\mu, \bar{n}^\mu, v_3^\mu, v_4^\mu, k^\mu$$

Identities (5 standard IBPs + 2 specific)

$$\int d^d k \, \frac{\partial}{\partial k^\mu} q^\mu I(a_1, a_2, \dots, a_6) = 0 \,, \qquad q^\mu = n^\mu, \bar{n}^\mu, v_3^\mu, v_4^\mu, k^\mu$$

• Reduction to a set of Master Integrals: $\{M_i\}$

Identities (5 standard IBPs + 2 specific)

$$\int d^d k \, \frac{\partial}{\partial k^\mu} q^\mu I(a_1, a_2, \dots, a_6) = 0 \,, \qquad q^\mu = n^\mu, \bar{n}^\mu, v_3^\mu, v_4^\mu, k^\mu$$

Reduction to a set of Master Integrals: {*M_i*}

Differential equations

$$rac{d}{deta_t}M_i$$
 followed by reduction $\Rightarrow \left| rac{d}{deta_t}M_i = A_{ij}M_j \right|$

Identities (5 standard IBPs + 2 specific)

$$\int d^d k \frac{\partial}{\partial k^{\mu}} q^{\mu} I(a_1, a_2, \dots, a_6) = 0, \qquad q^{\mu} = n^{\mu}, \bar{n}^{\mu}, v_3^{\mu}, v_4^{\mu}, k^{\mu}$$

Reduction to a set of Master Integrals: {*M_i*}

Differential equations

$$\frac{d}{d\beta_t}M_i$$
 followed by reduction $\Rightarrow \left| \frac{d}{d\beta_t}M_i = A_{ij}M_j \right|$

• Straightforward integrations with $\beta_t = 0$ fix boundary conditions

Identities (5 standard IBPs + 2 specific)

$$\int d^d k \frac{\partial}{\partial k^{\mu}} q^{\mu} I(a_1, a_2, \dots, a_6) = 0, \qquad q^{\mu} = n^{\mu}, \bar{n}^{\mu}, v_3^{\mu}, v_4^{\mu}, k^{\mu}$$

Reduction to a set of Master Integrals: {*M_i*}

Differential equations

$$rac{d}{deta_t}M_i$$
 followed by reduction $\Rightarrow \left(rac{d}{deta_t}M_i = A_{ij}M_j\right)$

- Straightforward integrations with $\beta_t = 0$ fix boundary conditions
- Final set of bubble integrals:

$$\left\{I_{jk}(\beta_t,\theta)\right\}$$

Sebastian Sapeta (IFJ PAN Kraków)

Complete Soft Function at NNLO: structure of the result

$$S^{(2,\text{bare})}(L_{\perp},\beta_t,\theta) = \left[\frac{1}{\epsilon} + L_{\perp} + L_{\perp}^2 + \dots\right]$$
$$\times \left[S^{(2)}_{\text{bubble}}(\beta_t,\theta,\epsilon) + S^{(2)}_{1-\text{cut}}(\beta_t,\theta,\epsilon) + S^{(2)}_{2-\text{cut}}(\beta_t,\theta,\epsilon)\right]$$
$$S^{(2,\text{bare})}(L_{\perp},\beta_t,\theta) = \left[\frac{1}{\epsilon} + L_{\perp} + L_{\perp}^2 + \ldots\right]$$
$$\times \left[S^{(2)}_{\text{bubble}}(\beta_t,\theta,\epsilon) + S^{(2)}_{1-\text{cut}}(\beta_t,\theta,\epsilon) + S^{(2)}_{2-\text{cut}}(\beta_t,\theta,\epsilon)\right]$$
$$= \frac{1}{\epsilon^2}S^{(2,-2)}(L_{\perp}) + \frac{1}{\epsilon}S^{(2,-1)}(L_{\perp}) + S^{(2,0)}(L_{\perp})$$

$$S^{(2,\text{bare})}(L_{\perp},\beta_{t},\theta) = \left[\frac{1}{\epsilon} + L_{\perp} + L_{\perp}^{2} + \ldots\right]$$
$$\times \left[S^{(2)}_{\text{bubble}}(\beta_{t},\theta,\epsilon) + S^{(2)}_{1-\text{cut}}(\beta_{t},\theta,\epsilon) + S^{(2)}_{2-\text{cut}}(\beta_{t},\theta,\epsilon)\right]$$
$$= \underbrace{\frac{1}{\epsilon^{2}}}_{\epsilon}S^{(2,-2)}(L_{\perp}) + \frac{1}{\epsilon}S^{(2,-1)}(L_{\perp}) + S^{(2,0)}(L_{\perp})$$

can be cross-checked against RG; fixes all $L_{\perp}\text{-dependent terms in }S^{(2,0)}(L_{\perp})$

$$S^{(2,\text{bare})}(L_{\perp},\beta_{t},\theta) = \left[\frac{1}{\epsilon} + L_{\perp} + L_{\perp}^{2} + \ldots\right]$$
$$\times \left[S^{(2)}_{\text{bubble}}(\beta_{t},\theta,\epsilon) + S^{(2)}_{1-\text{cut}}(\beta_{t},\theta,\epsilon) + S^{(2)}_{2-\text{cut}}(\beta_{t},\theta,\epsilon)\right]$$
$$= \underbrace{\frac{1}{\epsilon^{2}}}_{\epsilon}S^{(2,-2)}(L_{\perp}) + \frac{1}{\epsilon}S^{(2,-1)}(L_{\perp}) + S^{(2,0)}(L_{\perp})$$

can be cross-checked against RG; fixes all L_{\perp} -dependent terms in $S^{(2,0)}(L_{\perp})$

► The only term that has to be obtained through direct calculation is the L_⊥-independent part of S^(2,0)(L_⊥).

$$S^{(2,\text{bare})}(L_{\perp},\beta_t,\theta) = \left[\frac{1}{\epsilon} + L_{\perp} + L_{\perp}^2 + \ldots\right]$$
$$\times \left[S^{(2)}_{\text{bubble}}(\beta_t,\theta,\epsilon) + S^{(2)}_{1-\text{cut}}(\beta_t,\theta,\epsilon) + S^{(2)}_{2-\text{cut}}(\beta_t,\theta,\epsilon)\right]$$
$$= \underbrace{\frac{1}{\epsilon^2}}_{\epsilon^2}S^{(2,-2)}(L_{\perp}) + \frac{1}{\epsilon}S^{(2,-1)}(L_{\perp}) + S^{(2,0)}(L_{\perp})$$

can be cross-checked against RG; fixes all L_{\perp} -dependent terms in $S^{(2,0)}(L_{\perp})$

- ► The only term that has to be obtained through direct calculation is the L_⊥-independent part of S^(2,0)(L_⊥).
- However, we calculate all terms and use the redundant ones for cross checks against Renormalization Group prediction.

Sebastian Sapeta (IFJ PAN Kraków)

Top Pair Production in Hadron-Hadron Collisions at NNLO

Vanishing of higher order poles

Even though the NNLO Soft Function exhibits at most $\frac{1}{\epsilon^2}$ singularity, higher order poles appear in individual contributions.

Vanishing of higher order poles

Even though the NNLO Soft Function exhibits at most $\frac{1}{\epsilon^2}$ singularity, higher order poles appear in individual contributions.

► All α poles, including $\frac{\epsilon}{\alpha}$, as well as $\frac{1}{\epsilon^4}$ pole cancel within each colour structure, for example

 $\frac{1}{\epsilon^4} \begin{pmatrix} 0.00009 N_c^{-1} - 0.00009 N_c & -0.00002 N_c^2 - 0.00009 N_c^{-2} + 0.0001 \\ -0.00002 N_c^2 - 0.00009 N_c^{-2} + 0.0001 & 0.00008 N_c^3 - 0.00006 N_c + 0.00007 N_c^{-3} - 0.00009 N_c^{-1} \end{pmatrix}$

Vanishing of higher order poles

Even though the NNLO Soft Function exhibits at most $\frac{1}{\epsilon^2}$ singularity, higher order poles appear in individual contributions.

• All α poles, including $\frac{\epsilon}{\alpha}$, as well as $\frac{1}{\epsilon^4}$ pole cancel within each colour structure, for example

 $\frac{1}{\epsilon^4} \begin{pmatrix} 0.00009 \, N_c^{-1} - 0.00009 \, N_c & -0.00002 \, N_c^2 - 0.00009 \, N_c^{-2} + 0.0001 \\ -0.00002 \, N_c^2 - 0.00009 \, N_c^{-2} + 0.0001 & 0.00008 \, N_c^3 - 0.00006 \, N_c + 0.00007 \, N_c^{-3} - 0.00009 \, N_c^{-1} \end{pmatrix}$

 $\frac{1}{\epsilon^3} \text{ pole cancels between 1-cut and 2-cut contributions}$ $\frac{1}{\epsilon^3} \begin{pmatrix} 0.0004 N_c^3 - 0.0007 N_c + 0.0004 N_c^{-1} & 0.0004 N_c^2 - 0.0004 N_c^{-2} - 7. \times 10^{-6} \\ 0.0004 N_c^2 - 0.0004 N_c^{-2} - 7. \times 10^{-6} & -0.0004 N_c^3 - 0.00001 N_c + 0.0003 N_c^{-3} + 0.0002 N_c^{-1} \end{pmatrix}$

Sebastian Sapeta (IFJ PAN Kraków)

[†] We used $\beta_t = 0.4, \ \theta = 0.5$.

NNLO, small- q_T soft function for top pair production

Quark bubble contribution

$(q\bar{q} \text{ channel})$

Validation of the framework

- Perfect agreement of the quark bubble results obtained from *differential equations* and *sector decomposition* for all terms in *e* expansion
- Reproduction of the n_f part of the Renormalization Group result

Imaginary part

$(q\bar{q} \text{ channel})$

(gg channel)

Real part

$(q\bar{q} \text{ channel})$

Real part

(gg channel)

Sebastian Sapeta (IFJ PAN Kraków)

► Our goal: Use small-q_T factorization and q_T slicing to perform independent calculation of top pair production at NNLO

- ► Our goal: Use small-q_T factorization and q_T slicing to perform independent calculation of top pair production at NNLO
- ▶ The only missing component: the NNLO soft function

- ► Our goal: Use small-q_T factorization and q_T slicing to perform independent calculation of top pair production at NNLO
- The only missing component: the NNLO soft function
- ► We have constructed a framework based on sector decomposition and differential equations and used it to complete the calculation of the the small-q_T soft function for top pair production at NNLO

- ► Our goal: Use small-q_T factorization and q_T slicing to perform independent calculation of top pair production at NNLO
- The only missing component: the NNLO soft function
- ► We have constructed a framework based on sector decomposition and differential equations and used it to complete the calculation of the the small-q_T soft function for top pair production at NNLO
- > The framework has been extensively validated and cross-checked:
 - 1. Cancellation of α poles, including ϵ/α , and ϵ poles beyond $1/\epsilon^2$
 - 2. Perfect agreement with analytic calculation for bubble graphs
 - 3. RG result for the complete NNLO soft function recovered: real and imaginary part

- ► Our goal: Use small-q_T factorization and q_T slicing to perform independent calculation of top pair production at NNLO
- The only missing component: the NNLO soft function
- ► We have constructed a framework based on sector decomposition and differential equations and used it to complete the calculation of the the small-q_T soft function for top pair production at NNLO
- > The framework has been extensively validated and cross-checked:
 - 1. Cancellation of α poles, including ϵ/α , and ϵ poles beyond $1/\epsilon^2$
 - 2. Perfect agreement with analytic calculation for bubble graphs
 - 3. RG result for the complete NNLO soft function recovered: real and imaginary part \rightarrow direct demonstration of validity of the small- q_T factorization for top pair production at NNLO

- ► Our goal: Use small-q_T factorization and q_T slicing to perform independent calculation of top pair production at NNLO
- The only missing component: the NNLO soft function
- ► We have constructed a framework based on sector decomposition and differential equations and used it to complete the calculation of the the small-q_T soft function for top pair production at NNLO
- > The framework has been extensively validated and cross-checked:
 - 1. Cancellation of α poles, including $\epsilon/\alpha,$ and ϵ poles beyond $1/\epsilon^2$
 - 2. Perfect agreement with analytic calculation for bubble graphs
 - 3. RG result for the complete NNLO soft function recovered: real and imaginary part \rightarrow direct demonstration of validity of the small- q_T factorization for top pair production at NNLO
- The soft function can now be used to obtain full tt cross section at NNLO as well for resummation up to NNLL'

Sebastian Sapeta (IFJ PAN Kraków)

Acknowledgements

This work has been supported by the National Science Centre, Poland grant POLONEZ No. 2015/19/P/ST2/03007. The project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement NO. 665778.

