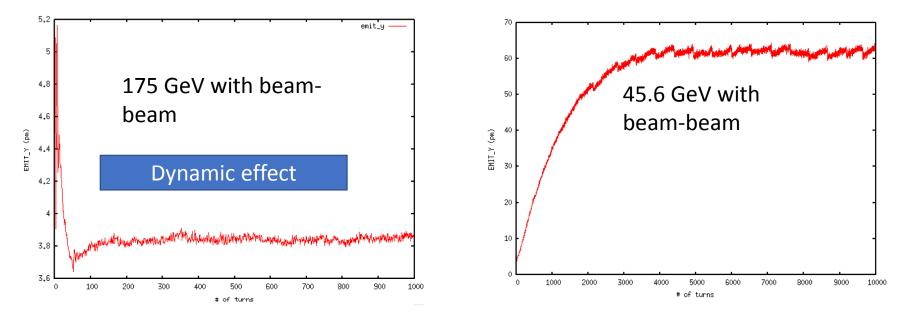
Corrections of residual dispersions/xy couplings

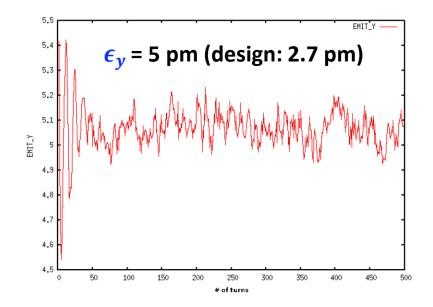
Dima El Khechen Polarization meeting, 26 March 2018

Acknowledgements: K. Oide


- ightarrow Effects of misalignments on the vertical emittance
- \rightarrow Correction of residual misalignments with sextupoles
- \rightarrow Alternative method for creating the x-y coupling with corrected disperisons and

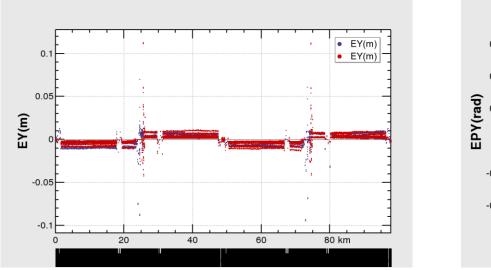
Misalignments and Emittance-I

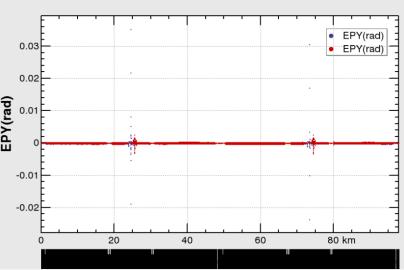
- \rightarrow Observation point is at the center of the RF system (FRF)
- ightarrow Simulations in the presence of vertical misalignments of sextupoles needed for the xy coupling
- \rightarrow Simulations with beam-beam effects resulted in a slight increase of ϵ_y
- → Could be explained by a dynamic effect also given by a thin lens insertion of linear beam-beam element (@ 175 GeV) (design value : 2.7 pm)
- → At 45.6 GeV, the blow-up is extremely huge (design value: 1 pm) (xy coupling 2 times larger that 175 Gev)



Misalignments and Emittance-II

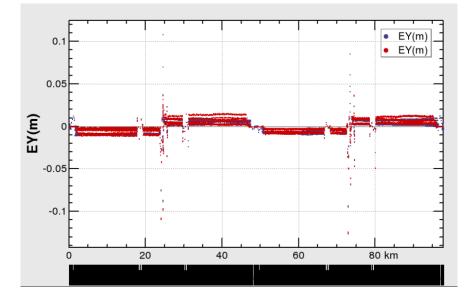
- → Neglect beam-beam and track in a coupled lattice at 175 GeV
- ightarrow The vertical emittance is now almost twice the design value
- ightarrow Corrections need to be done

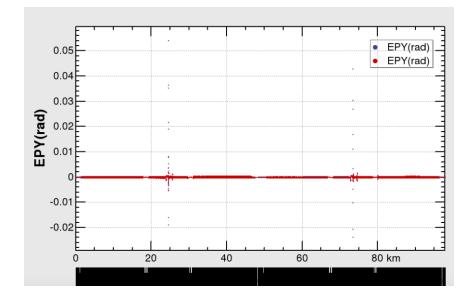




Corrections with sextupoles -I

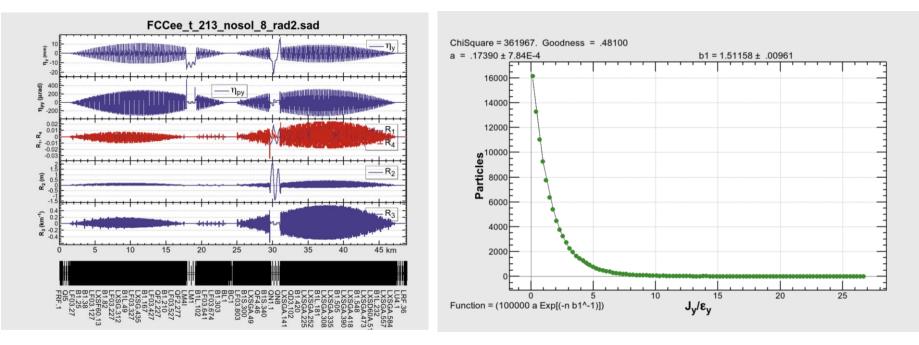
- \rightarrow To correct dispersions:
- 1) Create the vertical emittance by vertical misalignments of sextupoles
- 2) Correct the local dispersions at either the IP or FRF, or at both by varying the skew quadrupole components of 2N sextupoles upstream and downstream of the desired location
- Dispersions are corrected locally at IP, but vertical emittance given by the lattice is now 5.86 pm (N=24)





Corrections with sextupoles -II

- \rightarrow Correction knob at IP is creating larger emittance
- \rightarrow Correct at FRF only
- \rightarrow The vertical emittance given by the lattice is now 3.8 pm (less than before but still large)



Alternative Method: K. Oide

 \rightarrow The alternative method consists of creating the x-y coupling and setting a zero dispersion/xy coupling at IP and FRF at the same time

ightarrow Obviously, multi-turn tracking result in a vertical emittance blowup of 50%

Reference:

"Anomalous equilibrium emittance due to chromaticity in electron storage rings", K. Oide, H. Koiso

 \rightarrow Separate corrections by sextupoles still give some problems

- \rightarrow The alternative method seems good but still simulations should be done.
- \rightarrow To be done:
- 1) Improvements of the scripts for sextupole corrections
- 2) Use a 1.7 pm instead of 2.7 pm for the alternative method and compare